
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Impact of phase modulation on the
performance of photonic delay-based
reservoir computing with
semiconductor lasers

Ian Bauwens, Krishan Harkhoe, Peter Bienstman, Guy
Verschaffelt, Guy Van der Sande

Ian Bauwens, Krishan Harkhoe, Peter Bienstman, Guy Verschaffelt, Guy Van
der Sande, "Impact of phase modulation on the performance of photonic
delay-based reservoir computing with semiconductor lasers," Proc. SPIE
12143, Nonlinear Optics and its Applications 2022, 121430L (25 May 2022);
doi: 10.1117/12.2626778

Event: SPIE Photonics Europe, 2022, Strasbourg, France

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Dec 2022  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Impact of phase modulation on the performance of photonic
delay-based reservoir computing with semiconductor lasers

Ian Bauwensa, Krishan Harkhoea, Peter Bienstmanb, Guy Verschaffelta, and Guy Van der
Sandea

aApplied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium

bPhotonics Research Group, Department of Information Technology, Ghent University-IMEC,
Technologiepark Zwijnaarde 126, 9052 Ghent, Belgium

ABSTRACT
In photonic reservoir computing, semiconductor lasers with delayed feedback have been used to efficiently solve
difficult and time-consuming problems. The injection of data in these systems is often performed optically into
the reservoir. Based on simulations, we show that the performance depends heavily on the way that information
is encoded in this optical injection signal. In the simulations, we compare various input configurations consisting
of Mach-Zehnder modulators and phase modulators for injecting the signal. We observe far better performance
in our results, see also [Bauwens et al, Opt. Express 30, 13434 (2022)], on a one-step ahead time-series prediction
task when modulating the phase of the injected signal rather than only modulating its amplitude.
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1. INTRODUCTION
In our current technological society, we are becoming increasingly able to process and analyze information using
machine learning.1 The concept of reservoir computing (RC) within this machine learning field offers a simple, yet
powerful technique to use recurrent networks for computing. RC systems have shown good performance in various
benchmark tasks, such as speech recognition,2–4 non-linear channel equalization5 or time-series predictions.6–8

An RC system consists of a large recurrent neural network with fixed interconnections. Its topology can be
described in three separate components: an input layer, the reservoir, and an output layer. In the input layer,
the data is injected into the system and is sent to the reservoir, which consists of a recurrently connected network
of non-linear nodes (i.e. neurons). The processed information is then sent to the output layer, where the output
weights are optimized to match the output with a corresponding target output. The optimization of weights, and
thus the training phase, occurs only in the output layer, whereas the internal weights of the reservoir itself are
not altered. This makes training much more straightforward compared to other artificial neural networks (such
as deep artificial networks, that also require training of the network’s internal nodes) and simplifies reservoir
computing in its implementation. Interesting implementations of RC systems can be found in the emerging field
of neuromorphic photonics. The advantages of using photonic systems are abundant, ranging from a low-energy
consumption, high-speed performance and the possibility of high inherent parallelism.9,10

There already exist several successful implementations of photonic RC systems, e.g. based on a network of passive
elements or semiconductor optical amplifiers,11–14 by using a diffractive optical element coupled to a network
of vertical cavity surface emitting lasers15 or by using excitable photonic systems (also referred to as spiking
systems).16,17 In this paper, we focus on a single mode semiconductor laser with delay-based RC.5,18–23 The
injection of input data into this reservoir can be performed via several methods. The input data can e.g. be
injected electronically by direct modulation of the injection current.24 In this work, however, we will focus on
optically injected data, which has the advantage of allowing higher data injection rates.25 This latter method can
be performed by modulating the phase of the injected electric field by using a phase modulator or by modulating
the amplitude of the electric field.19,26–29 Although these various injection schemes will have an effect on the
final performance of RC, their influence on RC performance has not yet been studied and compared in detail. In
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this work, we numerically investigate the effect of the optical data injection configurations on the performance
of delay-based reservoir computing system.30

