Widely Tunable InP-on-silicon Lasers based on the Micro-Transfer Printing of Double-Ridge Coupons

Yang Liu,^{1*} Ye Chen,¹ Laurens Bogaert,¹ Emadreza Soltanian,¹ Evangelia Delli,¹ Guy Lepage,² Peter Verheyen,² Joris Van Campenhout,² Gunther Roelkens¹ and Jing Zhang¹

Photonics Research Group, INTEC, Ghent University - imec, 9052 Ghent, Belgium ²IMEC, Kapeldreef 75, 3001 Heverlee, Belgium *yangyliu.liu@ugent.be

Abstract: We demonstrate the micro-transfer printing of III-V double-ridge active devices onto silicon photonics, realizing an integrated tunable laser with over 45 nm tuning range and 5 mW waveguide-coupled output power. © 2025 The Author(s)

1. Introduction

Silicon photonics (SiPh) has emerged as a leading platform for developing compact, cost-effective, and highly scalable photonic circuits by leveraging the advancements in CMOS technology [1, 2]. For applications such as wavelength-division multiplexing (WDM) systems, coherent optical communications, and next-generation data center interconnects, there is a critical need for laser sources that offer wide spectral coverage. A promising approach is the micro-transfer printing, available under license from X-Celeprint Ltd, of III-V active devices onto SiPh chips. When combined with vernier filters and tunable reflectors, this technique has proven effective in producing widely tunable lasers on SiPh platforms [3–5]. While previous works focused on printing III-V coupons with a single semiconductor optical amplifier (SOA), this work employs a double-ridge SOA structure, encapsulated as one coupon. One ridge operates within the laser cavity, while the other serves as a booster amplifier.

This dual-function SOA architecture, along with the corresponding on-chip waveguide design, enables tunable lasers with narrow linewidth and broad spectral tuning. Integrating two amplifiers within a single III-V coupon enhances integration density and more effectively makes use of the expensive III-V source material.

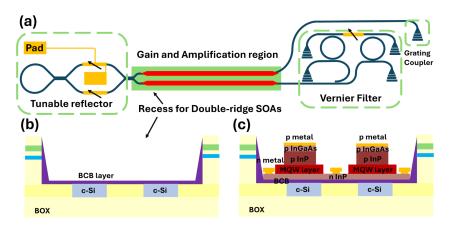


Fig. 1. (a) Schematic layout of the double-ridge laser cavity; (b) cross-sectional schematic of the SiPh chip with defined recesses; (c) cross-sectional schematic of the SiPh chip after transfer printing.

2. Design and fabrication

1.2 mm-long InP/InAlGaAs SOA waveguide structures were defined on InP epitaxial material. The III-V layer stack consisted of an n-InP contact layer, InAlGaAs quantum wells, barriers and separate confinement heterostructure (SCH) layers, a p-InP cladding layer, and an InGaAs contact layer. In contrast to conventional designs, we

introduced a double-ridge structure on the III-V coupons. This approach involved defining a shared n-InP contact layer, followed by defining two InP/InAlGaAs active ridges on top of this layer using lithography and ICP etching. Each ridge was 3 μm wide and both ridges were spaced 20 μm apart, precisely aligning with the underlying silicon waveguides on the SiPh chip. The p-metal contacts for both ridges and the n-metal were deposited using standard III-V fabrication processes.

The silicon waveguide circuits were fabricated on IMEC's 400nm SiPh pilot-line platform. This platform features a 400 nm crystalline silicon (c-Si) device layer, and a complex back-end-of-line (BEOL) stack, including metal interconnect layers and exposed aluminum bond pads. Beneath the silicon waveguide, a 2 μm thick buried oxide (BOX) layer serves as an insulating layer, ensuring proper optical confinement and minimizing propagation losses. To accommodate the integration of the III-V devices, recesses were etched into the SiPh back-end (Figure 1b). A thin adhesive layer of benzocyclobutene (BCB), 100-150 nm thick, was applied to the SiPh chip surface to ensure high-yield printing.

Using a wafer-scale micro-transfer printer (Amicra Nano), eight double-ridge devices were simultaneously picked up with a PDMS stamps and transfer-printed into the designated recesses with high precision. Each ridge of the InP/InGaAs coupon was aligned to a corresponding silicon waveguide beneath it, ensuring effective optical coupling (Figure 1c).

Following placement, standard metallization processes were performed to form common p- and n-side electrode pads, effectively connecting the double-ridge active devices to the on-chip metal tracks of the SiPh platform. The microscope image of double-ridge devices in the SiPh wafer recesses after final metallization was shown in Fig 2(a).

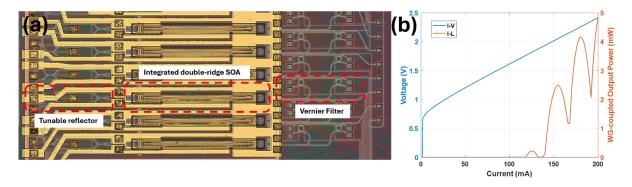


Fig. 2. (a) Microscope image of double-ridge devices in the SiPh wafer recesses after final metallization; (b) Light-current-voltage (LIV) characteristics of the double-ridge laser at 20°C.

