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Abstract: Optical coherent detection is widely used for highly sensitive sensing applications, but
nonlinearity issues pose challenges in accurately interpreting the system outputs. Most existing
compensation methods require access to raw measurement data, making them not useful when only
demodulated data are available. In this study, we propose a compensation method designed for direct
application to demodulated data, effectively addressing the 1st and 2nd-order nonlinearities in both
homodyne and heterodyne systems. The approach involves segmenting the distorted signal, fitting
and removing baselines in each section, and averaging the resulting distortions to obtain precise
distortion shapes. These shapes are then used to retrieve compensation parameters. Simulation shows
that the proposed method can effectively reduce the deviation caused by the nonlinearities without
using the raw data. Experimental results from a silicon-photonics-based homodyne laser Doppler
vibrometry prove that this method has a similar performance as the conventional Heydemann
correction method.

Keywords: coherent detection; homodyne laser interferometry; nonlinearity errors compensation

1. Background

Optical interferometry is one important technique in precise metrology, capable of
discerning target displacements with nanometer or subnanometer resolution [1]. Thanks to
its high accuracy and non-contact nature, optical interferometry has found widespread use
in a variety of application domains such as sensing, manufacturing, medicine, and automo-
bile industries [2]. However, the signal retrieval process of optical interferometry is prone
to system deviations such as spurious reflection, beam/polarization crosstalk, flaws in
optical/electrical components [3], and double-reflection from the vibrating target [4]. These
factors can introduce periodic nonlinearities in the output signals. Strong nonlinearities
can generate spurious sidebands, thereby complicating signal analysis and leading to
data misinterpretations.

To mitigate these nonlinearity issues, various correction strategies have been proposed,
typically falling into two categories. One category focuses on hardware compensation tech-
niques, e.g., using additional compensation beams [5], introducing a rotated polarizer [6],
spatially separating/misaligning beams to avoid frequency/polarization mixing [7,8],
adding a tunable attenuator for laser beam vector adjustment [9], and introducing phase-
encoding electronics for compensating for nonlinear errors [10]. The second category
employs software-based compensation methods. One prominent numerical method is
the Heydemann correction [11], which retrieves the information of the ellipse formed
by the distorted in-phase-and-quadrature (IQ) signal and corrects the data based on the
shape of the ellipse. This method can be used for both the homodyne [12] and heterodyne
methods [13]. Other methods include a frequency-domain approach for separating the
first and second harmonic nonlinearities when setting the target at a constant velocity [14],
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a combination of recursive weighted least-squares methods and Kalman filters [15], and a
digital lock-in phase demodulator with an iterative algorithm [13]. These methods gen-
erally work well. However, most of them require access to the raw measurement data,
i.e., the aforementioned IQ data. In many instances, users only have demodulated data,
meaning some raw data information has been lost. As a result, the aforementioned error
correction algorithms will be ineffective.

In this paper, we propose and discuss a novel numerical method to compensate for the
aforementioned nonlinearities. This paper uses one typical optical interferometry—laser
Doppler vibrometry (LDV) [16]—as an example for examining the methods of nonlinearity
compensation. The discussed system can represent discrete optics-based, fiber-based,
or photonic integrated circuit (PIC)-based interferometry.

The paper is organized as follows. Section 2 outlines the working principle of the
interferometer system and the associated nonlinear problems. Section 3 introduces our
proposed correction method. The detailed properties of the new method, along with
their comparison to the conventional methods, particularly the Heydemann method, will
be elaborated on in Section 4. The same section also discusses the effectiveness of these
methods on data collected with our developed LDV system. The final part is the conclusion.

2. Periodic Nonlinearity in Optical Interferometry

Generally, nonlinearities are discussed separately in heterodyne and homodyne in-
terferometry systems due to distinct structures and demodulation methods. Figure 1
illustrates typical schematic diagrams for both heterodyne and homodyne vibrometry
systems and highlights the major sources of nonlinearities in each case.

Figure 1. Basic structures of heterodyne and homodyne interferometers for vibration detection and
the corresponding sources of nonlinearity: (a) heterodyne, and (b) homodyne. Solid lines with arrows
indicate the main optical beams in the interferometry while the dashed lines indicate the major cross
talks that can generate nonlinearities. Here “I” and “Q” denote the in-phase and quadrature signals of
the output, respectively, ”CIRC” denotes the circulator, “LD” denotes the laser diode, “PD” denotes
the photodiode, and “PC” denotes the polarization controller.

