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Abstract: In this paper, we introduce a novel method to realize a multi-beam optical frequency
shifting component for photonic integrated circuits, utilizing an array of parallel optical modulators
and a free-propagation region (FPR), such as a slab waveguide-based star coupler. This component
generates multiple optical beams with different frequency shifts, making it suitable for various
systems, such as multi-beam laser Doppler vibrometry (LDV). We thoroughly elaborate on
the working principle of the component through theoretical analysis and demonstrate that by
applying periodic wave-like modulation in the modulator array, the discrete harmonic content of
the light can be selectively directed to different outputs based on the delay between consecutive
modulators. A design comprising a 16-element modulator array and 5 outputs will be presented.
Simulations show that this design can generate and collect 5 different harmonics (−2, −1, 0, +1,
+2) in the different outputs with a side band suppression ratio of 20 dB to 30 dB for each output.
Our proposed design is just one possibility and the component can be modified and optimized for
specific applications.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Surface vibration detection is an important technique for various applications, such as non-
destructive testing (NDT) and photoacoustic imaging. In these applications, there is a growing
demand for multi-point or full-field detection to achieve more comprehensive detection of the target
[1,2]. Current full-field measurements primarily rely on camera-based optical interferometry
(e.g., shearography [3]). However, these techniques are often limited by the detection bandwidth
[4], making them less suitable for detecting vibrations with larger amplitudes (which cause
large Doppler shifts) or higher frequencies. Laser Doppler vibrometry (LDV) enables higher
bandwidth single-point vibration measurements but is limited by detection points. Full-field
detection with LDV requires scanning sensing beams over the surface, effective only for repetitive
vibrations and entails lengthy measurements. Significantly increasing the number of sensing
beams in LDV systems enhances full-field measurement capabilities, allowing for more accurate
detection of complex vibration patterns and dynamic behaviors.

Advancements in photonic integrated circuit (PIC) techniques [5], especially in silicon
photonics, enable compact, cost-effective multi-channel LDV systems compared to systems based
on discrete optical components [1,6]. Therefore, the PIC technique is a promising candidate for
enabling improved full-field detection systems. However, in practice, as the number of sensing
beams increases, the PIC space still needs to be considerably expanded. The increased number
of sensing channels adds complexity to packaging and readout electronics, making PIC-based
full-field measurements highly challenging. Additionally, current PIC-based LDVs use the
homodyne detection method rather than the heterodyne method employed by commercial LDVs
[7]. Although the heterodyne technique has been proven to improve the performance of LDV
systems in many situations [8–10], the key component to enable the heterodyne technique, i.e. the
optical frequency shifter, is not yet fully available in silicon PICs. Several possible options have
been reported: (1) The serrodyne technique uses sawtooth-shaped phase modulation to generate
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a single sideband output, but it suffers from modulator nonlinearities and limited bandwidth
[11,12]. (2) IQ modulators, which use two Mach Zehnder modulators driven by cosine and
sine signals with a π/2 phase difference, can also produce a single sideband output [13–15].
These IQ frequency shifters are less sensitive to modulator non-linearities and more suitable
for generating high-frequency shifts. However, using these frequency shifters for simultaneous
full-field detection is nearly impossible, considering both system space and cost. The proposed
method of this paper aims to address these issues.

For free-space LDVs, it has been shown that synthetic-array heterodyne detection can decrease
the size and the cost of a multi-beam LDV system [16,17]. In this technique, each sensing
beam is frequency-shifted to a different carrier with AOMs. After reflection of the test object,
they are combined with the local oscillator on a photodetector, through which the sensing
signals and carrier frequency are transferred to the electrical domain, where the different
sensing beams can be distinguished through the different carrier frequencies. The multiplexed
electrical signals can be amplified and recorded by the same circuit. This technique also helps
to reduce crosstalk between different sensing beams, thanks to the separation in the frequency
domain, compared to multi-beam homodyne systems. While free-space circuits have successfully
utilized Acousto-Optic Modulators (AOMs) in the Raman-Nath regime as multi-beam frequency
shifters [16–19], and acousto-optic modulators have been demonstrated on various platforms
[20–23], on-chip acousto-optic multi-beam frequency shifters are still notably absent from
most commercial Silicon-On-Insulator (SOI) platforms. The implementation of such a feature
requires the heterogeneous integration and processing of suitable acousto-optic materials, which
consequently increases complexity and cost.

