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Wideband parametric baseband 
macromodeling of linear 
and passive photonic circuits 
via complex vector fitting
Thijs Ullrick 1,2,3*, Domenico Spina 1, Wim Bogaerts 2,3 & Tom Dhaene 1

A novel wideband parametric baseband macromodeling technique for passive photonic devices and 
circuits is presented. It allows to efficiently estimate the baseband scattering representations of a 
linear, passive photonic system as a function of a set of design variables, such as geometrical layout or 
substrate features. The proposed technique relies on the interpolation of macromodels computed via a 
complex vector fitting (CVF) algorithm, by adopting a methodology based on amplitude and frequency 
scaling that preserves, by construction, the physical properties of the system, such as causality, 
stability and passivity. For a specified combination of the design parameters, a rational CVF model is 
derived that can be simulated by a wide range of ordinary differential equation (ODE) solvers or circuit 
simulators. Additionally, time-domain simulations using the computed model can be performed at 
arbitrary optical carrier frequencies, thus allowing for the simulation of multi-wavelength systems. 
Two application examples are presented to demonstrate the flexibility and advantages of the 
proposed method.

Driven by datacom and telecom applications, and enabled by the growing number of mature manufacturing 
and prototyping facilities (fabs), there is a growing trend to scale the complexity of photonic integrated circuits 
(PICs)1. However, today there exists a wide gap between what the technology can deliver and the functionality 
engineers need to design and simulate  PICs2. Since traditional electromagnetic (EM) modelling  techniques3–6 
are not suitable for directly simulating larger circuits, the more common approach is to use circuit-level model-
ling, which needs compact and efficient behavioral models that can substitute for the expensive EM simulations 
while ensuring a comparable accuracy.

In general, photonic components for PICs can be divided in two broad classes: active and passive devices. 
A great number of models for active components, which are usually formulated in the time-domain, has been 
presented in the literature: examples include  lasers7–9,  modulators10–12, and  photodetectors13–15. However, the 
vast majority of photonic components are linear and passive devices whose behaviour is best defined in the 
frequency-domain in terms of a scattering matrix. However, since simulation of active and passive devices is 
always performed in the time-domain16,17, there is also a need for accurate and efficient time-domain models of 
passive devices. As many passive devices in photonics circuits are constructed using parametric layout designs 
(i.e. the user can adjust dimensions using parameters), there is also a need to construct the corresponding para-
metric circuit models, whose behaviour is characterized by the design and control parameters that describe the 
physical properties of the structure. The quality of these models, in terms of computation speed, accuracy and 
coverage of the design space, is key for the design, analysis and optimization of large-scale photonic circuits.

There are only a few publications in the literature that describe how to build accurate and efficient circuit 
models for passive components. The  contributions16,18,19 demonstrate how to derive time-domain models for 
passive devices like waveguides and directional couplers; however, these models rely on simple analytic expres-
sions that make it very difficult to capture complex photonic phenomena such as higher-order dispersion and 
wavelength-dependent effects. To address this issue, the  techniques17,20–22 perform the time-domain modeling 
starting from the frequency-domain scattering parameters, therefore being capable of accurately modeling the 
aforementioned nonidealities. The convolution-based  method17 directly applies inverse Fourier transform to 
the scattering parameters to obtain a non-parametric impulse response, which can be used for time-domain 
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simulation. In practice though, the scattering parameters are band-limited or truncated, and this method often 
leads to violations of physical properties, such as causality and  passivity23. The recently proposed work by Ye 
et al.22 on the other hand, performs the modeling by computing a stable and passive baseband state-space model 
via the robust complex vector fitting (CVF) algorithm. Such a model, which consists of a set of coupled ordinary 
differential equations (ODE) is supported by many commercial and open-source time-domain solvers. However, 
despite the attractive features of the latter technique, the models are non-parametric and their use is hence limited 
to performing circuit level design and optimization. For every design variation of the component, and even for 
each simulation at a different carrier wavelength, a new CVF model must be constructed, which often triggers 
one or more expensive EM simulation.

Thus, the literature exhibits a striking and practically relevant gap that this work seeks to fill. The novelty 
and the technical contribution of this work, which builds upon our previous research reported in Ye et al.22 and 
Ferranti et al.24, can be summarized as follows: (1) We derive a closed-form mathematical expression for the 
parameter dependency on the optical carrier frequency of the baseband  macromodels22. This leads to the devel-
opment of a wideband macromodel that can be simulated at any optical carrier frequency, making it suitable 
for the representation of multi-wavelength systems, (2) by leveraging the parameterization in terms of optical 
carrier frequency, the local interpolation  scheme25, previously applied in microwave engineering, is extended 
with an additional frequency shifting coefficient for the computation of parametric baseband macromodels, 
capable of accurately predicting the complex behaviour of parametric passive photonic devices over the entire 
design space both in the frequency- and time-domain, (3) a wideband parametric baseband macromodel is 
proposed by combining the parameterization in terms of optical carrier frequency with design parameters. It 
is demonstrated that physical properties such as causality, stability, and passivity are preserved throughout the 
entire design space. Unlike traditional approaches that require numerous electromagnetic simulations with 
high computational costs for varying design parameters, our novel wideband parametric baseband model can 
be used to simulate device behavior as part of a circuit within a large continuous design space, eliminating the 
need for additional expensive EM simulations and significantly accelerating the design process. Notably, the 
presented parametric macromodel in this study can be seamlessly integrated into surrogate-based optimization 
 frameworks26. To the author’s best knowledge, this is the first and only parametric macromodeling algorithm 
for photonic components reported in the literature to date.

Baseband macromodeling
This section briefly summarizes the CVF  algorithm22, which is one of the two major ingredients of the parametric 
macromodeling framework proposed in the paper. Although the concepts introduced here are not new, they are 
essential for understanding our work.

Baseband equivalent signals and systems. Given the high frequencies of optical electromagnetic 
waves (200–300 THz), direct modelling of the EM waveform in the time domain is not a very efficient approach 
for circuit simulation, as it would require fs-scale time steps. Therefore, the common approach is to model the 
modulated envelope (in amplitude and phase) around a carrier frequency, which is sometimes referred to as 
a ‘baseband model’. The baseband modeling approach followed by the CVF  algorithm22 allows one to adopt 
relatively large time steps when carrying out time-domain simulations, thereby significantly relaxing memory 
requirements and speeding up the computation time. In this section, the reader is introduced to the concept 
of baseband equivalent signals and systems since the theory is key for the derivation of the parametric model.

