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Wide-angle beam propagation method without
using slowly varying envelope approximation
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A new wide-angle (WA) beam propagation method (BPM) is developed whereby the exact scalar Helmholtz
propagator is replaced by any one of a sequence of higher-order �m ,n� Padé approximant operators. Unlike the
previous well-known WA-BPM proposed by Hadley [Opt. Lett. 17, 1426 (1992)], the resulting formulations al-
low one a direct solution of the second-order scalar wave equation without having to make slowly varying en-
velope approximations so that the WA formulations are completely general. The accuracy and improvement of
this approximate calculation of the propagator is demonstrated in comparison with the exact result and exist-
ing approximate approaches. The method is employed to simulate two-dimensional (2D) and three-dimensional
(3D) optical waveguides and compared with the results obtained by the existing approach. © 2009 Optical
Society of America
OCIS codes: 000.4430, 220.2560, 350.5500.
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. INTRODUCTION
fforts to improve the limitations of the paraxial approxi-
ation or Fresnel equation in the beam propagation
ethod have so far made use of wide-angle (WA) formu-

ations. Different treatments of the wide-angle beam
ropagation method (WA-BPM) based on the slowly vary-
ng envelope approximation (SVEA) have been developed.
n these approaches the field is assumedly separated into
wo parts including the complex field amplitude and a
ropagation factor [1]. There exist rational approximants
f the square root operator, the exponential of the square
oot operator [2], the real Padé approximant operators
entioned here as Hadley�m ,n� [3], and the complex
adé approximant operators [4] for rectangular coordi-
ates as well as an oblique coordinate system [5]. In ad-
ition, treatments of WA-BPM without having to make
he SVEAs have also been reported, including the series
xpansion technique of the propagator [6], the rational
pproximation of the one way propagator [7], and the
plit-step of the beam propagation equation [8,9]. The
adé-approximant-based WA-BPM is one of the most
ommonly used techniques for modeling optical wave-
uide structures. It is a nonlinear expression in the form
f a rational function �N�m� /D�n��, a ratio of two polyno-
ials that are given by recurrence equations [3,4]. By

haring the same idea without having to make the SVEA,
e present a new WA-BPM whereby the exact scalar
elmholtz propagation operator is approximated by any

ne of a sequence of higher-order �m ,n� Padé approxi-
ant operators.

. FORMULATION
. Padé Approximant Operators for WA-BPM
he scalar Helmholtz equation is given by [3]
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�2�

�z2 + k0
2n2�x,y,z�� = 0, �1�
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�2�

�z2 = − P�, �2�

here P=��
2 +k0

2n2= ��2 /�x2�+ ��2 /�y2�+k0
2n2 with n as the

efractive index profile and k0 as the vacuum wave vector.
ote that there is no reference refractive index included

n operator P.
By multiplying both sides of Eq. (2) with −�i /2k� and

hen adding ��� /�z� on each side, we obtain

−
i

2k

�2�

�z2 +
��

�z
=

iP

2k
� +

��

�z
, �3�

here k=k0nref; nref is the reference refractive index.
We may formally rewrite Eq. (3) in the form

��

�z
=

iP

2k
+

�

�z

1 −
i

2k

�

�z

�. �4�

quation (4) suggests the recurrence relation

� �

�z�
n+1

=

iP

2k
+ � �

�z�
n

1 −
i

2k� �

�z�
n

. �5�

y using the initial value of ��� /�z��0=0, this gives us the
adé�m ,n�-approximant-based WA beam propagation for-
ula as follows:
009 Optical Society of America
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��

�z
� ik

N�m�

D�n�
�, �6�

here N�m� and D�n� are polynomials in X= �P /k2�. The
ost useful low-order Padé approximant operators are

hown in Table 1.

