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Abstract—In this paper, we propose a novel approach to build
real-valued baseband models of linear, time-invariant, passive pho-
tonic devices, circuits, and systems, which allows modeling of pho-
tonic wavelength filter circuits with their full dispersion effects in
an accurate way. The proposed technique starts from the scattering
parameters of the photonic systems under study and leverages on
the modeling power of the vector-fitting algorithm, thereby lead-
ing to both complex- and real-valued baseband state-space models.
The modeling procedure is robust and applicable to general linear
passive photonic devices and circuits, and the physical properties
of the resulting models for the time-domain simulation, such as sta-
bility and passivity, can be properly guaranteed. The built models
are systems of first-order ordinary differential equations (ODEs),
which can be efficiently simulated in a variety of ODE solvers at
baseband frequencies rather than in the optical frequency range.
We demonstrate the applicability and accuracy of the proposed
method on two examples of photonic filter circuits.

Index Terms—Baseband modeling, photonic integrated circuits,
state-space representation, system identification, time-domain
analysis.

I. INTRODUCTION

OVER the last decade, photonic integrated circuits (PIC),
and especially silicon photonics, gained a lot of popular-

ity due to their compatibility with the manufacturing processes
used in the CMOS industry. Given the rapid development of
PIC in terms of complexity and integration scale, photonic
design automation (PDA) tools for photonic circuit simula-
tions, or photonic-electronic co-simulation [1]–[4], become of
paramount importance.

In this framework, it is fundamental to build compact models
which can accurately and efficiently mimic the behavior of pho-
tonic devices and circuits, for both frequency-domain and time-
domain simulations. In this paper, we focus on the modeling of
linear passive devices and systems whose functions roughly
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fall into two categories: distributing/transporting light (e.g.
waveguides), and optical wavelength filtering for applications
such as spectroscopy, wavelength division multiplexing (WDM)
or microwave photonics (MWP) applications. Especially in the
last two applications, an efficient modeling approach of the fil-
ters, which is able to take into account imperfections such as
higher-order dispersion, wavelength-dependent loss, and imper-
fections in coupling coefficients, is urgently needed.

A common approach is to compute analytic models, which
rely on the knowledge of the working principles of the device
under study. Such models are useful in the design phase, be-
cause the geometrical or optical parameters (such as length,
coupling coefficient, effective index, etc.) are directly related
to the performance measures of the device considered. How-
ever, in practice, analytic models can be derived only for simple
photonic systems and there is a limit in their accuracy when
describing complex non-ideal characteristics of the system un-
der study (i.e. backscattering and undesired dispersion effects).
Furthermore, most of these models are generally described as
frequency- (wavelength) domain models, whereas time-domain
models are needed when time-domain simulations are required
to evaluate the performance of the PIC, such as bit error rate or
eye diagrams [1], [3].

In practice, for passive devices and circuits, their scattering
parameters data are more accessible (e.g. via electromagnetic
simulations or measurements) than accurate analytic models.
Hence, it is convenient to conduct time-domain simulations
starting from the scattering parameters.

A typical example is given by the finite impulse response
(FIR) modeling technique [5], which is based on the scatter-
ing parameters representation and is adopted in the dedicated
photonic simulator Lumerical INTERCONNECT [6]. The ac-
curacy provided by FIR filters substantially depends on the de-
sign methodology employed and it inherently degrades near the
edges of the simulated signal bands [5]. Recently, we proposed
a novel baseband state-space modeling approach [7], which
employs the robust vector fitting (VF) algorithm [8]–[10] to
build macromodels which operate at the baseband with com-
plex signals. The term macromodel is adopted here to indicate
that the modeling procedure describes the system behavior as
seen from its inputs/outputs (I/O) ports. The proposed model-
ing approach starts from the scattering parameters of the sys-
tem under study and allows one to build a model in state-space
form representing general linear and passive multiports photonic
systems. Such model operating at optical frequency range can
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then be converted into an equivalent complex-valued baseband
state-space representation, which is inherently a system of first-
order ordinary differential equations (ODE) and it can be effi-
ciently simulated in ODE solvers [7], such as the Matlab rou-
tine lsim. It is important to remark that the method proposed
in [7] requires to compute a specific type of complex-valued
state-space representation via the VF algorithm and the corre-
sponding system of ODE must be solved in simulators able to
handle complex-valued signals and matrices.