The excitation signals of optical communication systems are usually defined as amplitude and/or phase 
modulated optical carriers in the form

where fc is the optical carrier frequency and A(t) and φ(t) are the time-varying RF modulated amplitude and 
phase, respectively. In the frequency-domain, the spectrum of a(t) is centered around fc while its bandwidth is 
much smaller than fc . Hence, signals in the form (1) are referred to as bandpass  signals27. The baseband equiva-
lent signal representation of (1) is

which represents the complex envelope of the signal a(t) and it is widely used for the analysis of photonic systems. 
The signals a(t) and al(t) are related by

where R(·) indicates the real part. The relation between a(t) and al(t) in the frequency-domain is illustrated in 
Fig. 1.

Now, the baseband equivalent of a bandpass system can be defined by applying the same concepts, as is illus-
trated in Fig. 2, where S(f) and Sl(f ) are the frequency response of the bandpass and baseband equivalent system 
respectively. Owing to the definition of bandpass signals and systems, and their baseband equivalents, it follows 
that the output of a bandpass system is intimately related to the output of the baseband equivalent system and 
the first can be analytically recovered from the latter.

Complex vector fitting. The novel parametric modeling technique presented in this work relies on the 
CVF  algorithm22, which starts from the scattering parameters of the photonic device under study in order to 

(1)a(t) = A(t)cos(2π fct + φ(t))

(2)al(t) = A(t)ejφ(t)

(3)a(t) = R(al(t)e
j2π fc t)
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accurately capture non-ideal behaviours, such as higher-order dispersion, wavelength-dependent losses and 
backscattering. The scattering parameters are either acquired through measurements or can be simulated using 
electromagnetic modeling techniques such as finite difference time domain (FDTD)3, eigenmode expansion 
(EME)4, finite element (FE)5 or beam-propagation method (BPM)6. Once the scattering parameters have been 
obtained, their corresponding baseband representation is derived, and the CVF algorithm can be used to com-
pute a model suitable for time-domain simulations, as described in the following.

Let us assume that the scattering parameters of a photonic device have been acquired by means of EM simu-
lations for a discrete set of frequencies within the bandwidth of interest: S(fr) for r = 1, . . . ,R . The frequency 
response of the baseband equivalent system is then computed by shifting S(fr) to the imaginary axis by substitut-
ing fi = fr − fc , where fc is the optical carrier frequency. The effect of this mathematical manipulation on the 

Figure 1.  Example of the spectrum of a modulated optical signal (top) and its baseband equivalent 
representation (bottom).

Figure 2.  Example of the spectrum of a bandpass systems (top) and the corresponding baseband equivalent 
systems (bottom).
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frequency response is illustrated in Fig. 2. Next, the baseband scattering parameters Sl(fi) are fed to the CVF 
algorithm, which builds a rational pole-residue model in the  form22

where s = j2π f  is the Laplace variable, Rk ∈ C
n×n are the computed complex residues, pk are the complex poles, 

and D ∈ R
n×n is a real matrix modeling the asymptotic response at high frequencies, where n is the number 

of ports of the system under study. Starting from the rational model (4), it is possible to analytically derive the 
corresponding system of ordinary differential equations (ODEs) in state-space form  as22

where al(t) ∈ C
n×1 and bl(t) ∈ C

n×1 are the analytical forward and backward travelling waves of the n-port 
baseband system, corresponding to the RF modulated envelope of the photonic signal, xl(t) ∈ C

m×1 with m = nK 
represents the state-variables, A ∈ C

m×m is a diagonal matrix with pk at its non-zero entries, B ∈ C
m×n is a matrix 

that only has zeros or ones, C ∈ C
n×m is formed by horizontally stacking the residue matrices Rk and D ∈ R

n×n 
is the same matrix as in (4). The matrices A,B,C and D are called state-space  matrices22. For future reference, it 
is worth noting that it is possible to express Eq. (4) in terms of the state-space matrices

In this contribution, models in the form (4) and (5) are referred to as macromodels since they describe the 
behaviour of the system as seen from its input and output ports. Since the wideband parametric macromodeling 
technique, discussed in the subsequent sections, can be considered an extension of the non-parametric CVF 
technique explained here, we denote (5) as the reference CVF model.

Stability and passivity. When considering physical passive devices, like wavelength filters or other interfero-
metric structures, it is essential for reliable time-domain simulation that the equivalent models are both stable 
and passive. If this is not the case, the mathematical representation can be the root cause of non-physical numer-
ical instabilities during circuit simulations, especially when these circuits would contain feedback  loops28,29. A 
complete discussion (including the derivation of) the conditions for stability and passivity of baseband rational 
models is given in Ye et al.20,21. In this section, we give an overview of the essential notions that will be used in 
the rest of the manuscript to evaluate stability and passivity of the proposed parametric modeling approach.

A state-space model is stable if the real part of all the eigenvalues of the A matrix is negative. Since CVF builds 
pole-residue models having all complex poles with negative real part, stability is preserved by  construction22.

In Ye et al.20, the passivity definition and conditions for complex-valued linear baseband systems are presented. 
In particular, there are two passivity constraints that the baseband scattering parameters Sl(s) must satisfy: 

1. Sl(s) is analytic in R(s) > 0

2. In − SHl (s)Sl(s) is a nonnegative matrix for all s such that R(s) > 0

An efficient and accurate method to assess the passivity of state-space models in the form (5) is based on the 
Hamiltonian  matrix20 M, given by

where

A state-space model is passive if its Hamiltonian matrix has no purely imaginary eigenvalues, since any imaginary 
eigenvalue indicates a crossover frequency where a singular value of the scattering matrix changes from being 
smaller to larger than unity, or vice  versa20,30. After identification of the violating singular values by means of 
the Hamiltonian matrix, passivity can be enforced by perturbing the residues in such a manner that all singular 
values become smaller than  unity31. It is useful to note that a publicly accessible Matlab implementation of the 
CVF  algorithm32 is available at http:// sumo. intec. ugent. be/ CVF, including routines for passivity assessment and 
 enforcement31 of the computed models. Finally, a stable and passive state-space model is causal by construction.

Wideband baseband macromodeling
Prior to building the complex pole-residue model, the baseband scattering parameters Sl(fi) must be computed. 
This requires us to choose the value of the optical carrier frequency fc , in order to shift the photonic frequency 
response to baseband. Hence, accurate time-domain simulations of CVF models are possible only if the optical 

(4)Sl(s) =

K−1
∑

k=0

Rk

s − pk
+D

(5)
{

∂xl(t)
∂t = Axl(t)+ Bal(t)

bl(t) = Cxl(t)+Dal(t)

(6)Sl(s) = C(sIm − A)−1B+D

(7)M =

[

M11 M12

M21 M22

]

(8)

M11 = A− BL−1DHC

M12 = −BL−1BH

M21 = CHQ−1C

M22 = −AH + CHDL−1BH

L = DHD− In,Q = DDH − In

http://sumo.intec.ugent.be/CVF
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carrier frequency of all excitation signals is equal to fc . If a new value of the carrier frequency is chosen, a new 
model in the form (5) must be computed. Usually, it is not known upfront at which optical frequency(ies) the 
designers intend to perform simulations, so the modeling approach in Ye et al. is not very flexible and it does not 
scale well for systems with multiple wavelength channels. In order to overcome these limitations, in the following 
we define a novel CVF model parameterized with respect to the optical carrier frequency.

