SiGe MEMS Technology: a Platform Technology Enabling Different Demonstrators
A. Witvrouw⁴, R. Van Hoof⁴, G. Bryce⁴, B. Du Bois⁴, A. Verbiest⁴, S. Severi⁴, L. Haspeslagh⁴, H. Osman⁴, J. De Coster⁴, L. Wern⁵, R. Puer⁵, R. Beernaert⁵, H. De Smet⁴, S. Ruda⁴, D. Van Thourhout⁴
¹imec, Leuven, Belgium, ²MICAS, KUL, Leuven, Belgium, CMST, UGent, Zwijnaarde, Belgium, ³Intec, UGent, Gent, Belgium

In imec’s 200mm fab a dedicated SiGe above-IC MEMS platform has been set up to integrate MEMS and its readout and driving electronics on one chip. This monolithic approach results in more compact systems with a reduced assembly and packaging cost and a higher performance than current hybrid systems. The SiGe MEMS platform (Figure 1) consists of a number of standard modules (CMOS protection layer, MEMS via and poly-SiGe electrode, anchor and poly-SiGe structural layer and a thin-film poly-SiGe packaging module) which can be processed at ~450°C above standard CMOS. Optional (optical, piezoresistive, probes,...) modules can be added depending on the functionality that is needed.

The novel Gemini mirror design relies on 6 electrodes and uses 2 possible electrode thicknesses of the SiGe platform (Figure 3). Two out of the six electrodes serve as landing electrodes. The other four attracting electrodes are driven by two anti-phase saw tooth signals and two fixed analog voltage signals. By applying this signal scheme, the duty cycle of the mirror is modulated in an analog way. Laser Doppler Vibrometer measurements have confirmed the feasibility of analog Pulse Width Modulation for 15 µm wide SiGe micro-mirrors.

The Gemini GLV microbeams are clamped-clamped beams suspended over an electrode, which can modulate the intensity of the diffracted light when an actuation voltage is applied to half of the beams (Figure 4).

Whereas the mirrors and GLVs are realized with a 300 nm thick SiGe structural layer (+ optional 5nm SiC/30 nm Al coating for improved reflectivity), the SiGe structural layer thickness for the accelerometers is 4µm to improve the capacitive readout of in-plane devices. Both in-plane and out-of-plane low-g accelerometers are made (Figure 5). Measurements of a fabricated out-of-plane accelerometer show that this device can sense the gravitation projection to the main sensing axis with an average sensitivity of 0.5 mV/°.

In conclusion, the new demonstrators realized in the Gemini project reconfirm the generic nature of the SiGe MEMS platform.

REFERENCES
2. A. Witvrouw et al., JMEMS 19 (1), 201, (2010).
4. IWT-SBO project “GEMINI” (“Generic Electronics and Microsystems INtegration Initiative”), IWT-nr 60046
1936 Diffusion and Interface Segregation of Phosphorus and Boron in Bulk Germanium and Germanium Nanomembranes
 T. Liu, C. N'doye, and M. Orlowski

1937 SiGe MEMS Technology: A Platform Technology Enabling Different Demonstrators
 A. Witvrouw, R. Van Hoof, G. Bryce, B. Du Bois, A. Verbist, S. Severi, L. Haspeslagh,
 H. Osman, J. De Coster, L. Wen, R. Puers, R. Beernaert, H. De Smet, S. Rudra, and
 D. Van Thourhout

1938 Elastic Strain Engineering in Si Nanomembranes
 D. Paskiewicz, S. Scott, D. Savage, and M. Lagally

1939 Functionalized Back-End Devices for (Bi)CMOS Circuits
 C. Wenger, C. Walczyk, M. Lukosius, D. Wolansky, and P. Santos

1940 Epitaxial Growth of III-Nitrides on Silicon Substrates
 S. Degroote, M. Leys, K. Cheng, B. Sijmns, J. Deruyyn, G. Borghs, and M. Germain

1941 High Quality Epitaxial Growth of GaAs$_x$P$_{1-y}$ Alloys on Si$_{1-x}$Ge$_x$ Virtual Substrates
 P. Sharma, M. Bulsara, and E. Fitzgerald

1942 Direct Heterointegration of III-V Materials on Group IV Substrates
 D. Ahmari

1943 Epitaxial Formation of Graphene on Si Substrates: From Heteroepitaxy of 3C-SiC to Si Sublimation
 M. Suemitsu

1944 Novel SiGe Source/Drain for Reduced Parasitic Resistance in Ge NMOS
 S. Raghunathan, T. Krishnamohan, and K. Saraswat

1945 Non-Contact and Non-Destructive Measurement of Ge and B Content in Si$_{1-x}$Ge$_x$/Si Using Very High Resolution Multiwavelength Raman Spectroscopy
 W. Yoo, T. Ueda, T. Ishigaki, and K. Kang

1946 X-ray Microdiffraction Study on Crystallinity of Micron-Sized Ge Films Selectively Grown on Si(001) Substrates
 K. Ebihara, S. Harada, J. Kikkawa, Y. Nakamura, A. Sakai, G. Wang, M. Caymax, Y. Imai,
 S. Kimura, and O. Sakata

1947 Interface Reaction and Rate Enhancement of SiGe Thermal Oxidation
 T. Shimura, Y. Okamoto, D. Shimokawa, T. Inoue, T. Hosoi, and H. Watanabe

1948 Misfit Stress Relaxation Mechanism in GeOy/Ge Systems: A Classical Molecular Simulation Study
 T. Watanabe, T. Onda, and I. Ohdomari

1949 Chemical Trend of Schottky-Barrier Change by Segregation Layers at Metal/Si Interfaces: First-Principles Study
 T. Nakayama, S. Sotome, and K. Kobinata

1950 III-V Photovoltaics: Recent Developments and Prospects
 N. Sosa, T. van Kessel, Y. Martin, and H. Hovel

1951 Ge/III-V Heterostructures and Their Applications in Fabricating Engineered Substrates
 Y. Bai and E. Fitzgerald

1952 Selective Epitaxial Growth of III-V Semiconductor Heterostructures on Si Substrates for Logic Applications
 N. Nguyen, G. Wang, N. Waldron, G. Winderickx, G. Brammertz, M. Leys, K. Lismont,
 J. Dekoster, R. Loo, M. Meuris, S. Degroote, M. Caymax, O. Feron, F. Buttitta, B. O'Neil,
 J. Lindner, F. Schulte, B. Schineller, and M. Heuken