
Nanophotonics 2022; aop

Research Article

Ian Bauwens*, Krishan Harkhoe, Peter Bienstman, Guy Verschaffelt and Guy Van der Sande

Transfer learning for photonic delay-based
reservoir computing to compensate parameter
drift
https://doi.org/10.1515/nanoph-2022-0399
Received July 12, 2022; accepted October 6, 2022;
published online October 18, 2022

Abstract: Photonic reservoir computing has been demon-
strated to be able to solve various complex problems.
Although training a reservoir computing system is much
simpler compared to other neural network approaches,
it still requires considerable amounts of resources which
becomes an issue when retraining is required. Transfer
learning is a technique that allows us to re-use information
between tasks, thereby reducing the cost of retraining.
We propose transfer learning as a viable technique to
compensate for the unavoidable parameter drift in experi-
mental setups.Solving thisparameterdriftusually requires
retraining the system, which is very time and energy
consuming. Based on numerical studies on a delay-based
reservoir computing systemwith semiconductor lasers, we
investigate the use of transfer learning to mitigate these
parameter fluctuations. Additionally, we demonstrate that
transfer learning applied to two slightly different tasks
allows us to reduce the amount of input samples required
for training of the second task, thus reducing the amount
of retraining.

*Corresponding author: Ian Bauwens, Applied Physics Research
Group,VrijeUniversiteitBrussel, Pleinlaan2, 1050Brussels,Belgium,
E-mail: ian.bauwens@vub.be. https://orcid.org/0000-0002-8562-
6437
Krishan Harkhoe, Guy Verschaffelt and Guy Van der Sande, Applied
Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050
Brussels, Belgium, E-mail: krishan.harkhoe@vub.be (K. Harkhoe),
guy.verschaffelt@vub.be (G. Verschaffelt),
guy.van.der.sande@vub.be (G. Van der Sande). https://orcid.org/
0000-0002-4188-0505 (K. Harkhoe). https://orcid.org/0000-0002-
6291-0646 (G. Verschaffelt). https://orcid.org/0000-0002-6724-
2587 (G. Van der Sande)
Peter Bienstman, Photonics Research Group, Department of Informa-
tion Technology,GhentUniversity-IMEC, TechnologieparkZwijnaarde
126, 9052 Ghent, Belgium, E-mail: peter.bienstman@ugent.be.
https://orcid.org/0000-0001-6259-464X

Keywords: feedback; optical injection; photonic reservoir
computing; semiconductor lasers; transfer learning.

1 Introduction
With the tremendously fast growth of the amount of
information in our digital age, we are becoming ever
increasingly reliable on machine learning to analyze this
large quantity of information [1, 2]. Currently, this is typi-
cally performed on digital hardware. However, due to the
breakdownofMoore’s law [3], there is considerable interest
to resort to analog systems to perform the computations
required for machine learning. One example of such a
machine learning strategy, suited for analog machines,
is reservoir computing (RC). Reservoir computing systems
were originally based on recurrent neural networks and
consist of a large amount of nodes with random but fixed
interconnections. An RC system is generally divided in
three separate layers: an input layer, a reservoir layer and
an output layer. The input layer is used to inject the data
into the reservoir. In the reservoir layer, the data will be
processed in a complex, non-linear dynamical system and
sent through to the output layer. In this output layer, linear
weights are used to calculate the reservoir’s output. These
weights are optimized during the training phase. Note that
the internalweightsof the reservoir itself arenotbeingopti-
mized and remain constant during training. This results in
RC systems being very simple to train and makes them
very time and energy efficient. RC systems have so far been
successfully applied to several tasks, including non-linear
channel equalization [4], time-series predictions [5–7] and
speech recognition [8–10]. In this work, we implement
a reservoir computing system by using opto-electronic
components. These opto-electronic systems offer several
advantages, including fast information processing rates
combined with low energy consumption [11, 12]. However,
a problem with the physical implementations of photonic
reservoir computing systems is their parameter drift during
operation. For example, varying roomtemperatures lead to
temperature-induced internal length differences. This will