This paper proposes a novel method to generate a multi-beam frequency shifter in the SOI
platform. Serving as a frequency shifter, the approach holds value for diverse applications,
including optical communications [24,25], remote sensing [26], velocimetry [27] and microwave
photonics [28]. When incorporated into PIC-based LDV systems, it breaks through existing
constraints, allowing simultaneous multi-beam, and potentially, full-field measurements. This
paper delves into the theory of Raman-Nath modulation and proposes the use of an array of discrete
modulators to create on-chip solutions for creating multiple heterodyne beams by mimicking the
wave-like acoustic modulation properties. Hereby eliminating the need for materials with good
acousto-optic properties to be integrated into the silicon platform and offering better control
over modulation than AOMs, enabling fine-tuned output harmonics. We also discuss design
considerations and present a simulated structure utilizing a star coupler for the efficient separation
of different modulation orders. Our approach has the potential to significantly reduce the size and
cost of on-chip multi-beam LDV systems and expand the capabilities of photonic integration.

2. Theoretical framework

2.1. Interaction of light with wave-like modulations

In this section, we will discuss the interaction between optical waves and a traveling modulation
wave with a short interaction length, similar to an AOM in the Raman Nath diffraction regime
[18,19]. As depicted in Fig. 1(a), let us consider a two-dimensional scenario where a monochro-
matic optical plane wave is expressed in complex notation as Ui(x, z, t) = Ai exp(j2πf0t − jk0r),
with Ai denoting the amplitude, f0 as the optical frequency, t as time, r as the position vector,
k0 = k0xx̂+ k0zẑ as the k-vector of the optical beam, x̂ and ẑ represent the unit vector in the x and z
directions, respectively. Here the k-vector fulfills the following relation: |k0 | = 2π/λ, where λ is
the optical wavelength of light in the medium. As shown in Fig. 1(a), let us examine an acoustic
wave with a negligible width L (operating in the Raman-Nath diffraction regime), traveling along
the x axis (z = 0) and modulating the optical wave through the photo-elastic effect.

Right after the modulation, the optical wave can be expressed as Um(x, t) = U(x, z = 0+, t) =
M(x, t)Ui(x, z = 0−, t), where M(x, t) is the modulation applied by the acoustic wave. When the
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Fig. 1. (a) A 2D propagating optical wave interacting with a wave-like modulation,
represented by wave vector km, traveling along the x-axis resulting in scattering to a different
direction. In grey, the scattering into different discrete directions due to a periodic wave-like
modulation, similar to an AOM (b) k-vector diagram of the modulated wave vectors.

traveling acoustic wave maintains a constant velocity v, the modulation can be expressed as a
wave-like function M(x, t) = W(x − vt). Considering the Fourier expansion of the modulation
function W(x) in the x direction is given by

W(x) =
∫ +∞

−∞

WF(kx) exp(−jkxx)dkx, (1)

the modulated optical wave can be expressed as an angular decomposition of plane waves through
Fourier optics.

Um(x, t) = Aiej2πf0t exp(−j2πk0xx)W(x − vt)

= Ai

∫ +∞

−∞

WF(kx) exp(j2π[f0 −
kxv
2π

]t) exp(−j[k0x + kx]x)dkx
(2)

From this equation, it is evident that the modulated optical field is scattered in different
directions due to the modulation wave. Assuming the propagation direction of a scattered
component is described by k′ = k′xx̂ + k′zẑ, the following relations should be fulfilled.

k′x = k0x + kx

|k| = 2π/λ
(3)

Figure 1(a), depicts the interaction between an optical monochromatic wave and a modulated
traveling wave and it shows the scattering in a different direction (in color). As can be seen in
Fig. 1(b), the relations from Eq. (3) hold. In the figure, k′x is represented by k1 and the added
vector due to modulation (kx in Eq. (3)) is represented by km. In grey, the scattering into different
discrete directions due to a periodic wave-like modulation, similar to an AOM is depicted, which
will be explained in a following section (Section2.2).

