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Abstract—Ising machines offer fast and energy-efficient com-
putational capabilities as next-generation hardware accelerators
for combinatorial optimization problems. We have developed nu-
merical coherent Ising machine (CIM) models that utilize a fifth-
order polynomial transfer function. This model has the potential
to be implemented in photonic platforms and allows for both
supercritical and subcritical pitchfork bifurcation operational
regimes. This provides an additional tunable hyperparameter
to control the Ising spin dynamics compared with the common
third-order polynomial CIM model. Moreover, the hysteresis
observed in the subcritical pitchfork operational regime can be
utilized for noise suppression. In our benchmark studies, we
simulated various sizes of MaxCut problems using the fifth-
order polynomial CIM model without any error correction
algorithms. The results showed a significant improvement from
the subcritical pitchfork CIM model compared with the normal
form third-order polynomial CIM model, achieving 23 out of
30 Maxcut instances with an average of 60% increased success
rate. The advantages are more pronounced in large instances
with N=80, 100. Our results indicate that involving more tunable
hyperparameters and enabling hysteresis with large noise in the
optimization process enhances the computational power of the
Ising machine.

I. INTRODUCTION

The Ising model, known for its versatility in both theoretical
and practical contexts, stands as a fundamental pillar in
statistical mechanics. It provides invaluable insights into the
behavior of interacting particles in various physical systems.
It is depicted as an undirected graph, comprising a collection
of binary Ising spin nodes (xi = ±1) interconnected by Ising
coupling interactions denoted as Jij . The Ising Hamiltonian
is mathematically expressed as H = − 1

2

∑
i ̸=j Jijxixj . When

solving an Ising problem, the primary objective is to determine
spin configurations that minimize the Ising Hamiltonian, given
a specific coupling interaction matrix. A generic Ising problem
belongs to the category of NP-hard combinatorial optimization
problems, indicating that it cannot be solved in polynomial
time with respect to the problem size N (i.e. the number
of nodes in the Ising model) and thus requires exponential
computation time to solve on a classical computer. Due to the
NP-hard nature, Ising problems have the potential to encode
other NP-hard combinatorial optimization problems such as
Maxcut problems and traveling salesman problems.

The operational principle of an Ising machine is to solve
Ising problems by implementing an Ising model and min-

imizing its Ising Hamiltonian over time. Figure 1 provides
an example of the workflow of using an Ising machine as a
Maxcut solver.

In this work, we present the simulation of a novel designed
Integrated Ising machine model that can be fabricated on
photonic integrated circuits [1]. The main novelty lies in the
consideration of a fifth-order nonlinearity to have more hyper-
parameters and a large noise regime to facilitate exploration.

II. INTEGRATED CIM MODEL

As an important type of Ising machine, considerable atten-
tion has been paid to coherent Ising machines (CIMs) [2]–
[4], which consist of a network of optical Ising nodes with
bistable states of coherent light pulses (e.g., 0 and π phases, or
the in-phase amplitude of the coherent light pulses). However,
most of the CIMs are based on optical parametric oscillators
(OPOs), requiring large experimental setups. As a compact
Ising machine implementation, integrated CIMs have been
proposed in recent work [1]. A schematic of an integrated
CIM on a photonic integrated circuit can be seen in Figure 2.

The time differential equation for each spin amplitude in the
integrated CIM system can be approximated as a fifth-order
polynomial transfer function [1]:

ẋi ≈ (r − 1)xi − ηx3
i + ζx5

i︸ ︷︷ ︸
fifth−order nonlinear dynamic function

+ β

N∑
j

Jijxj︸ ︷︷ ︸
linear coupling function

+ γc (0, 1)︸ ︷︷ ︸
random noise

, i = 1, 2, · · · , N. (1)

Here, x represents the light amplitude or analog spin
amplitude with the sign indicating the binary spin direction.
r is the linear gain, η and ζ are the third-order and fifth-
order coefficients respectively. .γ is the noise level. r, η, ζ,
and γ are tunable hyperparameters in our fifth-order CIM
model which can be further optimized for specific problems.
The fifth-order nonlinearity comes from the nonlinearity of
the microrings on the photonic circuit [1] and enables su-
percritical and subcritical operation regimes with hysteresis
in the bifurcation diagram, which can be seen in Figure 3
for supercritical regime and Figure 4 for subcritical regime.
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Fig. 1. Workflow of an Ising machine as a Maxcut solver: starting from a Maxcut problem defined by a certain undirected graph, the problem is then encoded
into an Ising coupling matrix, which will be fed into an Ising machine with optimized hardware to this specific problem. By the noisy ground state search
process, if the Maxcut problem is solvable, after an evolution time, the Maxcut solution will be finally returned as the ground-state Ising spin configuration.
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Fig. 2. Schematic of an integrated CIM on a photonics integrated circuit: three main building blocks are involved, including a nonlinear spin generator,
an Ising coupling matrix multiplier, and feedback loops. The Ising machine can either be operated in subcritical pitchfork regime or supercritical pitchfork
regime. The nonlinear spins and matrix multiplier can be realized by microring resonators and MZI mesh on a photonic integrated circuit.

Fig. 3. Left: operational bifurcation diagram for spin dynamic function ẋ = (r − 1)x− x3 + ζx5 in the supercritical (i.e. η > 0) pitchfork regime. Right:
potential energy curves correspond to points below or above the supercritical pitchfork bifurcation point.