More specifically, starting from a CVF model computed for the carrier frequency fc , our goal is to derive an 
analytic expression for a new set of state-space matrices that represent the baseband spectrum at carrier frequency 
fcs = fc +�fc , where �fc is the desired frequency shift of the model that can be freely chosen by designers, as 
illustrated in Fig. 3. In this section, we demonstrate the derivation of the model and prove that both stability and 
passivity are preserved by construction.

While this is the first contribution describing a parametric CVF algorithm with respect to the optical carrier 
frequency, the idea of computing a rational model depending on fc is not new in the literature: the techniques 
in Ye et al.20,21 calculate a rational model at bandpass first, and then perform a frequency shift to obtain a corre-
sponding baseband model. However, these approaches compute models of approximately double the size of the 
CVF algorithm for comparable  accuracy22, and are more susceptible to numerical inaccuracies when performing 
time-domain simulations, since models obtained by these  methods20,21 have non-zero frequency components 
centered around − 2fc . These limitations derive from the fact that the approaches in Ye et al.20,21 start from the 
bandpass scattering parameters and can not be applied directly to a baseband frequency representation.

Model derivation. We start from the observation that multiplying the baseband signal ul(t) with e−j2π�fc t is 
equivalent to shifting the spectrum Ul(f) in the direction of negative frequencies by �fc

Note that uw(t) can be interpreted as the baseband equivalent signal of the bandpass signal u(t) at the optical 
carrier frequency fcs = fc +�fc . The next step is to express al(t) , bl(t) and xl(t) in the system of ODEs (5) in 
the form (9), which gives

where aw(t) , bw(t) and xw(t) are the baseband equivalent signals defined according (9). By applying the chain 
rule and performing some simple mathematical manipulations, Eq. (10) can be formulated as

(9)uw(t) = ul(t)e
−j2π�fc t

(10)











dxw(t)e
j2π�fc t

dt
= Axw(t)e

j2π�fc t + Baw(t)e
j2π�fc t

bw(t)e
j2π�fc t = Cxw(t)e

j2π�fc t +Daw(t)e
j2π�fc t

Figure 3.  Example of spectrum of a baseband system (top) and its spectrum shifted by �fc (bottom).
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which represents a new baseband equivalent system at center frequency fcs by means of the state-space matrices 
(A - j2π�fcIm) , B, C and D. Note that the macromodel (11), referred to as the wideband baseband macromodel 
in the rest of the manuscript, can be obtained by directly shifting all the poles of the state-space model (5) com-
puted at the optical carrier frequency fc by j2π�fc (see Fig. 4). Indeed, A is a diagonal matrix, with the poles 
in (4) as diagonal elements. It is important to note that, by tuning the parameter �fc , it is possible to vary the 
baseband carrier frequency fcs = fc +�fc of the model (11) as needed. The transfer function of the wideband 
baseband macromodel is given by

Stability and passivity. As previously stated, a state-space model is stable if the real part of all the eigen-
values of the A matrix is negative. Let us define Ã = A− j2π�fcIm . Note that the frequency shift in Ã does 
not modify the real part of the eigenvalues of A . Hence, if the reference CVF model (5) is stable, the wideband 
baseband macromodel (11) is stable as well, by construction.

The passivity of the wideband baseband macromodel can be verified by computing the eigenvalues of its 
Hamiltonian matrix. The Hamiltonian matrix Mw of the wideband baseband macromodel can be obtained by 
substituting the state-space matrices in (11) into Eqs. (7) and (8). Subsequently, by performing some simple 
mathematical manipulations, we can express Mw in terms of the Hamiltonian matrix M corresponding to the 
model (5) as

Now, assuming that the matrix M has eigenvalues �i , it must hold that

which indicates that

Hence, the wideband baseband macromodel (11) is passive, i.e. the Hamiltonian matrix Mw has no purely 
imaginary eigenvalues, if the reference state-space model (5) is passive, i.e. the Hamiltonian matrix M has no 
purely imaginary eigenvalues.

Wideband macromodeling strategy. In order to take advantage of the modeling flexibility offered by 
the novel wideband approach, it may be useful to consider a large range of frequencies when computing the 
model, for example the entire operating range of the PIC under study, typically defined between 187.5 and 
200 THz. From a mathematical standpoint, there are no restrictions on the values of �fc as the baseband macro-
model is well-defined across all frequencies. However, in practice, to ensure the accuracy of time-domain simu-
lations, it is essential to satisfy fmin + BWsig/2 ≥ fc +�fc ≥ fmax − BWsig/2 , where fmin and fmax define the 
range of optical frequencies for which the macromodel is computed, and BWsig is the bandwidth corresponding 
to the spectrum of the modulated optical input signals aw(t) of the state-space model (11). In this framework, 
given the aforementioned condition is respected, a designer can freely choose the value of the carrier frequency 
to be used for time-domain simulations without having to compute a new state-space model. This is a difference 
with respect to the reference  CVF22: since a new rational model must be computed for every value of interest 

(11)







dxw(t)

dt
= (A− j2π�fcIm)xw(t)+ Baw(t)

bw(t) = Cxw(t)+Daw(t)

(12)Ŝl(f ,�fc) = C
(

j2π(f +�fc)Im − A
)−1

B+D = S(f + fcs)

(13)Mw = M− j2π�fcI2m

(14)�i

[

x1
x2

]

= M

[

x1
x2

]

= �wi

[

x1
x2

]

+ j2π�fc

[

x1
x2

]

(15)�wi = �i − j2π�fc , for i = 1, . . . , 2m

Figure 4.  Example of poles of a model in form (5) representing the scattering parameters Sl(f) (left), and 
corresponding poles of the model (11) representing the scattering parameters Sw(f) (right).
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of the carrier frequency, it is beneficial to consider a more limited frequency range, corresponding only to the 
spectrum of the modulated optical input signals around the carrier frequency (normally a few hundred giga-
hertz). Indeed, considering a smaller frequency range may reduce the number of poles (and thus the size of the 
the corresponding system of ODEs) needed by the model to reach the desired accuracy in the entire bandwidth. 
Hence, for a similar accuracy, a wideband baseband macromodel can offer higher flexibility compared to the 
reference CVF approach, but it can have a larger computational complexity. Both modeling methodologies are 
illustrated in Fig. 5.