. Analytical Assessment of WA-BPM
f Eq. (4) is compared to a formal solution of Eq. (2) writ-
en in the well-known form

��

�z
= i�P� = ik�X�, �7�

e obtain the approximation formula

�X �
N�m�

D�n�
. �8�

ince the operator X has a real spectrum, it is useful to
onsider the approximation of �X by the Padé approxi-
ant propagation operators. Figure 1 shows the absolute

alues of �X and the most useful low-order Padé�m ,n� ap-
roximant operators mentioned as KP�m ,n� with respect
o X. It is shown that the approximations KP�m ,n� are a
ood fit to the exact solution of the scalar Helmholtz equa-
ion. Furthermore, it is clearly seen that the higher the
rder of the approximation KP�m ,n� is, the more accurate
he approximation to the Helmholtz propagator is. Figure
also shows the approximate approaches to the propaga-

ion operator using a traditional Padé approximant
10,11] and the Hadley�m ,n�-approximant-based ap-
roach [3]. It is obvious that our resulting method allows
ne a more accurate approximation to the Helmholtz
ropagator in a wide range of operator X than the previ-
us approaches. However, if the denominator of the ap-
roximation KP�m ,n� formula approaches zero, its abso-
ute value approaches � as clearly seen in Fig. 2.
hysically, our resulting method correctly models waves
ropagating in the propagating region, where X�0,

Table 1. Most Useful Low-Order Padé Approxi-
mants for Helmholtz Propagator in Terms of the

Operator X=P /k2

Order Expression

(1,0) X
2

(1,1) X

1+
X
4

(2,2)
2X+

X2

2

1+
3X
2

+
X2

16

(3,3)
3X+

5X2

2
+

3X3

16

1+
15X

4
+

15X2

16
+

X3

64
hereas it incorrectly models waves propagating in the
vanescent region, where X�0. To circumvent this prob-
em, we employ the rotation technique of the square-root
perator in the complex plane to address the evanescent
aves proposed by Milinazzo et al. [12]. From Fig. 2, it is

learly shown that the rotated KP�1,1� could give the eva-
escent wave the desire damping and allow one a good
pproximation to the true Helmholtz equation.

. Numerical Implementation of WA-BPM
ne of the most commonly used techniques to numeri-

ally deal with Eq. (6) is the finite difference method [3].
inite difference equations may be derived from Eq. (6) by
learing the denominator and centering with respect to z
n the usual way,

D��n+1 − �n� =
ik�z

2
N��n+1 + �n�. �9�

quation (9) can be solved effectively by the multistep
ethod whereby each component step is treated by the

ig. 1. (Color online) Absolute values of �X (solid curve), the
ost useful low-order traditional Padé approximants,
adley�m ,n�, and KP�m ,n� of �X (dotted curves).

ig. 2. (Color online) Absolute values of �X (solid curve), the
rst-order (solid curve with circles), and rotated (dotted curve)
P�1,1� approximant of �X.
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raditional direct matrix inversion for two-dimensional
2D) problems [13]. However, for large three-dimensional
3D) problems requiring the frequently matrix inversion
uring a propagation direction it is a numerically inten-
ive task. Recently, we reported the approach solving
hese problems effectively and accurately by using the
ew complex Jacobi iterative (CJI) method [4]. The utility
f the CJI technique depends mostly upon its execution
peed dominated by the amount of effective absorption (or
edium loss). If the medium loss is high, the convergence

ate is thus fast.
For WA-BPMs based on the Hadley(1,1) approximant,

he propagation equation is given by

�1 + �HadleyPHadley��n+1 = �1 + �Hadley
* PHadley��n, �10�

here PHadley=��
2 +k0

2�n2−nref
2 �= ��2 /�x2�+ ��2 /�y2�+k0

2�n2

nref
2 �, �Hadley= �1/4k2�− �i�z /4k�, �Hadley

* is the complex
onjugate of �Hadley, and �z is the propagation step size.
or those based on the KP�1,1� approximant, the propa-
ation equation is given by