Figure 1a depicts the structure of a typical heterodyne LDV based on optical fibers.
The system comprises a laser diode (LD) source, a Mach–Zehnder interferometer (MZI),
a photodiode (PD), and a pre-decoder. The laser source emits an optical beam with a
wavelength λ. An acousto-optic modulator (AOM) is used as the splitter of the incoming
beam. The 0th order diffraction of the AOM (sensing beam with a phasor b) is coupled to a
fiber. After passing through a circulator (CIRC), the measurement light is coupled to free
space and focused on the vibration target by a lens. The reflected light is collected by the
same lens and re-coupled into the fiber system. Due to the Doppler effect, the reflected
light carries a phase shift that is proportional to the instantaneous displacement of the
target d(t) with the following relation: θD(t) = 4π · d(t)/λ [17]. The 1st-order diffraction
of AOM (reference beam with a phasor a) is coupled to the same fiber system and combines
with the reflected light and is detected by the PD. Thanks to the AOM, a constant optical
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frequency shift, fs = ωs/2π, is created in the 1st-order diffraction. Therefore, the AOM
acts as an optical frequency shifter (OFS) in this system. A polarization controller (PC) is
used in the reference arm to ensure the polarizations of the reference and measurement
signals are well aligned. The frequency shift will be converted to a carrier frequency in the
photocurrent of the mixture signal. Thanks to this non-zero carrier frequency, the impact of
low-frequency noise, e.g., 1/ f noise, can be effectively reduced.

Given the complex amplitude reflection coefficient of the measurement light as η,
the photocurrent can be expressed as [1]

ipd(t) ≈ µ/2 ·
∣∣∣a · eiωst + ηb · ei(θD(t)+θdc)

∣∣∣2
= dc + µPm · cos

(
ωst− θ′D(t)

)
, (1)

where µ is the responsivity of the PD, θdc = θ′D(t)− θD(t) is the constant phase difference
between the two arms due to their path length difference, dc = µ

(
|a|2 + |ηb|2

)
/2 is the

dc part of the photocurrent signal, and Pm = η|ab| is the amplitude of the ac part. Many
methods can be used to retrieve θ′D(t); here, a commonly used method is explained [18].
In the pre-decoder, the photocurrent signals are multiplied with a pair of quadrature signals,
generating two signals

I0(t) = ipd(t)× 2 cos ωst

= 2dc · cos ωst + µPm · cos
(
2ωst− θ′D(t)

)
+ µPm · cos

(
θ′D(t)

)
, (2)

Q0(t) = ipd(t)× 2 sin ωst

= 2dc · sin ωst + µPm · sin
(
2ωst− θ′D(t)

)
+ µPm · sin

(
θ′D(t)

)
. (3)

Two low-pass filters with the cut-off frequency around fs/2 are used to remove the
high-frequency components in I0(t) and Q0(t), leading to two signals:

I(t) = µPm · cos(θ′D(t)), (4)

Q(t) = µPm · sin(θ′D(t)). (5)

Then an arc-tangent function can be used to derive θ′D(t) = arctan (Q(t)/I(t)).
The displacement of the target ∆d(t) = d(t) − d(0) can be derived as λ × (θ′D(t) −
θ′D(0))/4π.

Several issues may induce nonlinearities in such a heterodyne interferometer. The
first issue is the unwanted harmonics generated by the OFS. The purpose of using an
OFS is to create a constant frequency shift. AOM is the most typical OFS. It can generate
several harmonics at the same time. The unwanted harmonics are usually removed by only
sending the requested frequency shift to the output port of the AOM. However, a small
amount of other harmonics may still find their ways to the output port, through scattering
or reflecting. One can also generate a frequency shift with other phase modulators (e.g.,
PN junction-based phase modulator in a silicon-based photonic integrated circuit [19])
using single-sideband modulation techniques, but these methods usually suffer more from
other harmonic orders. Most of these residue high-order harmonics can be removed by
applying extra filters. However, some harmonics, e.g., the −1st order (a−1e−iωst) and 2nd
order (a2ei2ωst), cannot be completely removed by the filters and will distort the output
signals. Cross-talks between the two arms may also introduce the residue harmonics to
the measurement arm. Additionally, the spurious reflection (γb) in the measurement arm,
usually caused by reflections in the optical interfaces, also contributes to these imperfections.
Here, γ is a complex number representing the amplitude reflectivity of the total spurious



Sensors 2023, 23, 7942 4 of 16

reflection. Accounting for these factors and omitting small values, the multiple terms of the
IQ signals can be grouped into three parts and expressed as

I(t) = µPm ·
[
ε1 · cos(θ′D(t) + θ1) + ε2 · cos(−θ′D(t) + θ2)

]
+ Idc, (6)

Q(t) = µPm ·
[
ε1 · sin(θ′D(t) + θ1) + ε2 · sin(−θ′D(t) + θ2)

]
+ Qdc. (7)

In these equations, the terms ε1, ε2, θ1, θ2, Idc and Qdc are introduced by the residue
harmonics and cross-talks. Since only weak distortions are considered, we can assume
ε1 > ε2. This IQ Lissajous curve turns out to be an ellipse, with its center at (Idc, Qdc),
the long axis equal to µPm(ε1 + ε2), the short axis equal to µPm(ε1 − ε2), and the rotation
equal to (θ1 + θ2)/2.