The phasor corresponding to this component is AiWF(kx) exp(j2π(f0 − kxv
2π )t), showing that,

when the modulation wave is propagating in the x direction with a constant speed v, the angular
frequency shifts in the x direction kx and the temporal frequency shifts ∆ft of the scattered light
are always correlated through the equation

∆ft = −
kxv
2π

. (4)
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2.2. Periodic modulation

Considering the wave-like modulation function W(x − vt) to be periodic, which is denoted as
Wp(x − vt). It is possible to define a spatial and temporal period P and T

Wp(x − vt) = Wp(x − vt + P)
= Wp(x − v(t + T)) with T = P/v

(5)

Define a(x) to be the single period of W(x)

a(x) =

{︄
W(x), if 0 ≤ x<P
0, otherwise

(6)

Thanks to the periodicity, the Fourier expansion of the modulation can now be written as a
discrete sum

Wp(x − vt) =
+∞∑︂

n=−∞
aF(

2πn
P

) exp(−j
2πn
P

vt) exp(−j
2πn
P

x), (7)

where aF(kx) denotes the Fourier components of the plane-wave decomposition of a(x). With the
same procedure used in the previous section, the scattered optical field can now be decomposed
in discrete spatial frequencies.

Um(x, t) = Ai

+∞∑︂
n=−∞

aF(n
2πn
P

) exp(j2π(f0 −
n
P

v)t) exp(−j(k0x +
2πn
P

)x) (8)

As a result of the discrete expansion in plane waves, the light is scattered into discrete angles
in the far field. According to the mapping relation in Eq. (4), different directions have different
temporal frequency shifts.

These equations can describe the acoustic-optic interactions in the Raman-Nath regimes (short
acoustic-optic interaction length).

2.3. Finite modulation region

In practice, the length of the modulation region (in the x direction) cannot be infinitely long. In
order to account for the finite size of the incoming beam, the finite size of the modulation region,
or the amplitude and phase differences along the modulation direction, we introduce a factor
G(x) in the system. The simplest case for G(x) is a rectangle function which is zero everywhere
except for the finite modulation region. The modulation function can be written as

M(x, t) = G(x)W(x − vt). (9)

Since the angular frequency spectrum of the scattered field is proportional to the Fourier
transform of M(x), it can be described as the convolution between the plane-wave expansion of
G(x) and the Fourier expansion of W(x − vt). In this case, the mapping relation between the wave
vectors and temporal frequency shifts (Eq. (4)) is not strictly valid anymore. However, if G(x)
describes a curve that is relatively wide such that in the angular frequency domain it has a small
angular bandwidth, Eq. (4) can still be used as a large field approximation. In the case of periodic
modulations, the discrete frequency components will mix unless the width of G(x) is big enough
to ensure the minimal beam size of the scattered light is smaller than the angular separation of
the discrete beams. When G(x) breaks the large field approximation, numerical methods can be
used to analyze the scattered fields.
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2.4. Discrete modulator array and coupling to free propagation region

While considerable advancements have been made in incorporating acousto-optic materials onto
the silicon photonics platform [23], these additions necessitate extra processing steps beyond
most commercially available silicon photonic platforms, leading to higher costs and increased
complexity. In this context, we propose a discrete modulator array coupled to a Free Propagation
Region (FPR) as an alternative solution for achieving wave-like modulation. Figure 2(a) shows a
possible on-chip layout of a discrete modulator array coupled to an FPR through a grating with
spacing Λ. We aim to replicate the characteristics of diffracted light under acoustic modulation
by coupling wave-like modulated light of this array to an FPR.

a)

b) c) d)
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Fig. 2. (a) Schematic of a modulator array connected to a grating array with spacing Λ and
element field profile m(x). (b) In red: the far field pattern mF of a single element with a
rectangular field profile m(x) with width = 800 nm. In blue; the angular intensity profile of
the passive array grating of 16 elements with equal amplitude and phase. (c) Output of a
plane wave modulated in periodic traveling-wave-like fashion resulting in discrete output
angles with each having a different frequency shift compared to the central beam. Here only
the ±1st order sidebands were considered. (d) Combining the traveling-wave-like modulation
technique and the passive array grating output, an angular output spectrum which is the
convolution of (b) and (c) is obtained.

First, the properties of a 1D linear phased array grating and its coupling to an FPR are discussed.
Subsequently, the theory of wave-like modulation is combined with the grating array properties
to design multi-beam frequency shifters based on discrete modulator arrays.