2. NUMERICAL IMPLEMENTATION OF RESERVOIR COMPUTING
2.1 Delay-based reservoir computing
Semiconductor lasers with delayed feedback rely on a time-multiplexing approach to implement reservoir com-
puting.19 This delay-based technique has been implemented in several types of electronic or photonic reser-
voirs.19,21–23 Fig. 1 shows the topology of a photonic delay-based RC using a single mode semiconductor laser
as non-linear node, which will be studied in this paper, and consists of an input layer, reservoir and output layer.
In the input layer, we optically inject the discrete input data uk, with k the index of the data sample, via an
input configuration which we will vary in this work. Due to the time-multiplexing, we need to make use of a
preprocessing mask m(t) before injecting the input data into the reservoir. In this paper, this mask is created
by randomly choosing N values, from following 5 sublevels:

[
0, 1

4 ,
1
2 ,

3
4 , 1

]
. The mask is kept piecewise constant

over the randomly selected sublevels, with each interval having a duration θ, the node separation. This piecewise
constant segment is then repeated such that the mask is periodic with period Nθ, with N the number of virtual
nodes in the system. The injection of the input samples uk is handled numerically in the following procedure.
Every data sample is first stretched to a time interval equal to Nθ resulting in a piecewise constant continuous
signal u(t). Subsequently, we multiply this signal u(t) with the mask m(t) resulting in a masked data signal S(t).
After multiplying this masked data signal with an amplitude (and possibly a bias), it is sent to the reservoir.

The reservoir itself consists of a semiconductor laser (SL) with optical feedback with a delay τ . Note that in
this paper, we assume τ and the period of the mask matched, i.e. τ = Nθ. A mismatch between these two can
be introduced, as in e.g. Ref.,5,31–33 which can improve the performance of RCs. However, in this work, we do
not consider such a mismatch here for simplicity. The reason for this is that the value of such a mismatch would
need to be scanned to further optimize performance. This improvement in performance is expected to be equally
applicable to any of the systems which we consider here and would not change the relative differences between
them. After the signal passes through the reservoir, the output state, A, is sent to the output layer. The RC’s
output is then calculated as a linear combination of the node states using (trained) output weights w.9,18

Reservoir Output layer

τ

θ

SL

· · ·
y = Aw

Input layer

uk

Input config

m(t)

Figure 1: Illustration of a delay-based RC system using a semiconductor laser (SL), with input data uk, mask
m(t), nodal separation θ and delay time τ . The light blue circles represent the virtual nodes and the output
layer is defined by the reservoir output A and output weights w.

We use the intensity of the nodes as output of the reservoir. We can find the output weights w corresponding
to the N nodes of the reservoir in the training phase. In order to achieve this, we use the output of the RC
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system A, which represents the node responses to the training input data, and the expected target data ytrain.
In practice, the weights w can be retrieved by minimizing the squared error Esq(w) between the predicted value
for the target data ŷtrain and the expected target data points ytrain.

We have used the real Moore–Penrose pseudoinverse (denoted by the symbol †)

w = A†ytrain. (1)

Because of the presence of internal noise in the reservoir, we do not use any regularization methods. Once the
weights have been found in the training phase, we test how the RC performs on unseen data, which is referred to
as the testing phase. In order to quantify this performance, we use the normalized mean squared error (NMSE)
between the expected output ytest and predicted output ŷtest, unless indicated differently.

2.2 Numerical implementation of our RC system and the input configurations
The delay-based RC system with a single-mode semiconductor laser as non-linear node, can be accurately modeled
using rate-equations34

dE(t)

dt
=

1

2
(1 + iα)ξn(t)E(t) + ηE(t− τ)e−iΩ0 τ + F̃β + µEinj(t) (2)

dn(t)

dt
= ∆J − n(t)

τc
−

[
g + ξn(t)