Figure 1b illustrates a typical homodyne system. Unlike heterodyne systems, homo-
dyne systems do not employ an OFS. Instead, a special optical mixer is often used to obtain
the quadrature signals. A typical mixer is a 90◦ hybrid [20], which has two optical inputs
and two electrical outputs. Some 90◦ hybrids provide four electrical outputs, but they can
be further combined and reduced to two signals. These two outputs can be written as

I(t) = µPm · cos(θ′D(t)), (8)

Q(t) = µPm · sin(θ′D(t)). (9)

Since there is no OFS in homodyne systems, high-order harmonics do not exist and
therefore cannot be a source of nonlinearities. However, there are some different impact
factors in the homodyne system, such as the imperfect phase relation in the 90◦ hybrid
and the uneven responsivities of the PDs. Taking these impact factors and the spurious
reflections into account (see Figure 1b), the IQ data can be written as

I(t) = µ1Pm · cos(θ′D(t)) + Idc, (10)

Q(t) = µ2Pm · sin(θ′D(t) + θr) + Qdc. (11)

Here, µ1 and µ2 are the responsivities of the two PDs in the first and second ports of
the hybrid, and θr stands for the constant phase error in the 90◦ hybrid. This IQ Lissajous
curve is an ellipse, with its center at (Idc, Qdc), the rotation angle arctan ((∆±

√
∆2 + σ2)/σ),

the semi-major and minor axis are Pm · (µ2
1 + ∆ ±

√
∆2 + σ2)1/2, respectively, where

∆ = P2
m · (µ2

2 − µ2
1)/2, and σ = P2

m · µ1µ2 sin(θr). When the two responsivities are the
same (µ1 = µ2), the rotation angle will be ±π/4.

These results indicate that the effects of nonlinearities bear close resemblance in both
homodyne and heterodyne systems: they both distort the IQ Lissajous curves to ellipses,
whereas ideally they should be circular. This is the reason why Heydemann’s correction
method can be used to correct the nonlinearities in both homodyne and heterodyne systems.

To understand our proposed methods, it is important to understand how the nonlin-
earities distort the signals. These distortions can be categorized into two categories: the
1st-order and 2nd-order periodic nonlinearities [3]. The 1st-order nonlinearity arises when
the centers of the IQ circles are not positioned at the system’s origin, while the 2nd-order
nonlinearity occurs when the IQ circle becomes an ellipse rather than a circle. For exam-
ple, in a fiber-based homodyne system (see Figure 1b), the 1st-order nonlinearity usually
happens when the PD responsivities are not equal, while the 2nd-order nonlinearities
happen when the output phase relation of the 90◦ hybrid is not perfect. The schematic
representation of the IQ Lissajous curves of these two types of errors can be viewed in
Figure 2.

The deviated phase of the 1st-order nonlinearity can be expressed as

θm,1st(θ0) = arctan
(

sin θ0 + yd
cos θ0 + xd

)
, (12)
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where θ0 is the actual phase to be measured, and (xd, yd) denote the shift of the IQ circle’s
origin relative to the coordinate system’s origin. The phase of the 2nd-order nonlinearity
can be described as

θm,2nd(θ0) = arctan
(
r · tan(θ0 − θd)

)
+ θd, (13)

where θd is the rotation of the IQ ellipse, r is the ratio of the semi-major axis (a) and the
semi-minor axis (b) (see Figure 2).

Figure 2. IQ Lissajous curve of (a) the 1st-order and (b) the 2nd-order nonlinear distortions.