An array grating serves to convert phase and intensity relations between discrete elements
into a specific far-field pattern after propagating through an FPR. While various forms of optical
arrayed gratings exist, we focus on a 1D linear array for simplicity. Consider a 1D linear array of
N elements with field profile m(x) (and mF(kx) its spatial Fourier transform), spaced with a period
of Λ along the x-axis, similar to the grating depicted in Fig. 2(a). Considering equal amplitude
elements, but a linear phase shift ∆ψ between consecutive elements, we can write for the field at
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the x-axis ( with ′∗′ representing convolution):

Um(x, t) =
N∑︂

n=0
[Ai exp(j(2πf0t − n∆ψ))δ(x − nΛ)] ∗ m(x)

=

[︄
Ai exp(j(2πf0t − k0xx))

N∑︂
n=0

δ(x − nΛ)

]︄
∗ m(x) with k0x = ∆ψ/Λ

= Ai exp(j2πf0t)
∫ +∞

−∞

AF(kx,Λ)mF(k0x + kx) exp(−j(k0x + kx)x)dkx

(10)

where AF is the array factor of a 1D linear array grating AF(kx,Λ) =
∑︁N

n=0 exp(−jnkxΛ).
The Fourier transform of the element field profile, multiplied by the grating array factor,

results in the angular decomposition after a periodic, finite grating. Figure 2(b) presents the
angular intensity profile of a 16-element linear array grating (blue) derived from the modulus
squared of the single-element Fourier transform (red) multiplied by the array factor. We used
a wavelength λ = 1550 nm, pitch Λ = 2.5 µm , and approximated each element’s field profile
using an 800 nm width rectangular function. In Fig. 2(b) we assumed no linear phase shift to be
present (∆ψ = 0 −→ k0x = 0) such that 2πk′x = sin(θ)/λ. The indicated 2θπ-region in the figure
represents the 0th order diffraction region when scanning with the phased array grating with a
consecutive phase delay ∆ψ between −π and π. This region will be important when designing
the grating structure.

A linear phase shift ∆ψ between consecutive elements induces a shift of the array factor
enabling light direction tuning via a linear phased array. The 0th grating order’s output angle can
be estimated with sin(θ) = ∆ψ

Λ
λ′

2π , where λ′ refers to the wavelength in the FPR and θ the angle
between the z-axis and the propagation direction.

In Eq. (10), we assumed identical field amplitude and linear phase shift for each element and
linear phase shift. Now, we include wave-like modulation factor W(x − vt), which modulates
each element according to the wave-like character.

Um(x, t) = Ai

∫ +∞

−∞

ej2π(f0−kxv)t[WF ∗ AF](kx)mF(k0x + kx)e−j(k0x+kx)xdkx. (11)

With Eq. (11), the expected far field of this array under periodic and traveling-wave-like modulation
can be calculated numerically. Figure 2(c), shows the angular field pattern of a monochromatic
wave (λ = 1550 nm) along the z-axis, scattered by a periodic wave-like modulation with a
fundamental frequency of 1 MHz and a velocity of 14.76 m/s along the x-axis (for simplicity
we assume only scattering to ±1 harmonic ). In this example, the ±1 harmonics are scattered
to around θm = + 6◦ and −6◦ (see Eq. (4)). Considering the 16-element linear array with
period Λ = 2.5 µm and a wavelength of 1550 nm, this wave-like modulation can be emulated by
connecting the linear array to a modulator array (as shown in Fig. 2(a) with a linear phase shift
∆ψ = π/3 between the modulation of the modulators respectively.

Equation (11) tells us how to combine the results from Fig. 2(b) and (c) to yield the resulting
far-field pattern in Fig. 2(d), it can be seen that by using a modulator array connected to a discrete
array coupled to an FPR and emulating wave-like modulation, different discrete frequency shifts
can be generated and separated in the FPR, which allows designing multi-beam frequency shifters.
The 2θπ-region, determined by the grating period, and θm determined by the modulation and
delay between modulators in consecutive arms, are two important parameters to consider during
the design stage for a multi-beam frequency shifter.

3. Design

In the previous section, we discussed the potential for using a combination of a modulator array
and a phased array grating to generate multiple discrete frequency-shifted beams with different
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propagation directions. Instead of using a straight optical phased array (Fig. 2(a)) that projects
light into the far field, one can use a curved optical phased array to focus the light, where it can
be collected through output waveguide apertures [29]. These curved optical phased arrays, or star
couplers, allow for designing a multi-beam frequency shifter on a compact chip. Figure 3 shows
a schematic where a single frequency input is distributed across a waveguide array, and, after
modulation, light is coupled from input apertures into an FPR (e.g. a slab waveguide). There,
the different harmonics are directed to output waveguides at the end of the FPR. By using the
modulator array to mimic the properties of a Raman-Nath acousto-optic modulator, as described
earlier, different single sideband frequency-shifted beams can be directed to the output of each
waveguide. In the following sections, we will examine the key design considerations for creating
a frequency-shifting structure using a modulator array and an FPR.