Parametric baseband macromodeling
Parametric macromodeling. Parametric macromodels accurately predict the complex behaviour of high-
speed multiport systems that are characterized by frequency and other design  variables33. Unfortunately, the cal-
culation of such models is not a trivial task. In particular, guaranteeing model passivity uniformly over the entire 
design space introduces substantial technical challenges and makes it difficult to build parametric macromodels 
that are concurrently accurate, compact and passive.

The literature describes two principal strategies: root macromodels interpolation24,25,34 and multivariate rational 
fitting33,35–37. The first strategy constructs a guaranteed passive parametric macromodel by interpolating a set 
of passive frequency-dependent macromodels (called root macromodels), computed for different parameter 
configurations in the design space. Despite this approach being robust and straightforward, it is not very com-
pact and the number of poles of the resulting model is generally higher than the number of poles of each of the 
macromodels. The second approach aims to compute an implicit and global parameterization of the complex 
dynamic behaviour by means of multivariate rational fitting. Main advantages of this technique are the compact 
formulation of the parametric numerator and denominator in a closed form analytic expression and the model 
order that does not scale with the dimension of the design space. The main drawback with many of the proposed 
multivariate fitting schemes is the passivity enforcement, which either may miss small passivity violations or is 
known to be over-conservative, leading to a model with reduced  accuracy37.

In the literature, the aforementioned parametric macromodeling techniques have all been presented in the 
context of vector fitting (VF)38, a technique extensively used for the modeling of distributed microwave devices. 
Since the VF technique operates at bandpass, it is not applicable for the modeling and simulations of PICs. 
To overcome this limitation, we propose to build parametric baseband macromodels via the CVF modeling 
 procedure22, based on root macromodels interpolation.

Parametric baseband rational models. The proposed modeling technique is a baseband adaptation of 
Ferranti et al.24 and relies on the computation of several frequency-dependent rational pole residue models for 
different parameter sets in the design space. Whereas in Ferranti et al.24 the rational models are computed by 
means of VF, given that we are targeting circuits operating at optical frequencies, the models here are built fol-
lowing the CVF  algorithm22. The result of this initial step is a set of univariate macromodels, stable and passive, 
which we call root macromodels, and which serve as starting point to build the desired parametric macromodel.

Note that the choice of the points in the design space where to compute the root macromodels can be auto-
mated by following a sequential sampling  approach39,40. The main idea is to partition the design space in suitable 
sub-regions, for example hyperrectangles. Only the vertexes of the hyperrectangles are chosen to compute root 
macromodels in pole/residue form. Then, in each point within the chosen hyperrectangle a model in pole/residue 
form can be calculated by interpolating the root macromodels that define its vertexes. These macromodels can 

Figure 5.  Example of the wideband baseband macromodeling framework (left) and the reference  CVF22 (right). 
The bandwidth is indicated with the acronym BW.
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then be used for frequency- or time-domain simulations. This choice makes the technique in Ferranti et al.24 a 
local interpolation scheme: only few macromodels determine the model’s predictions in a small portion of the 
overall design space. Note that, in contrast, in global interpolation approaches all the macromodels computed in 
the entire design space contribute to the model’s predictions. If the accuracy of the macromodel, defined in this 
work as the maximum absolute error (MAE) between the original frequency response Sl(s,g) and the estimated 
response by the parametric baseband macromodel Rl(s,g), is not sufficient in a specific sub-region, that portion 
of the design space is divided in smaller hyperrectangles, and the modeling procedure is iterated again until the 
desired accuracy is reached in the entire design space. The main advantage of this modeling strategy is that a 
designer has only to choose the desired accuracy and the parametric macromodel is built in an automated way. 
The sequential sampling scheme used in this work is described in details in Chemmangat et al.39. An application 
example of this modeling strategy in a design space of two variables is given in Fig. 6.

Let us denote an M-dimensional cell-region of the design space as �i , and the corresponding vertices as 
g
�i
k , k = 1, . . . ,M2 . Then, in order to improve the prediction accuracy of the interpolated model, for each vertex 

root macromodel Rl

(

s, g�i
k

)

 a set of amplitude scaling αk(g�i
j ), j = 1 . . . ,M2 and frequency scaling 

βk(g
�i
j ), j = 1 . . . ,M2 real-valued coefficients are computed that make the root macromodel an accurate approxi-

mant of the other root macromodels within that cell. Subsequently, a multilinear interpolation function is used 
to parameterize the coefficients in the design space

with T
(

g
)

 representing the interpolated coefficient and l�i
k (g) the piecewise linear interpolation kernel. The 

multivariate representation in Ferranti et al.24 at a point g is then obtained as a combination of root macromodels 
and corresponding amplitude and frequency scaling coefficients by adopting the same multilinear interpolation 
scheme used to parameterize the scaling coefficients

(16)T
(

g
)

=

M2
∑

k=1

T(g�i
k )l�i

k (g)

Figure 6.  Example of sequential sampling in parameters g (1) and g (2) . The black points represent the computed 
root macromodels at each stage of the iterative procedure. The gray points in the design space are used to 
verify the accuracy of the root macromodels interpolation, whereas the white ones are the points where new 
root macromodels will be computed. (a) Represents the initial sampling grid; (b,c) Show the evaluation of the 
parametric baseband macromodel at the center of the different subregions in the first and second iteration 
respectively; (d) illustrates the final sampling grid.
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The amplitude and frequency scaling coefficients introduced in Ferranti et al.24 perform well at bandpass for 
the modeling of microwave devices, but as we will explain, their modeling capabilities are significantly reduced 
when applied at the baseband for the representation of PICs. Photonic scattering parameters S

(

j(ωc +�ω)
)

 are 
typically defined in a narrow frequency band around the center frequency, i.e. ��ω� ≪ ωc . The compressed or 
expanded photonic scattering response S

(

β(jωc +�ω)
)

 is obtained by multiplying the Laplace variable s with 
the frequency scaling coefficient β . Now, suppose β = 1+ b with �b� ≪ 1 , then

with �ωc = bωc . Note that the second equation of (18) is obtained by neglecting the term b�ω . The above result 
implies that a scaled passband model, computed at terahertz frequencies, is capable of modeling large frequency 
shifts, but will perform poorly when used to represent PICs whose frequency response exhibits a large compres-
sion or expansion over the design space. Applying the same frequency transformation to the baseband CVF 
models modifies the scattering response Sl in a fundamental different way: While subject to a large compression 
or expansion, the scattering response Sl will show almost no frequency shift because ωc ≈ 0 . Now, since the scat-
tering parameters of passive PICs often contain a resonance behaviour that is controlled by one or more design 
parameters, the latter observation will substantially limit the modeling capabilities of the parametric baseband 
macromodel. To this end, we introduce the additional frequency shifting coefficient γk(g) and propose a para-
metric baseband macromodel of the form