These nonlinearities introduce an additive periodic distortion in the demodulated
signal, while the periodicity happens in the demodulated phase. The 1st-order errors have
a period of λ/2, while the 2nd-order errors possess a period of λ/4. Some examples of
simulated distorted signals are shown in Figure 3. These plots represent extreme cases
so that the periodic nonlinear errors in the demodulated phases can be easily observed.
For the 1st-order deviation (Figure 3a), the deviation is caused by a change in the origin
of the IQ circle. Here, the distance between the origins of the IQ circle and the coordinate
system is 75% of the IQ radius. The distortions show a period of λ/2 in the displacement
domain. Thanks to this phenomenon, the distortion of a signal with a larger amplitude has
a higher frequency in the time domain, which can be seen in Figure 3a. For the 2nd-order
nonlinear error case (Figure 3b), the deviation is only caused by the elliptical shape of the
IQ circle. In this special case, the eccentricity of the ellipse (e =

√
1− (b/a)2) is 0.9657

while the rotation angle is θd is π/4. The deviations have a displacement periodicity of
λ/4 and their shapes are different from those of the 1st-order deviations. The vibrations in
these plots have the same frequency (24 Hz) but different amplitudes (1 µm and 2 µm).

These additive deviations lead to spurious signals with a large bandwidth, which is
difficult to remove with a simple filter. The frequency spectra of two sinusoidal signals
(d(t) = sk · sin(2πt× 24 Hz), s1 = 1 µm and s2 = 2 µm) with the same 2nd-order nonlinear
deviation (2nd-order phase error with e = 0.9657) are shown in Figure 4a. It is seen
that both signals have a large number harmonics ranging from 24 Hz to kilo-hertz. A lot
of useful signal in this frequency range can be influenced by the nonlinearities. Most
harmonics in the spectra of s2 are higher than those of s1, but this is not the case for all
harmonics. The frequency spectrum of the neck skin displacement induced by carotid
pulses is measured by an on-chip homodyne LDV [21] and plotted in Figure 4b (red
spectrum). The measurement is made on the neck of one of the authors. The measured
signal is the displacement of the neck skin with a duration of 1 s. A moving-average filter
is firstly applied to the measured signal to remove the existing nonlinear errors and speckle
noises. Note that the moving-average filter not only removes the nonlinearity, but also
removes the useful data with higher frequency. After this procedure, a 2nd-order phase
error with e = 0.9657 is purposely added to the pulse signal numerically. It can be seen



Sensors 2023, 23, 7942 6 of 16

that the spectra of the signal with the added nonlinearities (blue curve in Figure 4b) is
considerably increased at the higher-frequency part. This indicates that the nonlinearity
distortion in the spectrum may cause significant errors in signal analysis.

Figure 3. Exaggerated nonlinear phase errors for different vibration amplitudes. Vibration s1 is for a
vibration with an amplitude of 1 µm while s2 is for an amplitude of 2 µm: (a) Distorted signals with a
1st-order distortion. The drift of the circle origin is 75% of the radius of the IQ circle. (b) Distorted
signals with a 2nd-order distortion. In this plot, the eccentricity of the ellipse is 0.9657.

Figure 4. (a) Spectra difference of two different signals with the same 2nd-order nonlinearity error
but with different vibration amplitudes (s1 → 1 µm, s2 → 2 µm). (b) The spectra of a carotid pulse-
generated skin displacement and the same signal but with an artificially 2nd-order nonlinear error
(e = 0.9657).

3. Proposed Methods

In this section, we will describe the proposed methods that can be used to compensate
for the nonlinear effects directly on the demodulated data. We will introduce two methods,
but the main discussion will be focus on the second one.

3.1. Inverse Function Method

Based on the periodic feature of the demodulated data, it is possible to retrieve the
strength of the nonlinearity for certain datasets. This approach requires the data to have a
strictly monotonic increase or decrease throughout its entire section. Once this criterion is
met, the data can undergo an inverse mapping from y = f (x) to x = f−1(y). Applying a
Fast-Fourier Transform (FFT) to the f−1(y) allows us to obtain the strength of the periodic
nonlinearities. Since the deviation is not sinusoidal in the inverse function, it will have a
number of sidebands in the FFT spectrum.

Signals with several different 1st-order deviations are shown in Figure 5a. Here, we
employed a signal with an amplitude of 10 µm, which ensures enough periods in the rising
slope (here, we assume the optical wavelength is 1550 nm). Given the monotonic nature of
these signals, we can extract their inverse functions (see Figure 5b). The spectra of these
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inverse functions reveal the periodic feature at multiples of 2/λ in Figure 5c. With a higher
deviation (yd = 0.75), the spectra exhibit stronger and more fringes. Similarly, signals with
different 2nd-order deviations (eccentricities e = 0.5, 0.7 and 0.95), their inverse functions
and the spectra of their inverse functions are shown in Figures 6a, 6b, and 6c, respectively.
The periodic features are located at multiples of 4/λ. Simulation shows that a higher
eccentricity corresponds to a stronger peak at 4/λ.