In this contribution, first the modeling framework proposed in
[7] is generalized to a wider range of state-space representations
of photonic systems, which can be computed by means of the
VF algorithm or other system identification techniques, such as
model order reduction (MOR) approaches. Next, the obtained
complex-valued baseband model is converted into a new, real-
valued state-space model. Given that the new model retains the
computational efficiency of the corresponding complex-valued
baseband representation, we call it the real-valued baseband
model in the rest of the contribution. However, differently from
its complex-valued counterpart, which is a pure mathematical
representation of the photonic system under study defined only
to speed-up time-domain simulations, the real-valued baseband
model retains the properties of a physical system. In particular,
since stability and passivity are essential for time-domain sim-
ulations [11], it is rigorously proven that the new real-valued
baseband model is stable and passive if the original state-space
model computed at optical frequencies is stable and passive as
well.

The paper is organized as follows. Section II gives an
overview of the baseband modeling technique proposed in [7],
and then Section III presents the novel complex-valued base-
band modeling framework. The proposed real-valued baseband
model is described in Section IV and its properties are rigorously
discussed. Section V presents two suitable numerical examples
validating the accuracy and efficiency of the proposed methods,
and conclusions are drawn in Section VI.

II. BASEBAND MODELING FRAMEWORK OF LINEAR

PHOTONIC SYSTEMS

The frequency range of interest for photonic systems is typi-
cally around [187; 200] THz, corresponding to a wavelength of
[1.5; 1.6] μm, commonly used for telecommunication applica-
tions. Such a wide range at high frequencies has a direct impact
on the modeling and simulation processes, which can become
very time and/or memory consuming.

The baseband modeling and simulation approach proposed
in [7] splits the optical carrier frequency from both the port
signals and systems, and allows one to operate at baseband:
the resulting models can be simulated with high accuracy and
efficiency. In particular, the excitation signals of photonic sys-
tems are defined in [7] as amplitude and/or phase electronic
modulated signals over an optical carrier with frequency fc , as

a(t) = A(t)cos (2πfct + φ(t)) , (1)

where A(t) and φ(t) are the time-varying amplitude and
phase, respectively. After splitting the carrier frequency, a

Fig. 1. Forward and backward waves at each port of a directional coupler.

corresponding baseband equivalent signal al(t) can be derived

al(t) = A(t)ejφ(t) , (2)

which is also the complex envelope of the signal a(t). In or-
der to obtain a corresponding baseband state-space model, the
technique [7] starts by computing a pole-residue representa-
tion of the scattering parameters of the n-ports photonic system
considered, in the form:

S(s) =
K∑

k=1

Rk

s − pk
+ DV F , (3)

where s is the Laplace variable, S is the scattering matrix of the
system under study, the poles pk and residues Rk ∈ Cn×n are
real or complex conjugate pairs, and the matrix DV F ∈ Rn×n

represents a constant term. In particular, the model (3) is
computed by means of the VF algorithm, which allows
one to guarantee the model stability by construction and to
enforce its passivity through suitable passivity enforcement
techniques [12]–[14]. Different possible approaches exist to
convert a pole-residue model in the form (3) into a state-space
representation, such as the Gilbert realization [15]. In particular,
the method described in [7] converts the model (3) into a
complex-valued state-space model, in the form:

