Photonics Research Group Home
Ghent University Research Topics
About People Research Publications Education Services
 IMEC
intern

 

Chi(3) mid-infrared nonlinear optics in silicon-based waveguide circuits

Research Area: Integrated nonlinear optics , Mid IR silicon photonics , Silicon photonics for lab-on-chip spectroscopy

Main Researcher: Bart Kuyken

The short wave infrared (2 um–3 um) has caught a lot of attention in (integrated silicon) optics lately. The reason has to be sought in a spectroscopic context primarily due the fact that many molecules have specific absorption lines in this region where the (crystalline) silicon on insulator waveguides are still transparent (from 1.1 um – 4 um). A tunable silicon light source in this wavelength range would be a very important component of a fully integrated silicon photonic integrated circuit platform for these spectroscopic lab-on-chip applications. Development of such a source has been hampered by the indirect bandgap of silicon, which makes light emission very inefficient. However, the high optical confinement in a silicon photonic wire surrounded by low refractive index materials such as SiO2 and air can lead to strong nonlinear optical effects.

In this project the goal is to use the strong nonlinear interactions in silicon waveguides to generate light in the Mid-Ir by mixing (near) infrared light sources. As shown in the figure below light at 3.65 um is generated by mixing a pump at 2.15 um with a telecom signal. Additionally it is also possible to up convert light from the mid infrared to the telecom as shown in the figure. Such a spectral translator could pave the way for fast, cheap and low noise detection of mid-ir light by first upconverting mid-ir light to the telecom band and detecting the upconverted light with a telecom detector.

Light is converted to a wavelength at 3.65 um by mixing a telecom signal with a 2.19 um pump
Light is converted to a wavelength at 3.65 um by mixing a telecom signal with a 2.19 um pump

Upconverting light from 2.4 um to the telecom band
Upconverting light from 2.4 um to the telecom band

Other people involved:

Related Research Projects

PhD thesises

Publications

    International Journals

  1. B. Kuyken, M. Billet, F. Leo, Y. Kresten, M. Pu, Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide, Optics Letters, 45(3), p.603-606 doi:10.1364/OL.45.000603 (2020)  Download this Publication (1MB).
  2. A.H. Safavi-Naeini, D. Van Thourhout, R. Baets, R. Van Laer, Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics, Optica (invited), 6(2), p.213 doi:10.1364/OPTICA.6.000213 (2019)  Download this Publication (2.2MB).
  3. A. Subramanian, E.M.P. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P.C. Wuytens, D. Martens, F. Leo, W. Xie, U.D. Dave, M. Muneeb, Pol Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Zeger Hens, G. Roelkens, R. Baets, Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip , Photonics Research (invited), 5(3), p.B47 doi:10.1364/PRJ.3.000B47 (2015)  Download this Publication (1.5MB).
  4. B. Kuyken, F. Leo, A. Mussot, A. Kudlinski, G. Roelkens, A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter based on a 1064nm pump source, Optics Express, p.13025-13031 doi:10.1364/oe.23.013025 (2015)  Download this Publication (1.2MB).
  5. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picque, An octave spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide, Nature Communications, 6(6310), doi:10.1038/ncomms7310 (2015)  Download this Publication (548KB).
  6. U.D. Dave, S. Uvin, B. Kuyken, S. Selvaraja, F. Leo, G. Roelkens, Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source, Optics Express, 21(26), p.32032-32039 doi:10.1364/oe.21.032032 (2013)  Download this Publication (1.1MB).
      International Conferences

    1. J. Zhang, L. Bogaert, M. Billet, D. Wang, B. Pan, S. Qin, E. Soltanian, S. Cuyvers, D. Maes, T. Vanackere, T. Vandekerckhove, S. Poelman, M. Kiewiet, I. Luntadila Lufungula, X. Guo, H. Li, J. De Witte, G. Lepage, P. Verheyen, J. Van Campenhout, B. Kuyken, G. Morthier, D. Van Thourhout, R. Baets, G. Roelkens, Photonic integrated circuits realized using micro-transfer printing, PIERS (invited), (2023).
    2. J. Wei, C. Ciret, M. Billet, F. Leo, B. Kuyken, S-P. Gorza, Octave spanning supercontinuum generation in dispersion-managed silicon waveguides, OSA Advanced Photonics Congress, doi:10.1364/IPRSN.2020.IM4A.5 (2020).
    3. Z. Wang, A. Malik, B. Tian, M. Muneeb, Clement Merckling, M. Pantouvaki, Yosuke Shimura, Roger Loo, J Van Campenhout, D. Van Thourhout, G. Roelkens, Near/Mid-Infrared Heterogeneous Si Photonics, The 9th International Conference On Silicon Epitaxy And Heterostructures (invited), (2015)  Download this Publication (3.5MB).

        Back to overview