] ∣∣E(t)
∣∣2 , (3)

where E(t) and n(t) are the complex valued electric field of the laser and the excess amount of available carriers
(both dimensionless). α represents the linewidth enhancement factor, and ξ and g the differential gain and
threshold gain. Parameters η and µ are the feedback rate and the injection rate. ∆J represents the excess pump
current rate, and is defined as ∆J = Ithr∆I/e, where Ithr is the threshold pump current, e the elementary charge
and ∆I the dimensionless pump current excess, ∆I = (I − Ithr)/Ithr. We use a single feedback phase, which
is not varied in our work, Ω0 τ = 0. F̃β represents complex Gaussian white noise to simulate the spontaneous

emission noise strength. F̃β has a zero mean and autocorrelation equal to < F̃ (t)F̃ (t′)∗ >= β/τc δ(t− t′), where
β controls the spontaneous emission noise and where τc is the carrier lifetime. Furthermore, the input data
is injected through an optical input signal Einj(t) with the same wavelength as the free running laser, i.e. the
injection frequency detuning is therefore equal to zero and not varied in this work. Following previous work
in Ref.,35 we have chosen a value of 20 ps as the standard value for the node separation.26 Table 1 contains a
summary of the parameters of above equations, with their respective standard values. Unless stated otherwise,
we keep these parameters fixed to their standard value.

In Fig. 2, we show the different input configurations which we have considered and which were numerically imple-
mented in the input layer of Fig. 1. The first configuration is shown in Fig. 2(a) and consists of a Mach-Zehnder
modulator (MZM), which is used to modulate the output beam of a semiconductor laser using the masked data.
The second configuration uses only a phase modulator to inject the data, as shown in Fig. 2(b). The optical
input signal Einj(t) generated by each of the input configurations shown in Fig. 2 is subsequently sent to the
reservoir.

In order to simulate the injection of data in Eq. (2), we specify the term Einj(t):

Einj(t) =

 ϵ
(
e

i
2BMZM (t) + e−

i
2BMZM (t)

)
for balanced MZM (4)

ϵ̃ eiBPM (t) for PM (5)

The terms Bj(t) (j ∈ {MZM,PM}) represent the masked time-dependent modulator signal which is used as
input for the different input configurations of the RC system. These terms are directly related to the voltages
Vj(t) in Fig. 2 through Bj(t) = πVj(t)/(2Vπ), where Vπ is the voltage that results in a π phase-shift in the
arms of the modulators. Note that the injected intensity |Einj(t)|2 in Eq. (4) is time-dependent, while this is
not the case for Eq. (5). Therefore, we have replaced ϵ by ϵ̃ in Eq. (5), such that we can set the time-averaged
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Table 1: Parameters, and their respective values, which are used in the simulations, unless stated otherwise.

Parameter Symbol Standard value

Amount of virtual nodes (i.e. neurons) N 200

Node separation θ 20 ps

Linewidth enhancement factor α 3

Threshold gain g 1 ps−1

Differential gain ξ 5 ×10−9 ps−1

Spontaneous emission noise factor β ≈ 100

Carrier lifetime τc 1 ns

Threshold pump current Ithr 16mA

Excess pump current rate ∆J 1.02× 105 ps−1

Feedback rate η 7.8 ns−1

Injection rate µ 98.1 ns−1

Amplitude of injected field ϵ 100

Feedback phase mismatch Ω0 τ 0

Modulation amplitude of MZM AMZM
π
2

Bias voltage of MZM ΦMZM
π
4

Modulation amplitude of PM APM Variable

Bias voltage of PM ΦPM 0

MZM

SL

VMZM,1(t) VMZM,2(t)

(a)

Einj(t)

PM

SL

VMZM,1(t)

VPM(t)

(b)

Einj(t)

Figure 2: Illustrations of the different input configurations which are used to optically inject the input data
uk, starting from the beam emitted by a semiconductor laser (SL): the balanced MZM only (a) and the phase
modulator (b), with their corresponding voltages Vj(t).

energy in Einj(t) equal for all configurations. This ϵ̃ factor is calculated as the product of ϵ and the time average
of the modulus of Einj(t), as present in Eq. (4) and allows for a fair comparison between the different input
configurations.

