

Metasurface-enhanced waveguide-integrated graphene phototransistors

<u>Yujie Guo¹</u>, Junyi Han¹, David Schaubroeck², Tom Reep¹, Xin Guo¹, Alberto G. Curto¹, Dries Van Thourhout¹

¹ Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 126, 9052, Gent, Belgium
² Centre of Microsystems Technology (CMST), Ghent University-imec, Technologiepark-Zwijnaarde 126, 9052, Gent, Belgium

Graphene-based integrated photonic devices have demonstrated broadband absorption (ultraviolet to terahertz), efficient optical modulation, high-speed operation (>200 GHz) and high CMOS compatibility. However, a major bottleneck for on-chip graphene photodetectors is the low quantum efficiency due to the atomic thickness of graphene. To improve the interaction of light with graphene, we developed metasurface-enhanced waveguide-integrated graphene phototransistors. In this study, three on-chip device geometries were used to induce local plasmonic and electrostatic fields. A splitgated phototransistor manipulates local doping in the graphene channel via two parallel gates, resulting in an 80-fold increase in responsivity. In a second device, a plasmonic photoconductor, extreme light confinement was achieved via a plasmon resonance tunable in the range 1.55-2.4 µm by adjusting the Au metasurface dimension. Finally, we have also demonstrated plasmonic phototransistors with Au/Ti and Au/Pd metasurfaces that exploit both plasmonic and electrostatic fields, achieving a photoresponsivity of 197.3 mA/W and a quantum efficiency of 15.78% at 1550 nm. This unique device creates a graphene p-i-n junction by Fermi level shifting via the asymmetric metallization, while maintaining the plasmonic near-field enhancement. In summary, this study shows that integrated graphene photodetectors are promising and can achieve both high responsivity and high-speed response, even at MIR wavelengths.

Acknowledgment

This project has received funding from EU Horizon 2020 research and innovation program under grant agreements no. 785219 (Graphene Flagship) and 884963 (ERC NARIOS)