Figure 5. Inverse function of the 1st-order nonlinearity: (a) A section of the data that is monotonic
(b) The inverse function of this section (c) The spectrum of the inversely mapped signals, featuring
peaks at multiples of 2/λ.

Figure 6. Inverse function of the 2nd-order nonlinearity: (a) A section of the data that is monotonic
(b) The inverse function of this section (c) The spectrum of the inversely mapped signals, featuring
peaks at multiples of 4/λ.

Since the frequency at 2/λ is primarily for the 1st-order error, one can use this peak
as an indicator of the 1st-order error’s strength. To realize the compensation for this error,
one can scan the two parameters (xds, yds) to the measured phase θm,1st(t) based on the
following phase compensation algorithm

θscan(t) = arctan
(

sin θm,1st(t)− yds
cos θm,1st(t)− xds

)
. (14)

As an example, the strengths of the 2/λ peak for a signal with a 1st-order distortion
(dx = 0 and dy = 0.25) under the compensation scan are shown in Figure 7. It is seen
that xds = 0 and yds = 0.25 correspond to the lowest 2/λ peak, which are exactly the
predetermined values. However, the scan demands substantial computational resources.
To improve this speed, a more efficient algorithm to identify the global minimum might
be beneficial.
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Similarly, the 2nd-order error can also be compensated by conducting the follow-
ing scan

θscan(t) = arctan
(

1
rs
· tan

(
θm,2nd(t)− θs

)
+ θs

)
, (15)

where rs and θs are the two scan parameters. For the 2nd-order compensation, the figure
of merit (FOM) should be the fringe strength of 4/λ. Since the 1st-order errors can also
generate a harmonic at 4/λ, it would be better to compensate for the 1st-order error before
the 2nd-order when both nonlinear errors exist.

Figure 7. The 2/λ peak values as a result of the scanning of xd and yd. The original signal was set
with the 1st-order nonlinear error by introducing a yd of 0.25, which is identified through scanning.

However, this method requires several strict prerequisites. (1) The signals should
be strictly monotonic and span more than several periods of wavelength. For a general
signal, it requires another complex procedure to find a section that meets such criteria.
(2) When strong noise exists, the signal’s monotonicity is further disrupted. Therefore, the
noise should be kept low. (3) Scanning parameters is a relatively time-intensive operation.
As discussed, a faster algorithm is to be developed. In practical applications, the use of the
inverse-function method is not very feasible.

3.2. Piece-Wise-Fitting Method

To make it easier to handle more general data, we propose a second method with the
following steps:

(1) Segmentation: Segment the entire displacement signal into displacement intervals
of λ/2. There are two types of data segments. Some data start at 0 and end at λ/2, or start
at λ/2 and end at 0, which are called “complete sections”. Other data do not reach either 0
or λ/2, which are called “incomplete sections”. The incomplete sections will be discarded
in the following steps. In this step, we usually convert the displacement signal to the
corresponding phase changes θ0

m(t). After segmentation, the phase of each section can be
expressed as θ0

mk(t), where k is the index of the section.
(2) Baseline fitting: For each section, the target’s movement is assumed to be rapid

enough that it can be approximated by either a linear function, i.e., θbl(t) = at + b, or a
quadratic function, i.e., θbl(t) = at2 + bt+ c. The baseline function θbl,k(t) for each complete
section can be determined using numerical fitting functions (e.g., Polyfit in Matlab). Note
that only strictly monotonic baseline functions will be considered in the subsequent steps.

(3) Deviation Averaging: calculate the deviation of the phase as:

deviθ0
k (tk) = θ0

m,k(tk)− θbl,k(tk). (16)

This allows for the separation of the measured signal into the baseline and deviation
signals. Thanks to the simple shape of the baseline, the nonlinear distortions can only be
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present in the deviation parts. Given the strict monotonicity of θbl,k(tk), its inverse function
tk(θbl,k) exists. Therefore, the deviation can be written as a function of the baseline θbl,k
phase as:

deviθk(θbl,k) = deviθ0
k (tk(θbl,k)) = θ0

m,k(tk(θbl,k))− θbl,k = θm,k(θbl,k)− θbl,k. (17)

Assume the baseline θbl,k(tk) is the undistorted signal and deviθ0
k (tk) is the nonlinear

distortion, the function θm,k(θbl,k) will be the same as Equation (12) for the 1st-order nonlin-
earity and Equation (13) for the 2nd-order nonlinearity. However, this is not the case most
of the time. Only some special cases, e.g., when the target is moving at a constant speed,
can make this happen. However, if we can average over a large number of sections, the av-
eraged relation will approach the theoretical relations of the nonlinearities. To facilitate this
averaging, we interpolate deviθk(θbl,k) to deviθk(θs), where θs are an array of predefined
phases ranging evenly from 0 to 2π. After interpolation, samples from all complete sections
have the same independent variables θs and the averaging can be realized by calculating
the following value θm,k(θs) = ∑N

k=1 θm,k(θs)/N. In this case, we can retrieve an averaged
deviation based on the following relation deviθk(θs) = θm,k(θs)− θs.