Fig. 3. Schematic of an on-chip heterodyning component using a star coupler to separate
the different beams generated through the traveling-wave-like modulation of the modulator
array.

3.1. Modulation

As described in Section 2, the modulation dictates the frequency content of the light relative to
the baseband frequency. Periodic modulation disperses power across different discrete harmonics.
Thus, the characteristics and waveforms of the modulator are crucial considerations. The silicon
photonics platform has seen the development of a broad range of modulation techniques and
devices, including but not limited to micro-electro-mechanical systems (MEMS), thermo-optic
modulators, free carrier dispersion modulators, and electro-absorption modulators [30,31]. These
devices enable amplitude and/or phase modulation with various characteristics and at different
modulation frequencies. To provide a non-exhaustive exploration of various possibilities, we
examine perfect phase modulation with different special modulation waveforms, a sine-driven
pn-modulator, and amplitude modulation.

In Fig. 4, we look at these different modulations. As can be seen from Fig. 4(a)-(c), pure sine
phase modulation gives rise to multiple sidebands, depending on the amplitude of the modulation.
Figure 4(c) shows the output spectrum for a pure sine phase modulation with modulation depth
r = 1.84, which maximizes the amplitude of the −1st and 1st harmonic, as can be seen from 4(b).
Figure 4(d)-(f) shows results as expected from a 5-mm long pn-modulator, modeled using the
description of the plasma dispersion effect from Soref and Bennett [32]. The 5 mm pn-modulator
has considerable insertion loss and we can see some small amplitude modulation apart from
the larger phase modulation. Note that amplitude modulation is not detrimental to the working
principle of the proposed design. To increase the number of sidebands in Fig. 4(f), one should
apply higher voltages or increase the modulator length, but this increases the overall power loss.
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Fig. 4. Different modulations can yield different interesting harmonic content. Each
row depicts the figures for one type of modulation. The figure in the first column shows
the modulation waveform. The second column shows the influence of the change in the
amplitude of that specific modulation and the third column shows the amplitude spectrum of
the modulation depicted in the first column and highlighted with the dotted line in column 2.
(a) to (c) considers pure sine phase modulation (PM-sine) whereby ∆ϕ = r · sin(ωst). (d) to
(f) considers the 5 mm long pn-modulator driven by a voltage sine signal (PN-sine). (g)
to (i) considers sawtooth phase modulation with amplitude of the phase modulation=r · π.
(PM-sawtooth) (j) to (l) shows a dual sine phase modulation with phase modulation described
as ∆ϕ = r · [1.24 sinωst + 1.53 sin (ωst + π/2)], resulting in an equalized output for the first
five harmonics for r=1 (PM - dual sine). (m) to (o) depicts amplitude modulation driven by
a sine signal (AM sine-ER) and where the extinction ratio is linear with the applied voltage
yielding an amplitude modulation of A = 10−r/20·(1+sinωst).

In Fig. 4(m)-(o), we show results for pure amplitude modulation whereby the extinction ratio
is linear with the applied voltage, (approximating the behavior of electro-absorption modulators).
It is clear that amplitude modulation can also be used for sideband creation, but absorption-based
modulators are fundamentally less power efficient compared to lossless phase modulators.

Other special modulations are possible and can yield interesting results. Figure 4(g)-(i) and
Fig. 4(j)-(l) show special cases for pure phase modulation. Sawtooth phase modulation with an
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amplitude covering a 2π phase modulation results in a single sideband output. This serrodyne
technique creates one single frequency shifted beam but requires high bandwidth of the driving
electronics and modulator [11,12]. It has been proven that using dual or more sine phase
modulations can equalize comb amplitudes (for a number of combs) [33,34]. Figure 4(j)-(l) show
dual sine phase modulation giving rise to a comb profile with equalization of the 5 lowest order
modes (−2,−1,0,1,2). Using different combinations of two or more sine phase modulations, one
can equalize larger comb sizes.

In the following section, we will consider using pure sine phase modulators with a modulation
depth of 1.84 (as denoted with the dotted line in Fig. 4(b) for creating a 16-by-5 multi-beam
frequency shifter, collecting the harmonics between the −2nd and +2nd.