Hysteresis is a phenomenon in which a system experiences a
time lag in response to external changes in input or operating
conditions. This lag can be likened to a ”memory effect” of the
system, which can potentially enhance the system’s robustness
against external random noise. Therefore, we will engineer
the hysteresis by tuning the Ising machine hyperparameters
in a large noise regime, to exploit its potential computational
power.

III. RESULTS

To evaluate the computational performance and scalability
of the fifth-order polynomial CIM model, we solve benchmark

MaxCut problems of size N = 60, 80, 100 with 50% edge
density from the BiqMac benchmark tasks [5]. We compare
the time-domain simulation and success rate results with the
normal form third-order polynomial model in [6].

A. Time-domain simulation

To further validate the hypothesis that hysteresis in the
subcritical regime can reduce fluctuations and enhance the
noise immunity of the Ising machine, we conducted a time-
domain simulation. We focused on the spin amplitude and
energy evolution of the BiqMac instance g 05 100.6 as a
representative example.



Fig. 4. Left: operational bifurcation diagram for spin dynamic function ẋ = (r− 1)x+0.15x3 − 0.01x5 in subcritical pitchfork regime (η > 0 and ζ < 0),
hysteretic loops are depicted by purple arrows. Right: three potential energy curves correspond to three r values below or above the subcritical pitchfork
bifurcation point.
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Fig. 5. Time trajectories and related statistical analysis of CIM models under low and large noise profiles for BiqMac instance g 05 100.6 with N = 100
Ising nodes. Row (1.) shows the low noise level simulation for the third-order supercritical model with γ = 0.01. Row (2-4) show the large noise level
simulation of third-order supercritical model, fifth-order supercritical model, and fifth-order subcritical model with γ = 2, respectively. Column (a.) presents
the evolution of energy which is represented by the red curve and spin amplitude which is represented by the purple curves (only 5 randomly selected nodes
out of 100 nodes are displayed for clarity). Column (b.) displays the histogram of the low-energy state samplings (from the ground state energy to 90%
ground state energy) during simulation. Column (c.) shows the spin amplitude density distribution of all 100 Ising nodes at the best-cut first obtained state,
demonstrating the analog heterogeneity of each model when reaching the optimal solution during a run. The model parameters for the simulation have been
optimized by the hyperparameter optimization process.

Figure 5 shows the time trajectories under large noise
profiles with corresponding statistics of energy and spin-
amplitude distribution for the third-order model in row (2.),
supercritical fifth-order model in row (3.), and subcritical fifth-
order model which is operated under the hysteresis regime in

row (4.). A low noise simulation of the third-order model is
also presented in row (1.) as the control subject for studying
the performance enhancement resulting from the fifth-order
nonlinearity and large noise. The time trajectories in column
(a.) show that the third-order model under a low noise level



Fig. 6. Relative success rate (SR) for Biqmac Maxcut instances with N = 60, 80, 100 nodes and 50% edge density, compared with simulation results of the
normal third-order CIM in [6]. The SR refers to the probability of finding the ground state during one simulation trial, which was obtained by 200 trials per
instance. A positive relative SR means a higher SR compared with the normal third-order CIM result.

exhibits clean time traces and traps in a local minimal energy
state quickly. The large noise simulation shows much noisier
behavior in the spin dynamics. Among the three models,
the subcritical model in the bottom row shows the fastest
attainment of the ground state and generates fewer spin flips
after reaching the ground state compared to the other two
models. The supercritical model with the same fifth-order
coefficient as the subcritical model (middle row) behaves the
worst in terms of solving speed and immunity against random
spin flipping. Turning our attention now to the histogram of
the low-energy state samplings in column (b.), we see that the
third-order model under a low noise level spends most of the
time in a low-energy state near the ground state but unable to
reach the ground state. For the large noise level simulation, the
subcritical model shows a large concentration of low-energy
states during simulation, indicating a tendency to remain in
these states. On the other hand, the other two models have a
higher probability of sampling higher-energy states. This trend
further supports the superiority of the subcritical model in
terms of low-energy state sampling efficiency. Finally, column
(c.) illustrates the spin amplitude distribution for the state
when the best-cut is first obtained. The results suggest that
the subcritical model under a large noise level has a smaller
standard deviation of spin amplitudes for both negative and
positive spin directions, with fewer amplitudes around the
flipping threshold compared to the other two models, even
better than the low noise simulation of a third-order model.

B. Success rate

After the optimization of the Ising machine hyperparame-
ters, the relative success rate (SR) results shown in Figure 6 il-
lustrate that the fifth-order CIM model outperforms the normal
third-order OPO CIM model in 23 out of 30 Maxcut instances
with an average of 60% increased SR. The advantages are
more pronounced in large instances with N = 80, 100. This
indicates that involving more tunable hyperparameters and
enabling hysteresis with large noise in the optimization process
enhances the computational power of the Ising machine.

IV. CONCLUSION

In this study, we investigate the advantage of implementing
fifth-order polynomial CIM models. Our simulation shows
that the fifth-order subcritical CIM model with hysteresis
is more resistant to high levels of noise compared to the
supercritical CIM models. By tuning and optimizing the model
parameters, we have significantly improved the computational
performance on benchmark problems in the BiqMac library.
The fifth-order CIM model has achieved a 60% increase in
success rate on 23 out of 30 Maxcut instances, compared to
the standard third-order polynomial CIM model, especially in
larger instances with N=80, 100. These findings provide strong
evidence for the computational advantages of the proposed
fifth-order polynomial CIM model.
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