(4) Deviation Fitting: Based on our assumption that the averaged deviation func-
tions converge to the theoretical nonlinearity errors, the key deviation parameters can be
retrieved by fitting the averaged deviation to the theoretical relations. For the 1st-order
nonlinearity, the averaged deviation will be fitted to

deviθk(θs) ≈ arctan
(

sin θs + yd
cos θs + xd

)
− θs, (18)

and the best values of xd, yd will be estimated as x f d, y f d, respectively. For the 2nd-order
nonlinearity, the averaged deviation will be fitted to

deviθk(θs) ≈ arctan(r · tan(θs − θd) + θd)− θs. (19)

The best values of r, θd will be obtained as r f and θ f d, respectively. Several methods can
be used for deviation fitting. This paper demonstrates the method using Matlab’s in-built
fit function.

(5) Compensation: compensate the distorted signals with the retrieved parameters
(x f d, y f d or r f , θ f d). For the 1st-order nonlinearity, the compensated phase is calculated as

θcompensated(t) = arctan

(
sin(θ0

m(t))− y f d

cos(θ0
m(t))− x f d

)
. (20)

For the 2nd-order nonlinearity, the compensated phase is

θcompensated(t) = arctan

(
1
r f
· tan

(
θ0

m(t)− θ f d
)
+ θ f d

)
, (21)

In this step, we can calculate the FOM defined by the root-mean-square (RMS) of the
signal deviation from the actual signal θ0(t), denoted as RMS(θc(t)− θ0(t)), where θc(t)
is the compensated values. In this paper, the RMS values are expressed with a unit of
half-wavelength, allowing these results to be extended to sensors with other sensing wave-
lengths.

Figure 8 illustrates an example of the steps involved in compensating for 1st-order
nonlinearity. In this example, a sinusoidal signal with an amplitude of 6 µm and a frequency
of 24 Hz is used as the original signal. This signal is then distorted by shifting the IQ circle
to xd = −0.2 and yd = 0.14, resulting in an RMS deviation of 0.0274× λ/2. Figure 8a and
Figure 8b depict the decomposition process. The entire signal in Figure 8a is segmented
into seven sections. The first six sections are complete, while the final one is incomplete and,
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hence, discarded. Figure 8c shows the linear baseline fitting of one section, with Figure 8d
displaying the obtained deviations for all complete sections. The deviations are averaged
and fitted to Equation (18), as shown in Figure 8e. With the parameters of the fitted function
(x f d = −0.223 and y f d = 0.132), the distorted signal can be corrected, as illustrated in
Figure 8f. After post-compensation, the RMS deviation reduces to 0.0049× λ/2. Additional
compensation on the corrected signal using the same algorithm can further reduce the RMS
deviation to 0.0037× λ/2, which is a seven-fold reduction.

Figure 8. The complete procedure of the 1st-order nonlinear deviation with xd = −0.2 and yd = 0.14
for a signal with an amplitude of 5 µm. The compensated parameters are x f d = −0.223 and
y f d = 0.132, respectively. The curves in figure (d) are the deviations of all complete sections.

This method can also compensate for 2nd-order nonlinearity, with the retrieved param-
eters being r f and θ f d. An example of this compensation is shown in Figure 9. The original
signal used is the same as that in the 1st-order compensation. The deviation is due to an
ellipse alteration with r = 1.135 and θd = 45◦, leading to an RMS deviation of 0.007× λ/2.
The retrieved fitting parameters are r f = 1.134 and θ f d = 45.0◦, reducing the RMS deviation
to 0.00028× λ/2—a 25-fold reduction. In this case, since the first compensation is already
very effective, additional compensation steps will not further improve the results. Note
that a quadratic fitting is used for baseline fitting in this case, instead of a linear fitting.
A detailed discussion of the differences between linear and quadratic baseline fitting will
follow in the next section.