3.2. Star coupler and phased array design

In the past decade, there has been increasing interest in optical phased arrays due to their
potential for non-mechanical beam-steering in applications such as remote sensing and free-space
communication [35]. Recent efforts have focused on optimizing steering range, minimizing
side lobes to increase beam steering efficiency, and demonstrating 2D arrays [35,36]. These
optical phased arrays could be used to create a free-space coupled multi-beam frequency shifter,
provided each element can be modulated with wave-like modulation relative to each other, as
described in Section 2. However, in this paper, we focus on the development of a multi-beam
frequency shifter that does not couple into free space. Instead, we employ a star coupler to
propagate and collect the frequency-shifted beams on-chip.

For a star coupler design, the input grating follows a circular arc, creating a circular phase
front focusing on the center of the circle when no phase difference is present between the input
waveguides. Introducing a phase difference between consecutive elements creates a shift of
the focal point, which will move along a new circle with half the radius, called the Rowland
circle. Now, by taking into account the number of output apertures, one can start determining the
different parameters of the star coupler.

Consider, one chooses to collect or use M output waveguides. For a star coupler design, it is
important to position the output waveguides in agreement with the expected diffracted angle of
the harmonics to be collected. It is however possible to tune the separation between the diffraction
angles by changing the delay of modulation between consecutive modulators.

When considering modulation by applying a sine signal or any other symmetric signal, the
distribution across the harmonics is symmetric. Without an angular shift applied, a symmetric
output design where the harmonics between -(M-1)/2 and +(M-1)/2 are captured or used, can
result in a power-efficient system. For such a system, we follow the general design guidelines
for an N-by-M star coupler. The number of input apertures N is important for the efficiency of
coupling to the output apertures, generally one uses at least N>3M input apertures for M output
channels [29]. First, the spreading angle of the star coupler output aperture can be calculated
by looking at the far-field projection. The N input apertures should be distributed within the
spreading angle for efficient power coupling and results in a minimum for the radius of the
Rowland circle.

Schematic in Fig. 5(a) shows the important parameters to consider for the star coupler design.
From the period of the N input apertures, we can estimate the 2θπ region; it is the angle scanned
by the 0th order diffraction for the phased array with the phase delay ∆ψ scanned from −π to π.
The M output apertures should fit within 2θπ region while staying away from the edges of this
region. Otherwise, the Mth harmonic might overlap with output waveguides.

With these considerations in mind, the minimal grating radii of the star coupler can be
calculated. To arrange M output waveguides, an initial approach would be to choose the angular
separation to be equal and approximately θs = 2θπ/(M + 1). This choice ensures the collection
of different harmonics while preventing the ±((M + 1)/2) harmonics from overlapping with any
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Fig. 5. (a) Schematic of the layout of the star coupler with important design parameters; the
diameter of the Rowland circle, which is the distance between the in- and output apertures
2Rrow, the spreading angle θs and 0th order diffraction angle 2θπ . (b) Design of the 16-by-5
starcoupler. (c) The transmission to different outputs of the 16-by-5 star coupler, with
equally distributed input in the function of the phase difference between consecutive inputs.
(d) Resulting output power of the different harmonics into different ports when using pure sine
phase modulation with depth 1.84 for different delays between the consecutive modulators.

output. However, higher harmonics might overlap with the outputs. If this overlapping becomes
an issue, for instance, when using modulation with power in these higher harmonics, it can be
mitigated by decreasing the angular separation. This will be further elaborated in Section 4.

After determining different parameters, the design and performance can be estimated through
simulation. Here, we first calculate the s-matrix of the star coupler using the IPKISS AWG
designer [37]. Apertures are simulated using CAMFR [38], doing 1D mode solving and 2D
eigenmode expansion propagation. The propagation through the FPR is calculated through the
Rayleigh Sommerfeld diffraction expressions. Modal overlaps are used for calculating power
coupling into the waveguides. Here, a 220 nm thick silicon platform is considered, resembling
commercially available silicon photonic platforms [39]. Following the guidelines described
in this section, we designed a 16-by-5 star coupler with an input grating period of 2.8 µm.
The design features a 20 µm linear taper structure from a single mode wire waveguide to the
shallow-etched rib-wire apertures with a width of 2 µm and a Rowland circle radius equal to
46.25 µm (Fig. 5(b)). We set θs = 2θπ/6 = 1.9◦, as depicted in the design layout in Fig. 5(b).
Figure 5(c) shows the transmission to the different ports, depending on the phase difference
between the various arms. This is based on the scattering matrix while assuming equal power
into every input arm and no modulation