The set of amplitude scaling αk(g�i
j ), j = 1 . . . ,M2 , frequency scaling βk(g�i

j ), j = 1 . . . ,M2 and frequency shift-
ing γk(g�i

j ), j = 1 . . . ,M2 coefficients required by the multilinear interpolation scheme (16) for the parameteriza-
tion of αk(g) , βk(g) and γk(g) respectively, are found by means of optimization, such that

Our experimental findings suggest to limit the range for γk(g�i
j ) to [−γ0, γ0] and set the frequency range for 

evaluation of the parametric macromodel during the sequential sampling as [fmin + γ0, fmax − γ0] . Here, fmin and 
fmax represent the optical frequency range for which the root macromodels are computed. This strategy ensures 
high accuracy of the frequency-shifted root macromodels across the entire bandwidth of the parametric macro-
model, i.e. [fmin + γ0, fmax − γ0] . Note that if j = k , it follows that αk(g�i

j ) = βk(g
�i
j ) = 1 and γk(g�i

j ) = 0 . Now, 
since the parametric baseband macromodel (19) can be considered as a linear combination of amplitude and 
frequency transformed state-space representations, it is possible to express the model (19) in state-space form.

with

The main advantage of the state-space form (21) is that it can be directly adopted for time-domain simulation. It 
should be noted though that the number of root macromodels used by the local interpolation scheme scales quad-
ratically with the dimension of the design space M. This means that, for devices with a dynamic and wideband 
frequency response that require root macromodels with a high number of poles, the state-space model (22) can 
accumulate a significant number of states in scenarios where the design space dimension is high. This, in turn, 
results in a large system of ODEs, leading to computationally expensive time-domain simulations and imposing 
restrictions on the applicability of the proposed methodology. Another challenge in higher dimensions is the 
generation of extensive chunks of EM data, which incurs significant computational costs. The curse of dimen-
sionality is a pervasive issue and an ongoing challenge in the domain of parametric macromodeling techniques.

Stability and passivity preserving interpolation of the transformation coefficients. The ampli-
tude and frequency scaled coefficients in Ferranti et al.24 are shown to preserve stability and passivity over the 
entire design space. However, these rational models represent bandpass scattering parameters with physical 
meaning: such scattering parameters have Hermitian symmetry with respect to positive and negative frequencies 
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and the corresponding impulse response is real-valued. Because passivity conditions are defined differently for 
real-valued linear bandpass systems than for their complex-valued baseband  equivalents22, which are the study 
of this work, it must be verified that a passive baseband system remains passive if an amplitude scaling coefficient 
α , frequency scaling coefficient β and frequency shifting coefficient γ are applied to it.

Following a similar approach as the one adopted in Ferranti et al.24 it is verified that the passivity conditions, 
as outlined earlier in this paper, are preserved when the root macromodels are modified with an amplitude and 
frequency scaling. It is easy to understand that if β(g�i

k ) ≥ 0 and α(g�i
k ) ≥ 0 , the first passivity condition is pre-

served. Since the multilinear interpolation kernel belongs to a special class of positive interpolators, it satisfies 
the following constraints

The second passivity condition, which ensures no energy is generated by the system, is equivalent to the condition 
�Sl(s)�∞ ≤ 1 ( H∞ norm), that is, the largest singular value of Sl(s) does not exceed one in the right-half complex 
plane. Now, since αk

(

g
)

 is parameterized according (16), we can write

Then, by imposing that αk(g�i
j ) ≤ 1/�Rl(s, g

�i
k )�∞, j = 1..M2 and using the properties of (23), it is possible to 

define an upper bound on αk
(

g
)

which we can use to show that

Therefore it follows that passivity is preserved if αk(g�i
j ) and βk(g�i

j ) satisfy 

 It is important to note that in Ferranti et al.24, α must be smaller than unity for passivity to hold, which is a stricter 
constraint than the condition proposed here. The amplitude coefficient is mainly introduced for the modeling 
of frequency responses that preserve their shape, but show different attenuation/gain over the design space. 
However, by restricting α to be smaller than one, a vertex root macromodel can only be accurately transformed 
into another vertex root macromodel along the direction of attenuation ( α ≤ 1 ). To overcome this limitation 
and to improve the modeling capability of the technique, the relaxed constrained (27a) is introduced. Since the 
infinity norm can be efficiently computed in scripting languages such Matlab or Python, the relaxed constraint 
will have minimal affect on the computational runtime.

The parameter γ is introduced in this paper for a more accurate and compact modeling of photonic scatter-
ing representations and it is responsible for a shift of the frequency response with respect to the Laplace variable 
s. When this transformation is applied to the amplitude and frequency scaled macromodel αk

(

g
)

Rl(sβk
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) , 
it results in a frequency shift of the singular values without affecting the infinity norm of the macromodel. As 
a consequence, it must follow that �αk
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)�∞ ≤ 1 . Thus, we can 
conclude that the modified CVF model, subject to amplitude, frequency scaling and frequency shifting trans-
formations, is guaranteed to be passive over the entire design space.

Stability and passivity preserving interpolation of root macromodels. Concerning the multilin-
ear interpolation of the root macromodels, the first passivity condition is always satisfied since it is imposed on 
the modified root macromodels used in the interpolation. Now, since the modified root macromodels are guar-
anteed to be passive over the entire design space, indicating that there infinity norm is less than one, i.e. 
∥
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thereby proving that the parametric baseband macromodel (19) is passive.

Wideband parametric baseband macromodeling
The proposed wideband parametric baseband macromodeling framework relies on the interpolation of a set of 
optimized root macromodels for the representation of photonic scattering parameters that depend on design 
variables (such as layout and substrate features). Following the sequential sampling  strategy39,40, the scattering 
parameters of the PIC are evaluated in the frequency range of interest for different points of a hyperrectangular 
grid in the design space. A fixed value of the optical carrier frequency fc , is used to shift the data samples to the 
baseband. Given the set of scattered data samples {(s, g)k , Sl(s, g)k}Ktot

k=1
 , the root macromodels are computed 

via CVF and their coefficients are refined through an optimization routine. Passivity of the root macromodels 
is checked, and, eventually enforced as a post-processing  step31. Finally, a multilinear interpolation scheme is 
adopted to parameterize the transformation coefficients and integrate the optimized root macromodels, leading 
to the construction of the parametric baseband macromodel (19).