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/nanoph-2022-0399
mailto:ian.bauwens@vub.be
https://orcid.org/0000-0002-8562-6437
mailto:krishan.harkhoe@vub.be
mailto:guy.verschaffelt@vub.be
mailto:guy.van.der.sande@vub.be
https://orcid.org/0000-0002-4188-0505
https://orcid.org/0000-0002-4188-0505
https://orcid.org/0000-0002-6291-0646
https://orcid.org/0000-0002-6291-0646
https://orcid.org/0000-0002-6724-2587
https://orcid.org/0000-0002-6724-2587
mailto:peter.bienstman@ugent.be
https://orcid.org/0000-0001-6259-464X

2 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

lead to a difference in the feedback phase and ultimately
results in a loss of performance, which we want to avoid
as much as possible. Several publications have investi-
gated the effects of these influences, including possible
techniques to counteract this. This can for example be
done by actively adapting the length changes of a coherent
linear Fabry–Perot resonator using a control loop [13],
reducing the noise sensitivity of the RC performance by
improving the pre-processing of data in the input layer [14]
or by expanding the output layer to improve performance
[15]. However, further improvements are possible, which
is why there is considerable interest in developing other
approaches. In this paper, we numerically explore the use
of a novel learning paradigm introduced in [16], referred to
as transfer learning, applied to photonic reservoir comput-
ing. This technique builds upon the conventional training
method and tries to enhance it by reusing information
gained from previous training procedures and applying
this informationwhentrainingondifferent,but still similar
problems. It offers the advantage of being able to find
weights with a minimal amount of required retraining for
the new problem. In this numerical study, we apply this
transfer learning technique to photonic delay-based RC
systems with semiconductor lasers.

This paper is organised as follows. Section 2 gives a
short introductionondelay-basedreservoir computingand
discusses the numerical model that we use to implement
this RC system. In Section 3, we introduce and discuss
two training methods: conventional training and transfer
learning. In Section 4, we compare the RC performance
when using transfer learning and conventional training.
In Section 5, we investigate whether transfer learning can
be used to mitigate influences of small changes in the
feedback phase of the RC system on the performance of
the RC itself. In Section 6,we investigate the use of transfer

learning whenmultiple parameters are varied, namely the
injection rate, feedback rate and excess pump current.
Section 7 gives a conclusion of the previous results of the
paper.

2 Numerical implementation of
delay-based reservoir computing
using semiconductor lasers

In this paper, we use a reservoir computing system based
on semiconductor lasers (SL) with delayed feedback [17].
Various typesofphotonicorelectronic reservoir computing
systems have already been realized using this delay-based
technique [17–20]. In Figure 1, we show the structure of
our RC system. It is composed of three layers: the input
layer, the reservoir layer and the output layer. The input
layer consists of a semiconductor laser coupled with an
unbalanced Mach–Zehnder modulator which optically
injects input samples into the reservoir layer. Before the
data is injected into the reservoir, the input samplesarefirst
encoded via a mask m(t). The reservoir layer consists of a
single-mode semiconductor laser (SL) with delayed optical
feedback with a delay length 𝜏. The time trace of the light
intensity emitted by the SL ismeasured by a photodetector
after the reservoir layer. This time trace is thensampledand
used in the output layer, where the weights are calculated.
This procedure is explained in further detail in Sections 3.1
and 3.2 [11, 21].

The numerical simulations for our delay-based RC
system are based on the following rate-equations [22]

dE(t)
dt = 1

2 (1+ i𝛼)𝜉N(t)E(t)+ 𝜂E(t − 𝜏)e−i𝜙FB

+ F̃𝛽 (t)+ 𝜇Einj(t) (1)

Figure 1: Illustration of a delay-based RC
system using a semiconductor laser (SL).
SL 1 drives the system and SL 2 is used
to simulate the reservoir. A mask m(t) is
used to encode the input data sample uk,
which is optically injected into the reservoir
using a Mach–Zehnder modulator (MZM).
Also shown here is the node separation
𝜃 and delay time 𝜏. The virtual nodes are
represented by the light blue circles and the
predicted target data by ŷk.