As illustrated in Fig. 5(c), the outputs from the star coupler exhibit about −25 dB crosstalk to
the neighboring outputs due to sidelobes. This crosstalk, along with the insertion loss from the
star coupler, could be improved by increasing the aperture angle as viewed from the outputs [29],
but this would necessitate the addition of more modulators to the star coupler.
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Regarding fabrication challenges, minor changes in the effective index within the FPR could
lead to different grating diffraction angles. This issue could be alleviated by tuning the angular
spacing through changing the delay for consecutive modulators. However, this adjustment could
inadvertently cause higher harmonics to overlap with the outputs, potentially degrading the
suppression ratio, as will be elaborated in Section 4. If the higher harmonics do not carry
significant power, as demonstrated in Fig. 5(d), this will not pose a problem.

DC phase errors due to path length differences or DC thermal crosstalk components can be
compensated by thermo-optic phase shifters [40]. Thermal crosstalk between the elements and
optical paths of the modulator array can however cause AC phase modulation to neighbouring
elements (especially when using thermo-optic phase shifters for phase modulation [41]). As-
suming a periodic, infinite array of modulators, every arm has the same influence such that the
wave-like condition as described in 2.4 still holds. This concept can be expressed by considering
the total modulation Mi(t) in arm i. It can be formulated as a function f of the applied wave-like
modulation W—as discussed in 2.4—along with the contributions from the modulations applied
to the neighboring arms, which are separated by of Λ. We include however an arbitrary delay tk,
to account for the time delay of the thermal effect of the kth neighbours.

Mi(t) = f
(︃
W[xi − vt

]︁
,W[xi + Λ − v(t − t1)],

W[xi − Λ − v(t − t1)],

W[xi + 2Λ − v(t − t2)], . . .
)︃ (12)

From this, it is evident that when working with time-invariant systems, Mi(t) can still be
expressed as new a wave-like function:

Mi(t) = W ′(xi − vt). (13)

This implies that thermal crosstalk will not affect the angular separation as discussed in 2.
However, it will influence the modulation function and, as a result, the power distribution across
the harmonics. In reality, the modulators at the edge will not have the same function, which could
break the wavelike modulation. This edge effect can be mitigated by placing and modulating
extra elements at the edges of the array.

4. Discussion

Considering a perfect sine phase modulator with modulation depth r = 1.84 (as defined in Fig. 4),
the amplitudes of the harmonics behave as depicted in Fig. 4(a)-(c). Assuming this modulation
results in Fig. 5(d), where it can be seen that the majority of the power will be contained in the 1st

and −1st harmonic, while there will still be a substantial amount of power in the other captured
harmonics.

In Fig. 5(c), the transmission of the star coupler is plotted, when the inputs have the same
amplitude for different detunings of the phased array (without modulation). We can see optimal
transmission in the different output ports at multiples of π/3. This is as expected since we chose

θs =
2θπ

M + 1
M=5
−−−→

θπ
3

. (14)

Figure 5(d) shows the calculated output power of different harmonics for the multi-beam
frequency shifter for sine phase modulation, with a modulation depth of around 1.84 (as was
shown in Fig. 4(a-c)). The x-axis denotes the delay between consecutive modulations. It can be
seen that for a delay of around π/3, we collect the 2nd harmonic in the upper waveguide with
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over 20 dB suppression of other harmonics. In the second output waveguide, we collect the 1st

harmonic with around 30 dB suppression and the 0th harmonic in the central output waveguide
with 20 dB suppression of other sidebands. The lower two waveguides collect the −1st and −2nd

harmonic.
As previously mentioned, setting θs = 2θπ/(M + 1) directs the harmonics above (M + 1)/2