The resulting parametric baseband macromodel can be used by standard optimization routines for fast and 
precise evaluation of the scattering response in the design space. Once a good parameter configuration is identi-
fied, the parametric baseband macromodel is evaluated and converted into the state-space representation (22), 
yielding a system of ODEs that can be solved in a wide range of simulators. Additionally, if we want to perform 
time-domain simulation at the optical carrier frequency fcs = fc +�fc , the poles at the diagonal entries of the 
matrix A (22), must be shifted by j2π�fc . The state-space representation (22) gives rise to a system of complex-
valued ODEs, which can only be simulated in solvers that support complex-valued signals and matrices. However, 
Ye et al.22 demonstrated that the complex-valued model (5) can be analytically transformed into a real-valued 
model, making it compatible with a broader range of simulators, such as Verilog-A. The same conversion method 
can be applied to the state-space representations presented in this work (22). Moreover, it’s important to note 
that SPICE-based solvers do not directly accept differential equations as input. For a detailed discussion on how 
to convert a CVF macromodel into an equivalent electrical network and how to simulate this equivalent circuit 
within a SPICE environment, the reader is referred to the author’s previous  work41. Note that we refer to mac-
romodels that combine the wideband macromodeling approach with the parametric macromodeling technique 
as wideband parametric baseband macromodels.

Numerical results
This section presents two application examples of the proposed modeling and simulation techniques. The scat-
tering parameters of the photonic circuits under study are evaluated via the Caphe circuit simulator (Luceda 
Photonics) and electromagnetic simulations in Lumerical FDTD Solutions (Ansys).

4-Channel arrayed waveguide grating. In this numerical example we discuss the time-domain simula-
tion of a 4-channel arrayed waveguide grating (AWG), used to separate four RF signals modulated on different 
optical carriers. The Layout of the AWG, comprising the input star coupler, the output star coupler and a bun-
dle of waveguides, is designed and simulated using the AWG Designer module from Luceda IPKISS. The star 
couplers of the AWG are simulated by computing the field output of the input apertures with CAMFR, Luceda’s 
eigenmode expansion tool, propagating it in the free propagation region, and performing mode overlaps to 
collect the fields at the output apertures. The delay lines are modeled as linear dispersive waveguides whereas 
dispersion in the star couplers is ignored and they are only simulated for a single wavelength. The final layout 
and transmission spectrum of the AWG is illustrated in Figs. 7 and 8 respectively. The primary source of cross-
talk in the AWG is imperfect imaging due to phase errors that arise from sidewall roughness: when the phases 
in the waveguides are not perfect, the image will be distorted and light gets coupled to other output waveguides. 
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Figure 7.  AWG: Layout and operation principle of the 4-channel AWG demultiplexing filter.
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In order to properly simulate this type of behaviour, the waveguide delay lines are modeled with phase errors 
corresponding to a stochastic linewidth variation of 2 nm in the iSiPP50G silicon photonics platform. The time-
domain cross-talk between the different channels is simulated using both the wideband baseband macromodel 
(11) and the reference CVF model (5) to verify the validity of the proposed modeling technique.

The in-phase component of the input port (P5) is excited with four on-off keying (OOK) signals 
ui(t), i = 1, .., 4 with optical carrier frequencies fci = 193.01 THz + i · 200 GHz, corresponding to the center 
wavelengths of the AWG channels. The 20 Gbs and 20 bit long PRBS signals are simulated in Keysight ADS and 
are passed to a Butterworth low-pass filter to have a 3-dB bandwidth of 400 GHz, matching the channel spacing 
of the filter. Note that this configuration closely matches the behavior of real-world communication systems, 
in which the modulator and driver electronics restrict the frequency range of the optical signals. The excitation 
signals are illustrated in Fig. 9. By opting for the OOK modulation scheme, the signal detection is incoherent 
which allows to simulate the cross-talk by simply adding up the signal power leaking from the different channels.

The scattering parameters of the device are evaluated in Luceda IPKISS over the frequency range 
[193.01; 194.01] THz. In this example, 1001 frequency samples are used, and they are uniformly distrib-
uted over the frequency range of interest. Next, the scattering parameters are shifted to baseband using 
fc = 194.51 THz . Following the CVF modeling procedure, a stable and passive CVF model is built with 24 
poles, leading to a maximum modeling error between the data and the model response below − 61 dB. Then, 
after conversion of the rational representation in the state-space model (5), the diagonal entries of the com-
plex-valued A matrix are shifted by −j2π�fc to obtain the wideband baseband macromodel (11), which can 
be used to perform time-domain simulation at any arbitrary optical carrier frequency in the range [193.01 + 
BWmod/2; 194.01 − BWmod/2 ]  THz, where BWmod is the modulation bandwidth. Considering the bandwidth 
of the OOK input signals is about 400 GHz, this means the wideband baseband macromodel can be used 
in the frequency range [193.21 ; 193.81]. In particular, the wideband baseband macromodel is evaluated for 
�fc = − 500GHz + i · 200GHz , yielding four state-space models that represent the AWG at its different wave-
length channels.

Next to the wideband baseband macromodel, which is valid over a broad frequency range, four reference 
CVF models with 14 poles and a BW of 400GHz are computed for each wavelength channel of the AWG. Note 
that this is done for comparison reasons. Because the reference CVF models have a smaller bandwidth than the 
wideband baseband macromodel, they require less poles to achieve the same accuracy, resulting in a smaller 
system of ODEs that is more efficient to simulate.

Once all CVF models are computed, transient simulation of the 4-channel AWG is performed by solving the 
systems of ODEs in Matlab using the lsim routine. To demonstrate the compatibility of the proposed technique 
with commercial photonic circuit simulators, the wideband baseband model (11) is also simulated in Caphe, the 
circuit simulator of Luceda photonics. All time-domain simulations are executed on a personal computer with 
Intel Core i7 processor and 16 GB RAM. The simulated total signal power and cross-talk at port 3 of the AWG are 
illustrated in Fig. 10. Note that the cross-talk at port 3 is identified as the signal power emanating from channels 1, 
2 and 4 distorting the demultiplexed signal transmitted over channel 3. Because the bandwidth of the electronic 
excitation signals is matched to the channel spacing of the filter, i.e. 400 GHz, the observed cross-talk is limited 
and it will still be possible to decode the detected bit sequence. The reflected signal power observed at the input 
port (P5) of the AWG is illustrated in Fig. 11. Taking a closer look at Fig. 11, it can be observed that the devia-
tion between the wideband baseband macromodel and the reference CVF model is of the order 10−5 while the 
signal is only of the order 10−4 . This significant deviation is the result of the modeling accuracy in the frequency 
domain, which was set to about − 60 dB and is relatively low for an accurate modeling of the S55 parameter with 
an average value of about − 45 dB. Table 1 summarizes the run time and accuracy of the different simulations. 
The accuracy of the wideband baseband macromodel, defined as the maximum absolute error with respect to 
the reference CVF model, is less than 8.0e−4 in Matlab and less than 5.8e−3 in Caphe, hence the conclusion 
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Figure 8.  AWG: Transmission spectrum of the 4-channel AWG demultiplexing filter.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

