THE MORPHIC PROJECT: ENABLING LARGE SCALE PROGRAMMABLE PHOTONIC CIRCUITS USING MEMS

M.U. Khan1,2, W. Bogaerts1,2, N. Quack3, K. B. Gylfason4, P. Verheyen5, P. O’Brien6, C.L. Arce7, M. Garcia8

1Ghent University - IMEC, Photonics Research Group, Department of Information Technology, Ghent, Belgium
2Center for Nano- and Biophotonics (NB-Photonics), Ghent, Belgium
3École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
4Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
5Interuniversity Microelectronics Centre (IMEC), Heverlee 3001, Belgium
6Photonic Packaging Group, Tyndall National Institute, Lee Maltings Complex, Cork T12R5CP, Ireland
7Commscope Connectivity BVBA, Belgium
8VLC Photonics, Valencia, Spain

Abstract: In MORPHIC, we are enhancing the capabilities of already established silicon photonics platform with low-power and non-volatile MEMS actuators to achieve programmability and re-configurability of the photonic circuits. The combining of high speed silicon photonics, non-volatile MEMS actuation, electronics controlled reconfigurable connectivity and high level design methodologies and programming interface in a package will lead to a complete Field-Programmable Photonic Integrated Circuits (FP-PIC) platform. Ultimately, technology platforms for both generic FP-PIC and Application-Specific Photonic Integrated Circuits (AS-PIC) with possibility of volume manufacturing will be demonstrated.

Fig 1: The proposed generic Field-Programmable Photonic Integrated Circuits (FP-PIC) using non-volatile MEMS building blocks.

www.photonicsireland2018.ie