⎧
⎪⎨

⎪⎩

dx(t)
dt

= AV F x(t) + BV F a(t)

b(t) = CV F x(t) + DV F a(t),
(4)

where a(t) ∈ Rn×1 and b(t) ∈ Rn×1 are the forward and
backward waves, respectively, at the input and output ports of
the system considered, as indicated in Fig. 1 for a directional
coupler. The symbol x(t) ∈ Rm×1 is the state vector, while
the state-space matrices are AV F ∈ Cm×m , BV F ∈ Rm×n ,
CV F ∈ Cn×m , DV F ∈ Rn×n , with m = nK. In particular,
AV F is a diagonal matrix with all the poles as diagonal entries,
while the elements in BV F are zeros and ones, and CV F

contains all the residues [16].
Then, time-domain simulations can be carried out by solving

the system of first-order ODE (4) via suitable numerical tech-
niques. These approaches iteratively integrate (4) for a discrete
set of values of the time, which are chosen via suitable algo-
rithms (i.e. fixed or adaptive time-step). However, given that the
time step to be adopted depends on the bandwidth of the signals
considered, directly solving (4) with respect to signals at optical
frequencies (e.g. 200 THz) in the form (1) can be computation-
ally expensive, because it requires a prohibitively small time
step [7].
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Hence, the technique presented in [7] computes an equivalent
baseband representation as

⎧
⎪⎨

⎪⎩

dxl(t)
dt

= (AV F − j2πfcIm )xl(t) + BV F al(t)

bl(t) = CV F xl(t) + DV F al(t),
(5)

where al(t), bl(t) and xl(t) are the baseband equivalent signals
in the form (2) of a(t), b(t) and x(t), respectively, while Im is
the identity matrix of size m × m. It is important to remark that,
since AV F is a diagonal matrix with all the poles as diagonal
entries, the operation (AV F − j2πfcIm ) represents a shifting
of all poles by the quantity j2πfc in the complex plane: the
frequency response of the system described by the state-space
matrices in (5) is shifted from the optical frequency range to
baseband. Furthermore, it is proven that the baseband model (5)
is stable and passive by construction, if the model (4) is stable
and passive as well [7]. Finally, the system of ODE (5) can be
efficiently simulated at baseband with relatively large time-steps
with respect to (4), and the original port signals a(t), b(t) in (4)
can be analytically computed starting from their corresponding
baseband representation al(t), bl(t) in (5).

III. NOVEL BASEBAND MODELING FRAMEWORK OF

LINEAR PHOTONIC SYSTEMS

A general linear, passive, and time-invariant physical system
can always be described by real-valued state-space models. They
are widely used in the electronics and control theory fields where
complex models, such as (4), are rarely used. Therefore, to make
maximum use of such techniques for photonic circuit modeling,
it is important to extend the baseband modeling technique in
[7] to general real-valued state-space representations of linear
photonic systems.

Let us assume that a general, linear and passive n-ports pho-
tonic system can be represented by a stable and passive state-
space model operating at optical frequencies in the form:

⎧
⎪⎨

⎪⎩

dx(t)
dt

= Ax(t) + Ba(t)

b(t) = Cx(t) + Da(t),
(6)

where A ∈ Rm×m , B ∈ Rm×n , C ∈ Rn×m , D ∈ Rn×n . It is
important to note that A, B, C, D in (6) are assumed as matrices
with real elements: such model can be obtained by means of the
VF algorithm through a suitable conversion of the rational model
(3) (see, for example, the method described in [16]), but also
from other approaches, such as MOR techniques [17].

Now, starting from (6), it is possible to derive an equiv-
alent complex-valued baseband state-space model by apply-
ing the same procedure described in [7] and summarized in
Appendix A. In the following, we define such model as general
complex-valued baseband state-space model in the form:

⎧
⎪⎨

⎪⎩

dxl(t)
dt

= (A − j2πfcIm )xl(t) + Bal(t)

bl(t) = Cxl(t) + Dal(t),
(7)

which demonstrates that the baseband modeling approach in [7]
is not only applicable to a specific complex realization of the
state-space matrices obtained via VF, but also to any general
state-space model. It is important to note that the frequency
response of the complex-valued model (7) is the frequency re-
sponse of the model (6) shifted by the carrier frequency fc .
Indeed, expressing (7) into the Laplace domain leads to

Sl(s) = C ((s + j2πfc)Im − A)−1 B + D

= S(s + j2πfc),
(8)

where Sl(s) and S(s) are the transfer functions of the models
(7) and (6) in the Laplace domain, respectively. Hence, the fre-
quency response of the model (7) is not symmetrical with respect
to positive and negative frequencies, which makes the baseband
equivalent model a non-physical, complex-valued system.