P
ow

er
 (W

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (ns)

0

0.01

0.02

0.03

0.04

0.05

P
ow

er
 (W

)

Figure 10.  AWG: The total signal power (top) and cross-talk (bottom) detected at port 3 of the AWG. The red 
line represents the simulation results obtained in Matlab with the reference CVF model, the blue dashed line 
and the green markers represent the simulation results obtained in Matlab and Caphe respectively, with the 
wideband CVF model.
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that simulation of the wideband baseband macromodel converges very well and yields accurate results in both 
environments. One challenge in embedding a state-space model with matrices A, B, C and D in a Caphe circuit 
model is that using a regular ODE solver for these types of matrices is not the most efficient. The lsim routine 
in MATLAB adopts the state propagation method, which has some ‘tricks’ to work with these matrices and is a 
much more efficient technique in terms of computational effort than regular ODE solvers (related to taking the 
exponent of a matrix, exp(A ∗ dt) ). Because of this reason, simulation of the state-space model in Caphe is less 
efficient and takes about ten times longer compared to solving the model with lsim.

Double ring resonator. The wideband parametric baseband macromodeling technique is used to model 
the scattering parameters of a 220 nm silicon-on-insulator (SOI) double ring resonator, comprising three direc-
tional couplers (DCs) connected by strip waveguides. The layout of the filter is illustrated in Fig. 12. A wideband 
parametric baseband macromodel is computed as a function of the varying gap between the waveguides of 
DC1 �s ∈ [166, 262] nm and the varying roundtrip length of the ring resonators L ∈ [313.3, 313.6]µm . The 
gap between the waveguides of the outer directional couplers is kept fixed at 550 nm over the frequency range 
[193.2, 193.6]  THz.

The scattering parameters of the DCs are simulated in Lumerical FDTD. To obtain reliable simulation results, 
a uniform mesh with mesh sizes of 50 nm, 3 nm and 50 nm in x, y and z directions, respectively, is selected. 
It should be noted that the mesh size determines both the accuracy and the computational cost of the FDTD 
simulations. Convergence tests however showed that the aforementioned configuration strikes a good trade-off 
between accuracy and computational efficiency. The waveguides on the other hand are modeled by their effective 
index neff  = 2.27, group index ng = 4.54 and losses α = 1.91 dB/cm. Using the Luceda design software, the scatter-
ing parameters of each component are then combined into a single overall S-matrix that describes propagation 
through the double ring resonator.

A consequence of the low-loss structure, whose scattering parameters have an infinity norm very close to 
one, and small errors in the FDTD simulations, due to effects such as staircasing and grid  dispersion42, is that 
the simulated scattering parameters show small-passivity violations. Though the Matlab toolbox implements 
routines for passivity enforcement, both the rate at which these algorithms converge and the size of the error 
resulting from the correction, depend on the degree of the passivity violations. Hence, to ease the computation 
of passive and accurate root macromodels, the passivity of the tabulated data is restored by truncating the vio-
lating singular  values43.

The wideband parametric baseband macromodel is computed as proposed earlier in this work. The baseband 
frequency shift is arbitrarily chosen ( fc = 193.41 THz ). A standard bottom-up approach is used to select the 
required number of poles. In order to achieve a model that is both compact and accurate, the error thresh-
old, adopted by the sequential sampling algorithm, is set to − 40 dB. Running the proposed algorithm in the 
aforementioned configuration, a wideband parametric baseband macromodel is built that consists of 74 root 
macromodels. Since the algorithm only considers the error at the center of the hyperrectangular subspaces, its 
effective accuracy, evaluated over a dense uniform 17× 17 grid, is slightly lower than the predefined − 40 dB, 
i.e. − 38.7 dB. It must be noted that the CPU time needed for the execution of the algorithm is small compared 
to the CPU time needed to generate the tabulated data. This is mainly due to the FDTD simulations which are 
very costly in terms of computation.

To demonstrate the necessity of the frequency shift coefficient in the wideband parametric baseband modeling 
framework, a second model is computed where the root macromodels are only modified by an amplitude and 
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Figure 11.  AWG: The reflected power at the input port (P5) of the AWG. The red line represents the simulation 
results obtained in Matlab with the reference CVF model, the blue dashed line and the green markers represent 
the simulation results obtained in Matlab and Caphe respectively, with the wideband CVF model.
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frequency scaling coefficient, i.e. a direct baseband adaptation of the scalable models in Chemmangat et al.39. 
The results obtained with both models are summarized in Table 2. While model 2, comprising a similar number 
of root macromodels as model 1, successfully manages to represent the dependency of the scattering parameters 
on �s , for reasons highlighted earlier in this paper, it fails to represent the varying center frequency of the filter 
controlled by the roundtrip length L, resulting in a poor accuracy.

Figure 13 shows the parametric behavior of the magnitude of S12 and S14 as a function of �s and frequency 
for L = 313.43µm . Similarly, Fig. 14 shows the magnitude of S12 and S14 as a function of L and frequency for 
634 nm . Figures 15 and 16 show the surface plots for Figs. 13 and 14, respectively. The sampling in the design 
space is illustrated in Fig. 17.

Now that we have computed the wideband parametric baseband macromodel, we can use it to optimize the 
spectral response of the photonic filter. The specifications for the bandpass filter are are expressed in terms of 
the scattering parameter S12

with f0 = 193.39 THz the center frequency of the filter. Translating the requirements (29) to baseband, they are 
combined into a single objective function g(�s, L, f )

with fl0 = f0 − fc . The objective function (30) is subsequently defined and minimized by means of the Matlab 
fmincon method. The optimization routine was able to finish in 5.6 s and performed 61 function evaluations to 
find that the parameter configuration resulting in the lowest objective value is �s = 622 nm and L = 313.537µm . 
By utilizing a wideband parametric baseband macromodel as a substitute for costly EM simulations, the evalu-
ation of the objective function is done very efficiently, resulting in a significant reduction of CPU time required 
for the optimization process. It is estimated that using a direct interface with the EM simulator would have 
resulted in a total CPU time of 302 h. It should be noted that this number might seem large compared to the 85 h 
required to build the parametric macromodel, as reported in Table 2. The reason is that the adaptive sampling 
algorithm adopted by the parametric macromodeling technique, takes samples on a rectangular grid, see Fig. 17. 
Now, since the scattering response of the entire double ring resonator is calculated by combining the frequency 

(29)
|S12| < − 20 dB for f0 − 12.5GHz < f < f0 + 12.5GHz

|S12| > − 0.1 dB for f0 − 100GHz < f < f0 − 12.5GHz

|S12| > − 0.1 dB for f0 + 12.5GHz < f < f0 + 100GHz

(30)
g(�s, L, f ) = 10max (20log10(|S12|),−20) for fl0 − 12.5GHz < f < fl0 + 12.5GHz

g(�s, L, f ) = max (20log10(|S12|),− 0.1) for fl0 − 100GHz < f < fl0 − 12.5GHz

g(�s, L, f ) = max (20log10(|S12|),− 0.1) for fl0 + 12.5GHz < f < fl0 + 100GHz

Table 1.  AWG: Performance metrics of the wideband CVF and CVF model of the 4-channel AWG.