In cases where both types of deviations are present, they are not additive. Instead,
the total deviation should be expressed as

θm,total(θ0) = θm,1st
(
θm,2nd(θ0)

)
, (22)

or
θm,total(θ0) = θm,2nd

(
θm,1st(θ0)

)
. (23)

Because of this relationship, compensation for a general signal can be achieved by
first applying the 1st-order (2nd-order) nonlinearity compensation to the distorted data,
followed by the 2nd-order (1st-order) compensation. Note that the two orders may cor-
respond to different deviation parameters. The effectiveness of the compensation can be
different for different compensation orders, which will be discussed in the next section.
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This piecewise fitting method has an advantage over the inverse-function method in
that it does not require a large monotonic region of the signal. As such, it is applicable
to a wider range of data. Due to the challenges in implementing the inverse-function
compensation methods, the subsequent discussion will focus solely on the performance of
the piecewise fitting method.

Figure 9. The complete procedure of the 2nd-order nonlinearity compensation for a nonlinear signal
with r = 1.134 and θ = 45◦ for a signal with an amplitude of 5 µm. The compensated parameters:
r f = 1.134 and θ f d = 45.0◦. The curves in figure (d) are the deviations of all complete sections.

4. Discussion

We will present a comparison of compensations for signals with varying frequencies
and amplitudes. The 1st-order deviations were introduced by incorporating xd = −0.2 and
yd = 0.14 into the signal with variable amplitudes and frequencies. The RMS deviation
results after the 1st-order compensation are illustrated in Figure 10, where linear baseline
fitting is applied in Figure 10a, and quadratic fitting is used in Figure 10b.

Figure 10. Compensation for the 1st-order nonlinearity at different sinusoidal vibration frequencies
and different amplitudes: (a) is for linear polyfit and (b) is for the quadratic polyfit.

From Figure 10, we can see that the compensation works well only when the vibration
amplitude (half of the peak-to-peak amplitude) is larger than 3λ/4. We also identified
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spikes at vibration amplitudes equating to integer multiples of λ/2. Apart from these
spikes, linear fitting provided marginally superior RMS deviation values compared to
the qudratic fitting. These spikes are connected to instances where the vibration signal is
sinusoidal. For a more random signal, such periodic features do not appear, as evidenced
by a signal with two frequency components shown in Figure 11. In this case, the spikes
shown in Figure 10a disappear. It is also found that the linear baseline fitting is slightly
better than the quadratic baseline fitting in the sense of better RMS deviations for higher
vibration amplitudes (see Figure 11b).

Figure 11. (a) A complex signal with two frequencies. The signal is d(t) = A · sin(2πt× 20 Hz +

0.321π) + 1.2A · sin(2πt× 66.4 Hz). In this plot, A = 2× λ/2. (b) The RMS deviation of the 1st-order
error after the nonlinear compensation with a linear baseline fitting and quadratic baseline fitting for
different values of A (vibration amplitude).

For the 2nd-order nonlinearity, a similar study is conducted using sinusoidal signals
with various amplitudes and frequencies, which are shown in Figure 12.

Figure 12. Compensation for the 2nd-order nonlinearity in sinusoidal vibrations at different frequencies
and amplitudes. Two baseline fittings are tested: (a) linear polyfit; (b) quadratic polyfit.

When the 2nd-order compensation was applied to a complex signal, in contrast to the
1st-order compensation, the quadratic polyfit was found to outperform the linear baseline
fitting (see Figure 13).

These nonlinearity compensation methods have different results for different nonlin-
earities strengths. For the 1st-order nonlinearity, a larger initial deviation corresponds to
a higher RMS deviation after the compensation. A demonstration of this effect is shown
in Figure 14a. For the 2nd-order nonlinearity, the relation between the original distortion
and the compensation can be seen in Figure 14b. In both cases, the vibration signal is the
one described in Figure 11 with A = 3.5× λ/2. The difference of the final compensation
results for different original errors can be clearly seen in these figures.
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Figure 13. The RMS deviation of the 2nd-order error after the nonlinear compensation on a complex
signal with two different baseline fittings (linear fitting and quadratic fitting). The signal is the same
as in Figure 11.

Figure 14. RMS deviation after compensation of the 1st- and 2nd-order nonlinearities with different
original distortions. The original signal is the complex vibration shown in Figure 11. (a) signals
with only the 1st-order nonlinearities (b) signals with only the 2nd-order nonlinearities. The colors
represent different deviation values.

