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A new wide-angle (WA) beam propagation method (BPM) is developed whereby the exact scalar Helmholtz
propagator is replaced by any one of a sequence of higher-order (m,n) Padé approximant operators. Unlike the
previous well-known WA-BPM proposed by Hadley [Opt. Lett. 17, 1426 (1992)], the resulting formulations al-
low one a direct solution of the second-order scalar wave equation without having to make slowly varying en-
velope approximations so that the WA formulations are completely general. The accuracy and improvement of
this approximate calculation of the propagator is demonstrated in comparison with the exact result and exist-
ing approximate approaches. The method is employed to simulate two-dimensional (2D) and three-dimensional
(3D) optical waveguides and compared with the results obtained by the existing approach. © 2009 Optical

Society of America
OCIS codes: 000.4430, 220.2560, 350.5500.

1. INTRODUCTION

Efforts to improve the limitations of the paraxial approxi-
mation or Fresnel equation in the beam propagation
method have so far made use of wide-angle (WA) formu-
lations. Different treatments of the wide-angle beam
propagation method (WA-BPM) based on the slowly vary-
ing envelope approximation (SVEA) have been developed.
In these approaches the field is assumedly separated into
two parts including the complex field amplitude and a
propagation factor [1]. There exist rational approximants
of the square root operator, the exponential of the square
root operator [2], the real Padé approximant operators
mentioned here as Hadley(m,n) [3], and the complex
Padé approximant operators [4] for rectangular coordi-
nates as well as an oblique coordinate system [5]. In ad-
dition, treatments of WA-BPM without having to make
the SVEAs have also been reported, including the series
expansion technique of the propagator [6], the rational
approximation of the one way propagator [7], and the
split-step of the beam propagation equation [8,9]. The
Padé-approximant-based WA-BPM is one of the most
commonly used techniques for modeling optical wave-
guide structures. It is a nonlinear expression in the form
of a rational function (N(m)/D(n)), a ratio of two polyno-
mials that are given by recurrence equations [3,4]. By
sharing the same idea without having to make the SVEA,
we present a new WA-BPM whereby the exact scalar
Helmholtz propagation operator is approximated by any
one of a sequence of higher-order (m,n) Padé approxi-
mant operators.

2. FORMULATION

A. Padé Approximant Operators for WA-BPM
The scalar Helmholtz equation is given by [3]
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refractive index profile and %, as the vacuum wave vector.
Note that there is no reference refractive index included
in operator P.

By multiplying both sides of Eq. (2) with —(i/2k) and
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We may formally rewrite Eq. (3) in the form
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By using the initial value of (d/d2)|o=0, this gives us the
Padé(m ,n)-approximant-based WA beam propagation for-
mula as follows:
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where N(m) and D(n) are polynomials in X=(P/k?). The
most useful low-order Padé approximant operators are
shown in Table 1.

B. Analytical Assessment of WA-BPM
If Eq. (4) is compared to a formal solution of Eq. (2) writ-
ten in the well-known form
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we obtain the approximation formula
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Since the operator X has a real spectrum, it is useful to
consider the approximation of \X by the Padé approxi-
mant propagation operators. Figure 1 shows the absolute
values of \5( and the most useful low-order Padé(m ,n) ap-
proximant operators mentioned as KP(m,n) with respect
to X. It is shown that the approximations KP(m,n) are a
good fit to the exact solution of the scalar Helmholtz equa-
tion. Furthermore, it is clearly seen that the higher the
order of the approximation KP(m ,n) is, the more accurate
the approximation to the Helmholtz propagator is. Figure
1 also shows the approximate approaches to the propaga-
tion operator using a traditional Padé approximant
[10,11] and the Hadley(m,n)-approximant-based ap-
proach [3]. It is obvious that our resulting method allows
one a more accurate approximation to the Helmholtz
propagator in a wide range of operator X than the previ-
ous approaches. However, if the denominator of the ap-
proximation KP(m,n) formula approaches zero, its abso-
lute value approaches « as clearly seen in Fig. 2.
Physically, our resulting method correctly models waves
propagating in the propagating region, where X=0,

Table 1. Most Useful Low-Order Padé Approxi-
mants for Helmholtz Propagator in Terms of the
Operator X=P/Ek?
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Fig. 1. (Color online) Absolute values of VX (solid curve), the
most useful low-order traditional Padé approximants,

Hadley(m,n), and KP(m,n) of \)—( (dotted curves).

whereas it incorrectly models waves propagating in the
evanescent region, where X<0. To circumvent this prob-
lem, we employ the rotation technique of the square-root
operator in the complex plane to address the evanescent
waves proposed by Milinazzo et al. [12]. From Fig. 2, it is
clearly shown that the rotated KP(1,1) could give the eva-
nescent wave the desire damping and allow one a good
approximation to the true Helmholtz equation.