�1 + �KPPKP��n+1 = �1 + �KP
* PKP��n, �11�

here PKP=��
2 +k0

2n2= ��2 /�x2�+ ��2 /�y2�+k0
2n2, �KP

�1/4k2�− �i�z /2k�, and �KP
* is the complex conjugate of

KP.
If the CJI technique is employed to solve Eqs. (10) and

11), their medium losses are determined by the imagi-
ary part of 1/�Hadley and 1/�KP, respectively [4]. The
mount of the medium loss of the WA beam propagation
quation based on Hadley(1,1) and KP�1,1� approximants
ith respect to the propagation step size �z at the wave-

ength �=0.633 �m and the reference refractive index
ref=3.3 is depicted in Fig. 3. It is seen that for �z
0.0216 �m the medium loss (and thus the convergence

ate) of the WA propagation equation based on KP�1,1� is
igher than that of Hadley(1,1). Therefore, the loss is
igh for a typical choice of k�z. This is a condition that

ig. 3. Medium loss of WA beam propagation using CJI based
n Hadley(1,1) (dotted curve) and KP�1,1� approximant (solid
urve).
avors a more rapid convergence for a KP�1,1�
pproximant-based WA-BPM using CJI than that of Ha-
ley(1,1).

. APPLICATION
o prove the applicability and the accuracy of this
ethod, we now employ it to study 2D and 3D optical
aveguide problems whereby the WA beam propagation

s needed and compared with those obtained by the exist-
ng approach. For the 2D case, we consider a Y-junction
aveguide. The parameters needed for the calculations
re the same as in [14]. The fundamental mode for the
lab of width w=0.2 �m after propagating through 21 �m
t wavelength �=0.633 �m is depicted in Fig. 4. For a
mall propagation step size �z=0.01 �m due to the high
ffective loss in the propagation medium the CJI tech-
ique for WA-BPM based on the KP�1,1� approximant
erformed the propagation in 1047 s whereas that of the
adley(1,1) approximant required 1552 s.
For the 3D case, we consider the guided-mode propaga-

ion in the Y-branch rib waveguide [4]. The initial rib
aveguide is split into two 10° tilted waveguides. The

undamental mode of the ridge waveguide of width w
2 �m for the polarization TE mode at 0.633-�m in wave-

ength is used as the excited field at z=0. The field pat-
ern at z=3��m� calculated by Hadley’s and our approach
s depicted in Fig. 5. For a propagation step size �z
0.1 �m, the resulting time of CJI for the Hadley(1,1)-
pproximant-based WA-BPM is 42 s while runtime for
hat of the KP�1,1�-approximant-based one is 61 s. It is
een that the CJI for the KP�1,1�-approximant-based
A-BPM is faster for a small propagation step size and

lower for a large one than that of the Hadley(1,1)-
pproximant-based WA-BPM. This is due to the amount
f effective absorption as shown in Section 2. As shown in
igs. 4 and 5, for modeling these structures the improve-
ent of our approach compared to Hadley’s one in terms

ig. 4. Input beam at z=0 (solid curve that peaks in center) and
utput beam at z=21 �m in a 2D Y-branch rib waveguide calcu-
ated by WA-BPM based on KP�1,1� (solid curve that peaks on
eft and right) and Hadley(1,1) (circles).
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f accuracy is not too much. However, in terms of execu-
ion speed our approach can show a significant improve-
ent. This is attributed to how high the medium loss (and

hus the convergent rate of CJI dominated by a typical
hoice of k�z) is.

. CONCLUSIONS
n this paper, we have derived a new WA-BPM based on
adé approximant operators. The resulting approach al-

ows one more accurate approximations to the true Helm-
oltz equation than the previous Padé-approximant-
ased approaches in a wide range of operator X. In
ddition, for a typical choice of k�z, the convergence rate
f CJI for WA-BPM based on our new approach is faster
han that of Hadley’s one. Furthermore, in contrast to ex-
sting methods, no slowly varying field approximations
re assumed so that WA formulations are completely gen-

ig. 5. (Color online) Magnitude of TE fundamental mode after
ropagating 3 �m in a 3D Y-branch rib waveguide calculated by
A-BPM based on (a) KP�1,1� and (b) Hadley(1,1).
ral.
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