Models Simulation time (s) Accuracy

Reference CVF (Matlab) 0.13 –

Wideband CVF (Matlab) 0.21 8.0e−4

Wideband CVF (Caphe) 3.24 5.8e−3

Figure 12.  DRR: Layout of the SOI double ring resonator.
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response of its building blocks, i.e. the directional couplers and waveguides, only 17 FDTD simulations, instead 
of 123, were necessary to build the parametric macromodel. However, the samples taken by the genetic optimizer 
in Matlab will lie scattered in the design space, and as a consequence one FDTD simulation is needed for each 
function evaluation, i.e. 67 in total, resulting in the reported computational run time of 302 h. The magnitude 
of the initial and optimized scattering parameter S12 is illustrated in Fig. 18. It is important to emphasize that 
the delta between the optimized response, computed via EM simulations, and the response generated with the 
wideband parametric baseband macromodel, is not a limitation of the proposed modeling technique but the 
result of numerical dispersion in the FDTD simulations.

To demonstrate that the wideband parametric baseband macromodel is suited for the time-domain charac-
terization of PICs, a transient simulation of the optimized filter response is performed. Setting �s and L equal 
to their optimized values, the parametric model is converted into a state-space model of the form (22) with 50 
poles. Because it is desired to characterize the filter at the center of its pass band, the diagonal entries of the A 
matrix are shifted by −j2π(f0 − fc) . A transient simulation is set up by exciting the input port P1 of the filter 
with the 10Gbaud/s 4-QAM signal depicted in Fig. 19. To verify the validity of (22), a compact state-space 
model (5) is built via the reference CVF technique. The reference CVF model, characterized by 11 poles and 
trained on the optimized scattering response computed via EM simulation, achieves an accuracy of − 49.6 dB. 
Figure 20 shows the transient output response of the in-phase and quadrature signals at the pass and drop port 
of the double ring filter obtained with the two models. The wideband parametric baseband macromodel (22) 
shows good convergence with the reference CVF model, and the overall error, averaged over time, is equal to 
9.4e−3. Again note that the primary source for this error is not the accuracy of the wideband parametric base-
band macromodel, but the numerical dispersion in the FDTD simulator. Additionally, the computational time 
required to simulate the model (22) is 0.6 s, while the reference CVF model only requires 0.06 s. It should be 
noted that the CPU time required to solve a system of ODEs directly scales with the number of poles, which, 
by construction, will always be higher for the parametric baseband macromodel. To demonstrate the compat-
ibility of the proposed modeling framework with various circuit simulators, the optimized macromodel is also 
simulated in Caphe and SPICE. For conversion of the CVF model to a SPICE-compatible netlist, we refer the 
reader to our previous  work41. Note that the poles of the state-space model must be shifted before building the 
equivalent electrical netlist. The computational time required to simulate the model (22) in Caphe and SPICE is 
2.41 s and 4.85 s respectively. The simulation in SPICE is less efficient, as it is a modified nodal solver and falls 
into the category of regular ODE  solvers41. As already highlighted in the previous example, the same can be said 
about Caphe’s ODE solver. While the SPICE and Caphe solvers are a bit slower, these environments offer the 
possibility to connect CVF models with active devices such as modulators and amplifiers, enabling designers to 
simulate dispersive circuits with a mix of passive/active components. Though this hasn’t been investigated yet, 
this will be the topic of future research.

Conclusion
This paper presented a wideband parametric baseband macromodeling technique for the representation of lin-
ear and passive photonic devices whose scattering parameters depend on design variables such as geometrical 
layout or substrate features. The analytic parameterization with respect to the optical carrier frequency allows 
the adoption of the model for the simulation of multi-wavelength systems. The proposed technique has several 
advantages over existing methods, including its ability to capture complex photonic phenomena such as disper-
sion, backscattering and wavelength-dependent effects, while preserving physical properties such as stability 
and passivity over the entire design space. Additionally, the baseband model can be converted into a state-space 
representation for efficient time-domain characterization. An alternative approach to the one proposed in this 
study involves breaking down a device into a collection of building blocks (such as directional couplers, wave-
guides, phase shifters, etc.) and developing a parametric macromodel for each of these individual components. 
This would enable users to construct more extensive and intricate circuits using these pre-evaluated primitives, 
potentially offering a more scalable solution, especially within the context of the foundry model. However, this 
strategy demands further investigation and will be explored as a topic for future research.

Table 2.  DRR: Comparison of the wideband parametric baseband model proposed in this work (Model 1) 
with the direct baseband adaptation of the scalable  models39 (Model 2).

Technique Wideband parametric baseband macromodeling Baseband scalable  macromodeling44

Frequency shift Yes No

Number of root macromodels 71 72

S-parameter evaluations 123 127

FDTD simulations (DC) 17 17

Accuracy (MAE) (dB) − 38.67 dB − 2.65

CPU time (s)

 Data generation 303,497 303,508

 Algorithm execution 1774 781
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Figure 13.  DRR: Magnitude of the S12 (top) and S14 (bottom) scattering parameters as a function of �s while L 
is fixed at 313.43µm . The blue line represents the simulated response while the red dashed line represents the 
response generated with the wideband parametric baseband macromodel.
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Figure 14.  DRR: Magnitude of the S12 (top) and S14 (bottom) scattering parameters as a function of L while 
�s is fixed at 634 nm . The blue line represents the simulated response while the red dashed line represents the 
response generated with the wideband parametric baseband macromodel.
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Figure 15.  DRR: Magnitude plot of the S12 scattering parameter as a function of �s for L = 313.43µm 
generated with the wideband parametric baseband macromodel.

Figure 16.  DRR: Magnitude plot the S12 scattering parameter as a function of L while for �s = 634 nm 
generated with the wideband parametric baseband macromodel.
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Figure 17.  DRR: Design space sampling; the black dots represent the root macromodels; the gray dots 
represent the parameter combinations for which the wideband parametric baseband model has been evaluated 
by means of EM simulation.
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Figure 18.  DRR: Magnitude of the S12 scattering parameter before and after the optimization.
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