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 3

dN(t)
dt = ΔI

e − N(t)
𝜏c

−
[
g + 𝜉N(t)

]||E(t)||2, (2)

with E(t) the complex valued slowly-varying amplitude
of the electric field of the laser and N(t) the excess
amount of available carriers, both of which are dimen-
sionless parameters. 𝜉 and g represent the differential
gain and threshold gain of the laser. 𝛼 is the linewidth
enhancement factor. 𝜂 and 𝜇 are the feedback rate and
the injection rate parameters. ΔI∕e is the excess pump
current rate normalized with the elementary charge, with
ΔI = I − Ithr and where I is the injected pump current
and Ithr the threshold pump current. 𝜙FB is the feedback
phase. Complex Gaussian white noise is added to the
system by F̃𝛽 (t) to model spontaneous emission noise,
with

⟨
F̃𝛽 (t)

⟩
= 0 and

⟨
F̃𝛽 (t)F̃𝛽 (t′)∗

⟩
= 𝛽∕𝜏c 𝛿(t − t′). In

this term, the spontaneous emission noise strength is
controlledby𝛽 and the carrier lifetime is representedby 𝜏c.
The data injection is performed optically by Einj(t), where
its slowlyvaryingenvelope isgivenbyEinj(t) = 𝜖

(
1+ eiB(t)

)
.

This injection occurs on the same frequency as the free
running laser so that the injection frequency detuning
is zero and remains constant in this work [23]. 𝜖 is the
amplitude of the injected electric field, and B(t) represents
the injected data signal,

B(t) = A S(t)+Φ, (3)

with A and Φ the modulation amplitude and bias, origi-
nating from the Mach–Zehnder modulator. S(t) is defined
as

S(t) = m(t)∗
∑
k
uk𝛿(t − k𝜏), (4)

with ∗ the convolution operator, uk the k-th input sample
from a total of n input samples, 𝛿 the Dirac delta function
and m(t) the mask. Because we use delay-based reservoir
computing with delayed optical feedback, we first have to
time-multiplex the input data. This is performed by using
themaskm(t), so that every input sampleuk is injected into
the reservoir for a given time length. The mask consists of
a piecewise constant function, with sublevels randomly
selected from 5 values: [0,0.25,0.5,0.75, 1]. These sub-
levels are kept piecewise constant with a duration equal
to the node separation, 𝜃, so that the total duration of
this mask is equal to the number of virtual nodes, N,
multiplied with the node separation 𝜃. Every input data
sample is injected for duration equal to the mask length,
N𝜃, duringwhich this input data sample ismultipliedwith
the mask, resulting in a masked input signal. The node
separation 𝜃 and delay length 𝜏 are also held constant in
all simulations.We use here values 𝜃 = 20 ps and 𝜏 = 4 ns
that have proven toworkwell for our laser basedRC system

Table 1: Parameters, together with their respective values, used in
the simulations. Parameters marked with ∗ can be different from
given values, when stated.

Parameter Symbol Standard value

Amount of virtual nodes N 200
Node separation 𝜃 20 ps
Linewidth enhancement factor 𝛼 3
Threshold gain g 1 ps−1
Differential gain 𝜉 5 × 10−9 ps−1
Spontaneous emission noise factor 𝛽 ≈102
Carrier lifetime 𝜏c 1 ns
Threshold pump current Ithr 16 mA
Excess pump current rate∗ ΔI

e 1.02 × 105 ps−1

Feedback rate∗ 𝜂 7.8 ns−1
Injection rate∗ 𝜇 98.1 ns−1
Amplitude of injected field 𝜖 100
Feedback phase∗ 𝜙FB 0
Modulation amplitude of MZM A 𝜋

2
Bias voltage of MZM Φ 𝜋

4

[24]. These parameter values lead to the number of virtual
nodes being equal to 200. In this paper, we have opted to
choose the period of the mask equal to the delay length
𝜏, so that 𝜏 = N𝜃. This is done purely out of simplicity,
even though an improved performance can be foundwhen
we introduce a small mismatch in the mask length [25].
A summary of all used parameters can be found in Table 1,
which are taken from [23].