3. Characterization and Discussion

The fabricated InP/InGaAs double-ridge lasers were characterized using a temperature-controlled stage, stabilized at 20 °C. Fig. 2(b) shows the light-current-voltage (LIV) characteristics of the double-ridge laser, which exhibited a differential resistance of 8.1 Ω (both SOAs in parallel). Lasing is obtained when the conbined drive current through both SOAs exceeded 120 mA. The waveguide-coupled (WG) output power reaches 5 mW when the drive current is increased to 200 mA, at a stage temperature of 20°C. This high output power is achieved by integrating both laser gain and optical amplification within a single III-V device.

The laser's tuning mechanism relies on a vernier filter that incorporates two thermally tunable micro-ring resonators with slightly different diameters, enabling a wide spectral tuning range. In addition, a thermally tunable Sagnac loop mirror and phase shifter were employed to optimize the reflectivity of the output-coupling mirror, enhancing both tuning precision and output power. As a result, the laser achieved a broad tuning range from 1530.0 nm to 1577.2 nm, spanning over 45 nm as shown in Fig. 3(a). The instantaneous linewidth at different wavelengths is shown in Fig. 3(b), with a narrow linewidth of 3.93 kHz at 1540.8 nm, confirmed by the frequency noise spectrum in Fig. 3(c), as measured using an OE4000 laser phase noise analyzer system. Such a narrow linewidth is advantageous for applications requiring high spectral purity and coherence, including coherent optical communications and sensing.

4. Conclusion

We demonstrate the heterogeneous integration of III-V double-ridge active devices onto a SiPh platform, forming a widely tunable laser via micro-transfer printing. The double-ridge structure enables simultaneous laser gain and

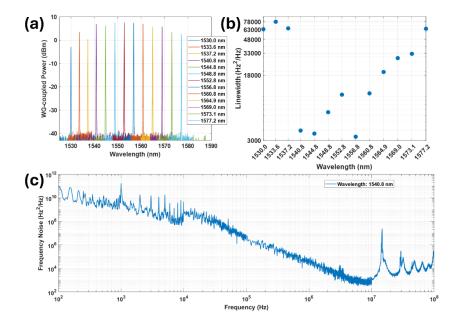


Fig. 3. (a) Optical spectrum of the widely tunable laser; (b) linewidth corresponding to each wavelength; (c) frequency noise spectrum of the laser at 1540.8 nm.

external amplification, achieving high-density integration. After amplification within the same device, the WG-coupled output power reaches 5 mW, with a linewidth as low as 3.93 kHz and a tuning range of over 45 nm. Our results demonstrate the potential to achieve a highly-integrated, narrow-linewidth tunable laser offering wide spectral coverage for advanced photonic integrated circuits.

5. Acknowledgement

This work was supported by the European Union grant 825453 (CALADAN), the EU project grant 871345 (Med-Phab) and the Dutch Growth Fund PhotonDelta project.

References

- 1. Sudip Shekhar, Wim Bogaerts, Lukas Chrostowski, John E Bowers, Michael Hochberg, Richard Soref, and Bhavin J Shastri. Roadmapping the next generation of silicon photonics. *Nature Communications*, 15(1):751, 2024.
- 2. Gunther Roelkens, Jing Zhang, Laurens Bogaert, Emadreza Soltanian, Maximilien Billet, Ali Uzun, Biwei Pan, Yang Liu, Evangelia Delli, Dongbo Wang, et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. *APL Photonics*, 9(1), 2024.
- 3. Jing Zhang, Laurens Bogaert, Clemens Krückel, Emadreza Soltanian, Hong Deng, Bahawal Haq, Johanna Rimböck, Joris Van Kerrebrouck, Guy Lepage, Peter Verheyen, et al. Micro-transfer printing inp c-band soas on advanced silicon photonics platform for lossless mzi switch fabrics and high-speed integrated transmitters. *Optics Express*, 31(26):42807–42821, 2023.
- 4. Gunther Roelkens, Jing Zhang, Laurens Bogaert, Maximilien Billet, Dongbo Wang, Biwei Pan, Clemens J Kruckel, Emadreza Soltanian, Dennis Maes, Tom Vanackere, et al. Micro-transfer printing for heterogeneous si photonic integrated circuits. *IEEE Journal of selected topics in quantum electronics*, 29(3: Photon. Elec. Co-Inte. and Adv. Trans. Print.):1–14, 2022.
- Emadreza Soltanian, Grigorij Muliuk, Sarah Uvin, Dongbo Wang, Guy Lepage, Peter Verheyen, Joris Van Campenhout, Stefan Ertl, Johanna Rimböck, Nicolas Vaissiere, et al. Micro-transfer-printed narrow-linewidth iii-v-on-si double laser structure with a combined 110 nm tuning range. Optics Express, 30(22):39329–39339, 2022.