The stability and passivity of the model (7), which are fun-
damental properties for time-domain simulations [11], are now
investigated. In [7] a thorough discussion on the definition of
the stability and passivity criteria for baseband systems is pre-
sented. Here it is sufficient to remark that the same methods to
assess the stability and passivity of the state-space models of
physical systems can be employed for baseband models as well
[7]. In particular, the stability of a (complex- or real-valued)
state-space model can be assessed by the eigenvalues of the ma-
trix A: the model is stable if the real part of all the eigenvalues
is negative [18]. Now, let us assume that we start off with a
realistic system (6) that is stable (e.g. any passive linear optical
filter circuit), and the corresponding matrix A is diagonalizable,
where

A = TV T−1 , (9)

and T comprises all the eigenvectors and V is a diagonal matrix
whose elements are the corresponding eigenvalues. Note that all
the eigenvalues in V have negative real parts, since the state-
space model (6) is assumed to be stable. Then, it is easy to
derive

A − j2πfcIm = T (V − j2πfcIm )T−1 , (10)

which indicates that the eigenvalues of the baseband model
(7) are the ones of the model (6) shifted over j2πfc along
the imaginary axis in the complex plane. Hence, the baseband
model (7) is also stable (all the eigenvalues of the matrix A −
j2πfcIm , have negative real parts) if the original state-space
model (6) is stable.

The passivity of stable models can be verified by means of
the corresponding Hamiltonian matrix [7], which for the system
(7) is

M l =

[
Al − BL−1DH C −BL−1BH

CH Q−1C −Al
H + CH DL−1BH

]
,

(11)
where B, C, D are the real state-space matrices in (7), while
Al = A − j2πfcIm , L = DH D − In and Q = DDH −
In . Note that for real-valued systems the transpose operator T

is used in the Hamiltonian matrix [16], but in a complex-valued
system the transpose conjugate operator H is required [7]. In
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particular, a (complex- or real-valued) stable state-space model
is passive if its Hamiltonian matrix has no purely imaginary
eigenvalues, since any purely imaginary eigenvalue indicates
a crossover frequency where a singular value of the scattering
matrix changes from being smaller to larger than unity, or vice
versa [7], [16]. In the following, it is proven that the general
complex-valued baseband state-space model (7) is passive by
construction if the original model (6) is passive as well.

Indeed, the Hamiltonian matrix M for the real-valued model
(6) can be represented by [16]

M =

[
A − BL−1DT C −BL−1BT

CT Q−1C −AT + CT DL−1BT

]
. (12)

By comparing (11) and (12), it is clear that

M l = M − j2πfcI2m . (13)

In [7] we have proven that, if (13) holds, it is possible to write:

λli = λi − j2πfc , (14)

where λli and λi with i = 1, . . . , 2m are the eigenvalues of
M l and M , respectively. Hence, the baseband model (7) is
passive (the Hamiltonian matrix M l has no purely imaginary
eigenvalues) if the original state-space model (6) is passive.

The methodology here presented extends the modeling power
of the technique [7], while preserving its main advantages: ro-
bustness in the model-building phase and efficiency in time-
domain simulations. In particular, the model stability and pas-
sivity can be guaranteed by enforcing the same properties on the
model (6) computed at optical frequencies. If the VF algorithm
is adopted, the model stability can be guaranteed by construc-
tion and its passivity can be enforced through robust passivity
enforcement techniques [12]–[14].

IV. REAL-VALUED BASEBAND STATE-SPACE MODELS

Baseband state-space models represented by (5) and (7) are
systems of first-order ODE and can be simulated only in solvers
which support complex-valued signals and matrices. Whereas
this complex system is compact and elegant, many solver tech-
niques are developed and optimized for real-valued systems,
such as SPICE, Verilog-A. In this section, a new real-valued
baseband state-space model is derived starting from the mod-
eling framework described in Section III, and its stability and
passivity are investigated.