C. Numerical Implementation of WA-BPM

One of the most commonly used techniques to numeri-
cally deal with Eq. (6) is the finite difference method [3].
Finite difference equations may be derived from Eq. (6) by
clearing the denominator and centering with respect to z
in the usual way,
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Equation (9) can be solved effectively by the multistep

method whereby each component step is treated by the
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Fig. 2. (Color online) Absolute values of \)7 (solid curve), the
first-order (solid curve wigl circles), and rotated (dotted curve)

KP(1,1) approximant of \X.
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traditional direct matrix inversion for two-dimensional
(2D) problems [13]. However, for large three-dimensional
(3D) problems requiring the frequently matrix inversion
during a propagation direction it is a numerically inten-
sive task. Recently, we reported the approach solving
these problems effectively and accurately by using the
new complex Jacobi iterative (CJI) method [4]. The utility
of the CJI technique depends mostly upon its execution
speed dominated by the amount of effective absorption (or
medium loss). If the medium loss is high, the convergence
rate is thus fast.

For WA-BPMs based on the Hadley(1,1) approximant,
the propagation equation is given by
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~NYep)s EHadley=(1/4k%)—(iA2/4k), &, is the complex
conjugate of &puqiey, and Az is the propagation step size.
For those based on the KP(1,1) approximant, the propa-
gation equation is given by
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If the CJI technique is employed to solve Eqgs. (10) and
(11), their medium losses are determined by the imagi-
nary part of 1/&g,qiey and 1/égp, respectively [4]. The
amount of the medium loss of the WA beam propagation
equation based on Hadley(1,1) and KP(1,1) approximants
with respect to the propagation step size Az at the wave-
length A=0.633 um and the reference refractive index
Nper=3.3 is depicted in Fig. 3. It is seen that for Az
<0.0216 um the medium loss (and thus the convergence
rate) of the WA propagation equation based on KP(1,1) is
higher than that of Hadley(1,1). Therefore, the loss is
high for a typical choice of £Az. This is a condition that
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Fig. 3. Medium loss of WA beam propagation using CJI based
on Hadley(1,1) (dotted curve) and KP(1,1) approximant (solid
curve).
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favors a more rapid convergence for a KP(1,1)
approximant-based WA-BPM using CJI than that of Ha-
dley(1,1).

3. APPLICATION

To prove the applicability and the accuracy of this
method, we now employ it to study 2D and 3D optical
waveguide problems whereby the WA beam propagation
is needed and compared with those obtained by the exist-
ing approach. For the 2D case, we consider a Y-junction
waveguide. The parameters needed for the calculations
are the same as in [14]. The fundamental mode for the
slab of width w=0.2 um after propagating through 21 um
at wavelength A=0.633 um is depicted in Fig. 4. For a
small propagation step size Az=0.01 um due to the high
effective loss in the propagation medium the CJI tech-
nique for WA-BPM based on the KP(1,1) approximant
performed the propagation in 1047 s whereas that of the
Hadley(1,1) approximant required 1552 s.

For the 3D case, we consider the guided-mode propaga-
tion in the Y-branch rib waveguide [4]. The initial rib
waveguide is split into two 10° tilted waveguides. The
fundamental mode of the ridge waveguide of width w
=2 um for the polarization TE mode at 0.633-um in wave-
length is used as the excited field at z=0. The field pat-
tern at z=3(um) calculated by Hadley’s and our approach
is depicted in Fig. 5. For a propagation step size Az
=0.1 um, the resulting time of CJI for the Hadley(1,1)-
approximant-based WA-BPM is 42 s while runtime for
that of the KP(1,1)-approximant-based one is 61 s. It is
seen that the CJI for the KP(1,1)-approximant-based
WA-BPM is faster for a small propagation step size and
slower for a large one than that of the Hadley(1,1)-
approximant-based WA-BPM. This is due to the amount
of effective absorption as shown in Section 2. As shown in
Figs. 4 and 5, for modeling these structures the improve-
ment of our approach compared to Hadley’s one in terms
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Fig. 4. Input beam at z=0 (solid curve that peaks in center) and
output beam at z=21 pum in a 2D Y-branch rib waveguide calcu-
lated by WA-BPM based on KP(1,1) (solid curve that peaks on
left and right) and Hadley(1,1) (circles).
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Fig. 5. (Color online) Magnitude of TE fundamental mode after
propagating 3 um in a 3D Y-branch rib waveguide calculated by
WA-BPM based on (a) KP(1,1) and (b) Hadley(1,1).

of accuracy is not too much. However, in terms of execu-
tion speed our approach can show a significant improve-
ment. This is attributed to how high the medium loss (and
thus the convergent rate of CJI dominated by a typical
choice of kAz) is.

4. CONCLUSIONS

In this paper, we have derived a new WA-BPM based on
Padé approximant operators. The resulting approach al-
lows one more accurate approximations to the true Helm-
holtz equation than the previous Padé-approximant-
based approaches in a wide range of operator X. In
addition, for a typical choice of £Az, the convergence rate
of CJI for WA-BPM based on our new approach is faster
than that of Hadley’s one. Furthermore, in contrast to ex-
isting methods, no slowly varying field approximations
are assumed so that WA formulations are completely gen-
eral.
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