3 Training procedures
In this section, we explain the two different training
proceduresweuse in this paper: conventional training and
transfer learning.

3.1 Conventional training procedure
We obtain the output weights w corresponding to the N
nodes of the reservoir in the training phase, where the
training is performed off-line. To this aim, we use the nor-
malized state matrix,A, of the RC system and the expected
data, y. Because the input samples are time-multiplexed
in the input layer, we have to de-multiplex the output,
represented by the light intensity |E(t)|2 measured by a
photodetector at the output of SL 2. This de-multiplexing
is performed by sampling the intensity time trace at every
𝜃 time interval for each input data sample. The N sampled
intensities are stored in the columns ofA, which is done for
all the input samples, stored in the rows ofA. The resulting

4 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

matrix is referred to as the state matrix Awith dimensions
(n × (N + 1)), where n andN represent the number of input
samples and the number of nodes of the RC system. In this
matrix an additional bias node has been added in order to
account for a possible offset in the data. The state matrix
can be used to find the weights w for the N nodes of the
reservoir and the additional bias node, to match with the
expected data samples y. This is performed using a least
squares minimization and results in predicted values for
the data samples ŷ, which we want to make as close to y
as possible. In matrix notation, this translates to

ŷ = Aw. (5)

These weights dictate the scaling of the individual
nodes of the RC network for the state matrixA. In practice,
theweightsw canbe calculatedbyminimizing the squared
error between the predicted value for the data samples ŷ,
resulting from the matrix multiplication in Eq. (5), and the
expected data samples y. The practical implementation of
this can performed by calculating the real Moore–Penrose
pseudoinverse (denoted by the symbol †) for Eq. (5):

w = A†y. (6)

This previous equation can be simplified even further
bymaking use of the fact that the statematrix contains the
light intensity and is thus real-valued, so that

w =
(
ATA

)−1ATy. (7)

Once the weights have been calculated in the training
phase, we test how the RC performs on unseen data, which
is referred to as the test phase. In order to quantify this
performance, we use the normalized mean squared error
(NMSE) between the expected output y and predicted
output ŷ.

NMSE(ŷ, y) =

⟨(
y− ŷ

)2⟩
⟨
(y− ⟨y⟩)2

⟩ . (8)

3.2 Transfer learning procedure
The concept of transfer learning builds upon the conven-
tional training of weights, explained in Section 3.1. The
main advantage transfer learning offers is that when we
have already performed training on a particular task, we
can reuse this information for different, but still similar
tasks. Therefore, a key difference is that instead of one
general training dataset, we now have two different train-
ing datasets, referred to as the training source and training
target dataset. The training source dataset 


contains

the information of the first task, of which we assume

here to have a lot of information, i.e. many data samples.
The training target dataset 


contains information of

the second task, which is similar to the first task, and
typically contains fewer data samples than the training
source dataset. This could be due to an inherently limited
amount of data on the task or becausewewant tominimize
the required amount of training due to energy or time
constraints.