A. Model Derivation

Complex signals can be represented with respect to their real
and imaginary parts, such as for al(t)

al(t) = alreal(t) + jalimag (t). (15)

By expressing all the complex signals in (7) in the form of
(15) and by solving separately with respect to the real and the

imaginary parts, lead to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxlreal(t)
dt

=Axlreal(t) + 2πfcxlimag (t) + Balreal(t)

dxlimag (t)
dt

=Axlimag (t) −2πfcxlreal(t) +Balimag (t)

blreal(t) = Cxlreal(t) + Dalreal(t)

blimag (t) = Cxlimag (t) + Dalimag (t).
(16)

It is important to remark that (16), which is a real system of
ODE, can only be derived starting from the baseband state-
space model (7) where A, B, C, D are real matrices: the
model formulation originally proposed in [7] cannot be used to
obtain (16). Then, by defining

â(t)=
[

alreal(t)
alimag (t)

]
, b̂(t)=

[
blreal(t)
blimag (t)

]
, x̂(t)=

[
xlreal(t)
xlimag (t)

]

(17)
and

Â =
[

A 2πfcIm

−2πfcIm A

]
, B̂ =

[
B 0
0 B

]
,

Ĉ =
[

C 0
0 C

]
, D̂ =

[
D 0
0 D

]
,

(18)

where 0 represent the null matrix, equation (16) can be written
as

⎧
⎪⎨

⎪⎩

dx̂(t)
dt

= Âx̂(t) + B̂â(t)

b̂(t) = Ĉx̂(t) + D̂â(t),
(19)

which is defined as real-valued baseband state-space model.
It is important to remark the key difference of the novel rep-

resentation (19) with respect to the complex-valued baseband
models (5) and (7). Indeed, the models (5) and (7) are pure
mathematical representations of the system under study: their
frequency response is not symmetrical with respect to positive
and negative frequencies, and their impulse response is not real:
even with real input signals, they can generate a complex output
[7]. The novel macromodel (19) has a symmetrical frequency
response with respect to positive and negative frequencies and
its impulse response, input and output signals are real. Hence, it
retains all properties of a physical system. It is defined as real-
valued baseband state-space model since it can be simulated
at the frequencies of the electronic modulating signal(s) rather
than at optical frequencies, as for the complex-valued baseband
models (5) and (7), thus achieving a significant speed-up in
terms of efficiency with respect to models of photonic systems
in the form (4) and (6). Furthermore, the novel model (19) is a
system of first-order real-valued ODE, thereby it can be solved
in a wider range of simulators than the complex models (5) and
(7), which opens up the possibility of directly simulating passive
photonic circuits with electronic ones. As remarked in the intro-
duction, photonic-electronic co-simulations are of paramount
importance [1]–[4], [19], [20]. This topic will be investigated in
future contributions.
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Fig. 2. Flowchart of the proposed baseband modeling framework for the time-
domain simulation of photonic systems.

The novel model (19) still represents the same system as (7),
but all the signals (originally complex) are now split into two
real-valued signals representing their real and imaginary parts,
which are coupled in the system of ODE (19). However, the size
of (19) is doubled compared to (7) in terms of number of ports
and state variables, since the signals of (19) are the real and
imaginary parts of the signals in (7). This could have an impact
in terms of simulation efficiency, but the model (19) maintains a
high level of sparsity as well, as indicated in (18). It is important
to remark that the novel real-valued baseband model (19) has
been derived in this section starting from model (7). However,
it can be directly computed starting from the state-space model
(6), as indicated in equation (18). Hence, the calculation of the
complex-valued baseband model (7) is not necessary to obtain
the model (19). The flowchart in Fig. 2 shows the proposed
baseband modeling framework in the case the VF algorithm is
adopted to build the model (6).

B. Stability and Passivity Analysis

Since the model (19) can be considered as a real, linear,
and time-invariant system with real input and output signals,
the stability and passivity conditions defined for physical linear
systems [18], such as (6), still hold for the new model (19).

The stability of a state-space model can be assessed by the
eigenvalue of the matrix A, as indicated in Section III: the model
is stable if the real part of all the eigenvalues is negative [18].
Let us indicate the eigenvalues of Â with the symbol V̂k for k =
1, . . . , 2m and the eigenvalues of A with Vk for k = 1, . . . , m.
Starting from (18), it is proven in Appendix B that

V̂2k−1,2k = Vk ± j2πfc . (20)

Hence, the real part of the eigenvalues of Â is the same as the
eigenvalues of A: the model (19) is stable if the original model
at optical frequencies is stable.