For the data with both nonlinearities, the compensation can be acheived by applying
the two algorithms sequentially. The compensation results for applying the orders of the
1st and 2nd nonlinearity compensation methods are shown in Figure 15a. The vibration
signal is the one described in Figure 11 with A = 3.5× λ/2. The compensated signal of
two compensation orders are shown in this figure. The results validate our claim that the
2nd-order nonlinearity compensation should be applied before the 1st-order. The effect of
cascaded compensations is also studied and shown in Figure 15b. It is seen that two cycles
of compensation with the same method can further improve the results. However, it is also
shown that this compensation will not provide an effective improvement anymore after
applying it twice.

In practice, there is also a lot of noise in the signal. The impact of noise on the
compensation results is shown in Figure 16. The vibration signal is the same as described in
Figure 11 with A = 3.5× λ/2, and a two-cycle compensation is used in this case. It can be
seen that the final compensation results depend on the strength of the noise: a higher noise
means a worse compensation. When noise is weak, deviations for different 1st-order errors
can be different, but their values will become the same when the noise is higher. The 2nd-
order nonlinearities, however, have different phenomena. After a two-cycle compensation,
the deviation caused by different 2nd-order nonlinearities is still different when the noise
level is high.
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Figure 15. The deviation after compensation on a complex signal shown in Figure 13. (a) the deviation
in the compensated signal in the time domain using two different orders of compensation for the 1st-
and 2nd-order nonlinearities (b) the RMS deviation after several cycles of compensation, while each
cycle includes one 2nd-order and one 1st-order compensation.

Figure 16. RMS value of the deviation after compensation when noise exists. The effectiveness of the
compensation for different noise levels and different original deviation strengths are shown.

We have typical measurement data of some signals retrieved on a silicon-photonics-
based homodyne LDV [21] with a sampling rate of 5.5 Msps. The detected vibration is
from a silicone block fixed on a stage. During the measurement, the optical table where the
silicone is installed is tapped by the operator with his hand. The silicone will shake as a
result of the tapping at its resonance frequency (about 800 Hz), which can be detected by
the LDV. Since the surface of the silicone is flat and can provide good specular reflection,
the sensing light is directly reflected by the silicone surface. The on-chip LDV also has a
typical nonlinearity, which can be seen in Figure 17a. We used the Heydemann method and
our proposed method to compensate for the errors in the data, the compensation results
are also shown in Figure 17a. It can be seen that both Heydemann’s and our methods can
remove the clear nonlinear signals by similar RMS values (0.043 × λ/2 for Heydmann’s
correction and 0.044 × λ/2 for our method). In the spectra, it is seen that the deviation
introduced by the nonlinearity is mainly located at around 30 kHz. With both compensation
methods, these nonlinear errors can be suppressed.
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Figure 17. The compensation of a real vibration with nonlinear errors measured with a PIC-based LDV.
(a) shows the original distorted signal in the time domain, the corresponding signal after Heydemann
correction, and the signal after the piece-wise fitting correction. (b) The original distorted signal,
the signal after Heydemann correction, and the signal after the piece-wise fitting correction in the
frequency domain.

5. Conclusions

This paper addresses the issue of nonlinearities in optical interferometry systems and
presents two numerical methods for compensating for these distortions on the demodulated
data. The main advantage of the proposed technique is that it does not need to have access
to the raw data of the interferometry system, which is usually hidden in the decoder of the
interferometry. The proposed methods only need the demodulated data. The first method,
called the inverse function method, relies on the periodic nature of the demodulated
data and retrieves the strength of the nonlinearity by applying an inverse mapping and
analyzing the Fast-Fourier Transform spectrum. The second method, called the piece-wise
fitting method, decomposes the signal into sections, fits baseline functions to each section,
calculates the deviations, and performs averaging and fitting to estimate the nonlinear
parameters. Since the piece-wise fitting method is more versatile than the inverse function
method, the analysis is mainly focused on the piece-wise fitting method.

We compare the performance of the piece-wise fitting in compensating for 1st-order
and 2nd-order nonlinearities. We also discuss the impact of different baseline fitting
functions, the order of compensation, and the presence of noise on the compensation
results. We show that it is better to choose the linear baseline fitting for the 2nd-order
nonlinearity compensation while choosing the quadratic baseline fitting for the 1st-order
compensation. To cascade the compensation for a more general signal, the 2nd-order
compensation should be made before the 1st-order. Experimental data from a silicon-
photonics-based homodyne LDV validate the effectiveness of the proposed methods in
removing nonlinear signals and reducing RMS errors.

The proposed piece-wise fitting method, while innovative, still relies on complex
algorithms for the fitting process. To enhance this approach, it is important to develop
more efficient algorithms in future work.
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PIC Photonic Integrated Circuit
RMS Root-Mean-Square
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