We define the modulator signal Bj(t), corresponding to input configuration j, from the masked data signal Sj(t)
using an amplitude Aj and bias Φj ,

Bj(t) = Aj Sj(t) + Φj . (6)
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In order to compare our results for tasks which have different ranges for their input data, we will introduce in
our discussions the range of Bj , marked by ∆Bj .

For the simulations of our delay-based RC system we numerically integrate the rate-equations (2)-(3), with the
input configurations defined in Eqs. (4)-(5).30

3. NUMERICAL RESULTS
3.1 RC performance on Santa Fe task for different input configurations
In order to compare the performance of the different input configurations, we use a one-step ahead time-series
prediction task. The input dataset used for this task is the Santa Fe dataset, which consists of just over 9000 data
points sampled from a far-IR laser in a chaotic regime.36 The goal is to find the input configuration which results
in the lowest error, and thus the best performance for this particular task with the given reservoir parameters.
Typical values for the NMSE for the Santa Fe one-step ahead predictions via simulations of RC systems are
around 0.01.26,37

We have taken the first 3000 data samples from the discrete Santa Fe dataset, utrain
k , where k ∈ {1, . . . , 3000},

as the training set in the RC system. As test set utest
k , we have taken the next 1000 data samples, as done in

Ref.38 Before injecting the signals, all of the Santa Fe data was normalized over the whole dataset, so that for
both training and testing, uk ∈ [0,1]. We have repeated each numerical experiment 10 times, each with different
mask realizations, from which we calculate the average NMSE and its standard deviation. We use the standard
deviation as the error bars in subsequent figures.

If we consider a balanced MZM as input configuration, we find an NMSE = 0.134 ± 0.044. This result is in
agreement with typical NMSE values found in literature.26,37 This is shown in Fig. 3, where we show the NMSE
versus the total range of the phase modulator signal ∆BPM for different input configurations. In this figure, we
have indicated the performance of the balanced MZM as a horizontal line.

We observe that for the input configuration consisting of a PM that the NMSE initially decreases when increasing
∆BPM , then reaches an optimal point (lowest) and again increases for larger ∆BPM .

0 2
3
2

2
Total range of modulator signal BPM

10 2

10 1

NM
SE

Balanced MZM
PM

Figure 3: NMSE in function of the total range ∆BPM of the phase modulator signal for one-step ahead prediction
of Santa Fe data.

As we achieve a large improvement by adding a phase modulator, the question can be raised whether an MZM
is required at all to obtain good RC performance. Ultimately, this allows for a simpler input configuration that
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only uses a phase modulator. We observe in Fig. 3 that the input configuration where only a PM is used results
in the best mean NMSE for the given reservoir. This shows that by replacing the MZM with a PM for the input
configuration, and thus reducing the complexity of the input system, an improved performance can be achieved.

In Fig. 3, we observe that the lowest NMSE values occur for input configurations with PMs around the broad
range of ∆BPM = π

2 to ∆BPM = π. Therefore, we achieve an improvement in the performance within this large
∆BPM range. This optimal NMSE can be explained by two factors. For small ∆BPM (around π

4 ), the system is
limited by noise that obstructs the masked data, so that it becomes difficult for the system to distinguish noise
from different sublevel mask values. For large ∆BPM , the phase modulated signal will stand to wrap on itself.
Both of these phenomena will have a negative effect on the achieved performance and explain the existence of
the optimal range in the modulator signal range ∆BPM .30

4. CONCLUSION
We have numerically investigated the effect of modulating the phase when optically injecting data, with the goal
of improving delay-based reservoir computing with semiconductor lasers. Using a phase modulator to inject the
signal into the reservoir, with a well-chosen modulation amplitude, resulted in an improved performance compared
to literature. We therefore conclude that modulating the phase of the injected signal strongly increases the
performance of optical reservoir computing for the one-step ahead prediction Santa Fe task, both performance-
wise as well as in simplicity for implementation.
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