Then, as indicated in Section III, the passivity of the
model (19) can be verified by means of its Hamiltonian
matrix, which can be written as:

M̂ =

[
M̂ 11 M̂ 12

M̂ 21 M̂ 22

]
, (21)

where

M̂ 11 =

[
A − BL−1DT C 2πfcIm

−2πfcIm A − BL−1DT C

]
,

M̂ 12 =

[
−BL−1BT 0

0 −BL−1BT

]
,

M̂ 21 =

[
CT Q−1C 0

0 CT Q−1C

]
,

M̂ 22 =

[
−AT + CT DL−1BT 2πfcIm

−2πfcIm −AT + CT DL−1BT

]
.

It is not surprising that the Hamiltonian matrix for (19) can
be expressed in terms of block matrices, given that the state-
space matrices for the real-valued baseband state-space model
are block matrices as well, as indicated in (18).

By performing a similarity transformation, the matrix M̄ can
be obtained

M̄ = PM̂P−1 =
[

M 2πfcI2m

−2πfcI2m M

]
, (22)

where

P =

⎡

⎢⎢⎣

Im 0 0 0
0 0 Im 0
0 Im 0 0
0 0 0 Im

⎤

⎥⎥⎦, (23)

and M is the Hamiltonian matrix of the system (6), described in
(12). Note that, the similarity transformation (22) is equivalent
to row and column blocks exchanges and it can be derived by
simple algebraic manipulations.

Since similarity transformations of matrices do not change
their eigenvalues, M̄ and M̂ share the same set of eigenval-
ues Λk with k = 1, . . . , 4m. Now, by following the procedure
described in Appendix B, it is proven that

Λ2i−1,2i = λi ± j2πfc , (24)

where λi with i = 1, . . . , 2m are the eigenvalues of M . Equa-
tion (24) proves that the eigenvalues of M̄ and M̂ share the
same real parts with the ones of M : the model (19) is passive
(M̂ has no purely imaginary eigenvalue) if the model (6) is
passive.

Hence, this section demonstrates that the stability and passiv-
ity of the new model (19) are directly determined by the prop-
erties of the original model (6), and the following statements
hold:

� One unstable eigenvalue (whose real part is positive) of (6)
leads to two unstable eigenvalues of the model (19).

� One crossover frequency point where a passivity violation
occurs for (6) leads to two crossover frequency points for
the model (19).

V. EXAMPLES ON PHOTONIC CIRCUITS

This section presents two application examples of the pro-
posed modeling and simulation techniques. The scattering
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Fig. 3. The geometric structure of the Mach-Zehnder interferometer lattice
filter.

Fig. 4. The modulating signals: in-phase part I(t) and quadrature part Q(t).

parameters of the photonic systems under study are evaluated
via the Caphe circuit simulator (Luceda Photonics) and elec-
tromagnetic simulations in FDTD Solutions (Lumerical), while
the time-domain simulations are carried out in Matlab on a per-
sonal computer with Intel Core i3 processor and 8 GB RAM.
It is important to remark that, even though Caphe and FDTD
Solutions are chosen to estimate the scattering parameters in the
proposed examples, there is no limitation on adopting any other
simulator.

A. Lattice Filter

A fifth order finite impulse response filter with a Chebyshev
window is realized via a Mach-Zehnder interferometer lattice
filter, shown in Fig. 3. The filter characteristics are described
in [7].

Let us assume that port P1 of the filter is excited by a 4-
QAM (quadrature phase-shift keying) modulated optical signal
with carrier frequency fc = 195.11 THz and the in-phase I(t)
and quadrature component Q(t) are four bits sequences (−1,
−1, 1, 1) and (−1, 1, −1, 1), respectively, as shown in Fig. 4
where overshoot and undershoot are present to mimic realistic
radio frequency (RF) signals. Note that I(t) and Q(t) are the
real and imaginary parts of the baseband equivalent signals (2),
respectively [7]. It is important to remark that any RF signal
with generic shape can be adopted here, as long as the chosen
modeling frequencies cover the spectrum of the signal [7].