towards the outputs. For the example of the 16-by-5 star coupler, it means the output efficiently
collects the 2nd harmonic, collects also the −4th, while the direction of the output collecting the
1st harmonic coincides with the direction of the −5th harmonic, . . . In the example discussed in
Fig. 4, this overlap does not significantly decrease the suppression rate because the modulation
used doesn’t contain substantial power in these overlapping harmonics. However, if we aim
to use different modulations that contain considerable power in these higher harmonics, it
could reduce the suppression ratio. Considering dual sine phase modulation as discussed in
Fig. 4(j-l), the resulting collected output can be plotted as seen in Fig. 6. In this figure, we
only plotted outputs 1,2 and 3 since, a symmetric comb profile and a symmetric star coupler
design, outputs 4 and 5 can be derived through symmetry from outputs 2 and 3 by reversing
the sign of the harmonics as can also be seen in the example from 5(d). From Fig. 6, it is
evident that when θs = 2θπ/(M + 1) = 2θπ/6, indeed higher harmonics are overlapping when
the collected harmonics are directed to the outputs. However, by choosing a slightly adjusted
angular separation θs = 2θπ/(M + 3/2) = 2θπ/(6 + 1/2), the higher harmonics are directed in
between the various output angles. Figure 6, therefore shows that this slight change of the output
angle is a mitigation strategy for overlapping harmonics.
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Fig. 6. The harmonic power collected by various outputs from the 16-by-5 star coupler for
different output angles, under the assumption of a dual-sine phase modulation input, shows
distinct characteristics. When θs = 2θπ/6, the higher harmonics overlap as they are directed
toward the outputs. On the other hand, when θs = 2θπ/(6 + 1/2), the higher harmonics
are steered in between the outputs. This observation illustrates that by choosing suitable
output angles, it is possible to mitigate the overlap of higher harmonics with the outputs,
thus improving the suppression ratio.

IQ-based frequency shifters remove sidebands through destructive interference from arms with
multiple modulators [42–44]. Assuming lossless phase modulation in each arm, they have an
upper-limit device loss of −4.7 dB for collecting the 1st harmonic while having non-negligible
higher harmonics. When optimally modulating for the first harmonic, the IQ-based frequency
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shifters exhibits a suppression ratio limited to approximately 15 dB due to the presence of −3rd

harmonics [13–15]. Improving the suppression ratio relative to this harmonic comes at a cost of
power efficiency. Additionally, the insertion loss of individual modulators significantly impacts
power efficiency. Recent demonstrations of IQ-based modulators show therefore largely varying
suppression ratios of 10 to 25 dB and varying insertion losses [42,43] (e.g., a lithium-niobate-
based IQ frequency shifter shows an insertion loss of around −17.6 dB and a suppression ratio of
22 dB [42]).

To compare the theoretical performance of the designed frequency shifter with the IQ-based
frequency shifter, we therefore assume both employ identical lossless modulations. For this
theoretical comparison, we also neglect propagation losses (usually below 2 dB/cm for 220 nm
thick SOI [45]) and losses due to splitters for both types of frequency shifter (0.05–0.2 dB per
1 × 2 - splitter [45]). Assuming the same modulation, we can see that the 16-by-5 multi-beam
frequency shifter requires 6 dB more RF power due to the multitude of modulators. When
we look at the optical power budget, results from Fig. 5 show the collected power of the first
harmonic of the 16-by-5 frequency shifter is −6.9 dB, which is less than the IQ-based frequency
shifter (−4.7 dB). However, in the proposed design, we collect the light of other harmonics,
resulting in a simulated optical loss of around −2.4 dB. This simulated value is primarily due
to star coupler insertion losses, while the loss from uncollected higher harmonics is near zero
because of the comb profile, which concentrates the power in the lower harmonics. In addition,
we can see from Fig. 5(d) that for the 16-by-5 example of the multi-beam frequency shifter,
simulations indicate around 30 dB suppression for the 1st harmonic and 20 dB for the 0th - and
2nd harmonic. It’s worth noting that the theoretical performance can be enhanced with more
optimally designed star couplers. Previous demonstrations have shown that devices with superior
suppression ratios and reduced insertion losses can be fabricated through optimization of mode
matching and suppression of scattering in a star coupler [46].

5. Conclusion

In this paper, we introduced the theoretical framework for understanding the construction of
multi-beam frequency shifters using an array of modulators and an FPR. By modulating the
array in a periodic, wave-like manner, frequency-shifted beams can be generated and directed in
different directions. Subsequently, we proposed using a star coupler to collect the light in different
frequency-shifted beams on-chip. We also discussed design considerations and presented a
simulation of a 16-by-5 star coupler-based multi-beam frequency shifter as an example. By using
perfect sine phase modulators and tuning the delay between the consecutive modulators such
that the five harmonics (2,-1,0,1,2) are directed to the five outputs, we simulated a suppression
ratio of between 20 and 30 dB for the different outputs compared to other harmonics and with a
simulated loss of −2.4 dB due to the star coupler. These simulation results illustrate the feasibility
of our proposed multi-beam frequency shifter and highlight the potential for various photonic
integrated devices that necessitate multiple frequency shifts.
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