The scattering parameters of the filter are simulated in Caphe
in the frequency range [fc − Δ; fc + Δ], where Δ = 380 GHz,
in order to guarantee that the chosen range covers the spectrum

Fig. 5. Magnitude (top) and phase (bottom) of the lattice filter baseband
scattering parameters extracted via Caphe (full blue line) and computed via the
complex-valued baseband state-space model (7) (red dashed line), where the
green dots represent the corresponding absolute error.

of the modulated optical signal. In this example, 181 frequency
samples are used and they are uniformly distributed over the fre-
quency range of interest. Adaptive sampling strategies can also
be adopted to choose the frequency samples efficiently: more
samples are chosen where the frequency response is dynamic,
such as resonances, and less are chosen in smooth areas [18].
Next, a state-space model is built with 39 poles via the VF algo-
rithm, achieving a maximum absolute error of less than −50 dB.
A standard bottom-up approach is used to select the required
number of poles [18], [21]: the initial number of poles is itera-
tively increased until the desired accuracy of −50 dB is reached.
In particular, the state-space model computed is formed only by
real-valued matrices, as in (6). Note that, the time-domain sim-
ulation of this model computed at optical frequencies will be
used in the following as a reference to validate the accuracy and
the efficiency of the proposed method.

Next, the corresponding complex-valued baseband state-
space model in the form (7) can be easily computed. The
frequency-domain accuracy of such model is illustrated in Fig. 5,
where a comparison between the model frequency response and
the corresponding baseband scattering parameters (obtained by
translating the scattering parameters simulated in Caphe into
baseband) is shown. Finally, a real-valued baseband state-space
model in the form (19) has been computed by following the
procedure described in Section IV.

The simulations of the three models (namely, (6), (7), and
(19)) are carried out with the Matlab routine lsim, and require
10 s, 0.12 s and 0.11 s, respectively. The main speed-up factor of
the proposed modeling approach is given by the adopted time-
step: the model (6) requires a time step of 0.25 fs, while the
baseband models (7) and (19) are simulated with a time step of
0.33 ps.

It is important to remark that the output of model (7) is a
complex signal and its magnitude corresponds to the envelope
of the output of model (6), as illustrated in Fig. 6. Furthermore, it
is always possible to analytically reconstruct the port signals of
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Fig. 6. Output signal at port P 3 of the lattice filter. The blue line represents the
signal obtained from model (6), while the red line and green cross represent the
absolute value of the complex signal obtained by the time-domain simulation
of (7) and (19).

Fig. 7. Real (top) and imaginary (bottom) parts of the output signal at port
P 4 of the lattice filter obtained via the models (7) and (19), where the solid
red lines and green crosses represent the results from (7) and (19), respectively,
while the blue solid lines are the corresponding real and imaginary parts of the
input signal at port P1.

the photonic system under study starting from the time-domain
simulation of the corresponding baseband equivalent model [7].
Finally, Fig. 6 shows the baseband complex signals computed
from the outputs of model (19), according to (15) and (16). It is
evident that the time-domain simulation results of the two novel
proposed models (7) and (19) are in excellent agreement with
the reference solution obtained via the model (6). As additional
proof of the accuracy of the proposed modeling strategies, a
comparison of the real and imaginary part of the complex base-
band signal at port P4 obtained by the complex- and real-valued
baseband models is shown in Fig. 7: the results demonstrate a
very good match.

Fig. 8. The schematic structure of the photonic circuit under study.

Fig. 9. Frequency response of the photonic circuit in Fig. 8 in the frequency
range of interest.

B. Circuit Simulation

The simulation of the photonic circuit shown in Fig. 8, formed
by two directional couplers and a lattice filter, is described in the
following. The lattice filter is the one presented in the previous
section, while the two identical directional couplers have 20 μm
coupling length, 5 μm bend radius, and 0.15 μm gap between
coupling waveguides, whose width is 0.43 μm.

In order to simulate this circuit, the baseband models for
each device in Fig. 8 are computed first, and then properly con-
nected. Since the 4-QAM modulating signal (with same carrier
frequency) described in Section V-A is used to excite the circuit
at port P1, the scattering parameters of the directional coupler
are evaluated in the Lumerical FDTD solver for the same fre-
quency range used for the lattice filter, namely [fc − Δ; fc + Δ],
where Δ = 380 GHz. Considering that the frequency response
is rather smooth over the frequency range of interest, only 30
equidistantly spread frequency samples are selected for building
the model. It is important to note that the scattering parameters
of the lattice filter are evaluated in Caphe and its Caphe model
is an ideal model without considering reflections, while the di-
rectional coupler is simulated in Lumerical FDTD solver where
the reflection at each port is modeled. Fig. 9 shows the transmis-
sions and reflections characteristics of the whole circuit under
study. Then, a state-space model in the form (6) is built for the
directional coupler via the VF algorithm with 14 poles, achiev-
ing an absolute maximum error of less than −50 dB. Finally,
the corresponding complex- and real-valued baseband models
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Fig. 10. Example of the connection of the baseband models of two-ports
photonic devices. (a) The physical connection. (b) The connection of the corre-
sponding complex-valued baseband state-space models (7). (c) The connection
of the corresponding real-valued baseband state-space models (19).

are computed via the approaches outlined in Sections III and
IV, respectively.

Once the models of the lattice filter and directional coupler
have been obtained, they can be easily connected in order to
describe the input/output behavior of the circuit under study.
Fig. 10 shows an example of the connection of baseband models
computed for two-ports devices. It is very intuitive to realize
that the forward wave at port 3 in Fig. 10 is the backward
one for port 2, and vice versa: the corresponding ports of the
baseband models must be connected accordingly. The same
principle applies to general types of connections (i.e. parallel,
feedback, etc.) and for any number of ports. Now, the built
complex-valued and real-valued baseband models can be readily
connected via the connect routine in Matlab, following the
method illustrated in Fig. 10, and the time-domain simulation
can be performed via the dedicated linear system solver lsim.
Note that any hierarchical connection can be realized via the
connect routine, even though only the cascaded case is shown
in this example.

Fig. 11 shows the magnitude of the complex baseband re-
flected signal at port P1 and transmission signal at port P3
obtained with the models (7) and (19), which again demon-
strates the accuracy of the proposed techniques. The simulation
of the complex- and real-valued models requires the same time:
0.42 s.

Rather than modeling each device separately, it is also pos-
sible to consider the entire circuit in Fig. 8 as a single passive
element, described by its scattering parameters. Then, a state-
space model in the form (6) can be built for the entire circuit
with 69 poles via the VF algorithm, achieving a maximum ab-
solute error of less than −50 dB. The corresponding complex-
and real-valued baseband models can be calculated as described
in Sections III and IV, respectively. Fig. 12 shows an exam-
ple of the results of the two modeling strategies considered,
namely devices and circuit modeling: the two approaches are in
excellent agreement. This is a remarkable improvement com-
pared with the FIR modeling technique, where the modeling

Fig. 11. The amplitude of the reflected signal at port P 1 (top) and transmission
signal at port P 3 (bottom) of the circuit obtained from the simulations of the
models (7) and (19) with excitation signal shown in Fig. 4.

Fig. 12. The amplitude of the reflected signal at port P 2 (top) and transmission
signal at port P 4 (bottom) of the circuit obtained by the real baseband model
(19) computed via the devices and circuit modeling strategies.

accuracy could decrease significantly when multiples FIR mod-
els are connected [5].

The time-domain simulation of the baseband model obtained
via the circuit modeling approach requires 0.43 s, a similar com-
putational cost to the devices modeling approach, once again
demonstrating the efficiency of the proposed method.

VI. CONCLUSION

This paper presented a technique to efficiently simulate pho-
tonic linear circuits with a complex-valued baseband represen-
tation by means of existing solvers that support only real-valued
systems. It significantly extends the baseband modeling and
simulation framework proposed in [7]. The complex-valued
baseband model can be derived from general state-space
models of linear photonic systems, and accurately simulated at
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