We follow [26] in order to implement the transfer
learning, which can be summarized as follows. One starts
byfinding theweights corresponding to the training source
dataset, as explained in Section 3.1 and which results in
the training sourceweightswS. Theweights for the training
target dataset are expected to be similar to those of the
trainingsourcedataset, becauseboth tasksare similar, and
therefore will only require a small correction. The training
target weights are therefore defined as

wT = wS + 𝛿w, (9)

such that the expected target data yT is estimated by the
predicted target data ŷT , using the state matrix for the
target dataset AT ,

ŷT = AT(wS + 𝛿w). (10)

Insteadofdefining the squarederror functionbetween
the predicted target data ŷT and expected target data yT ,
the L2 regularized version of the squared error function is
defined as

Esq(𝛿w) =
(
ŷT − yT

)2 + 𝜇 𝛿w2, (11)

where the parameter𝜇∈ [0,+∞] is defined as the transfer
rate.1 This transfer rate dictates the amount of information
transferred from the training source to the training target
domain and needs to be scanned for optimal performance.
Minimizing Eq. (11) to 𝛿w results in an expression2 for the
correction weights 𝛿w:

𝛿w =
(
AT
TAT + 𝜇I

)−1(AT
TyT − AT

TATwS
)
, (12)

with I the identity matrix of size N + 1.
The use of transfer learning thus allows one to com-

bine the information gained from two different datasets,
via the transfer rate 𝜇, so that an optimized performance
can be achieved by varying this single parameter.

1 Not to be confused with the injection rate 𝜇.
2 Note that the subscriptXT relates here to the training target dataset,
while the superscript XT refers to the transpose of X.

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 5

4 Results: transfer learning applied
to different tasks

To illustrate the benefits of transfer learning to photonic
reservoir computing, we apply this technique to two tasks.
For thefirst task,we simulatedata fromtwoLorenz systems
with different parameter values, as is done in [26]. For
both Lorenz systems, we sample one of their coordinates
to obtain the input samples for the RC system. The data of
one of the other spatial coordinates of both Lorenz systems
functions as the data samples we want to compute. This
allowsus to investigatewhether transfer learningcan reuse
information from one Lorenz system to another Lorenz
system with slightly different parameter values.

In thesecond task,wearestillworkingwith twoLorenz
systems with different parameter values but now we want
to quantify the performance of transfer learning when we
limit the amount of input data samples for the training
target dataset.

4.1 Predicting coordinates of Lorenz system
The first task is related to the Lorenz system of ordinary
differential equations:

dx
dt = 𝜎(y − x)+ 𝜁x(t), (13)

dy
dt = x(𝜌− z)− y + 𝜁y(t), (14)

dz
dt = xy − 𝛽z + 𝜁z(t), (15)

where we fix the parameters 𝜎 = 10 and 𝛽 = 8∕3. The
task we want to solve with our RC system consists of
inferring one of the three coordinates, z(t), from one of the
other coordinates, x(t). We simulate two Lorenz systems,
for identical initial conditions (x(0) = y(0) = z(0) = 1) but
with different 𝜌 parameters and different simulation times.

Both Lorenz systems include Gaussian noise for each
spatial coordinate, respectively, 𝜁 x(t), 𝜁 y(t) and 𝜁 z(t), with
ameanofzeroandstandarddeviationof0.25.The resulting
x-, y- and z-coordinates are normalized to a maximum
value of 1.

We integrate the two systems using an Euler scheme
with a time step dt = 0.01. The training source dataset



consists of 104 samples of the x-coordinate of the Lorenz
system where 𝜌 = 28 together with the corresponding 104

input samples of the z-coordinate. The sampling of the x-
and z-coordinates occurs at the same sampling period as
the time steps used during simulation. The samples of the
x-coordinate are then the input samples of the RC and from
the RC output we want to infer the corresponding samples
of the z-coordinate. Likewise, the training target dataset



and test dataset consist of 5 × 103 and 2 × 103 data

samples of the x- and z-coordinate of the Lorenz system
where𝜌 = 42.After simulation,wediscard thefirst 10 input
samples of all three datasets in order to remove the effects
of possible transients occurring when switching between
datasetswith the RC system. Figure 2 shows the time traces
for the x- and z-coordinates of the Lorenz systems with
different 𝜌 parameters.

These input samples are then injected in anRCsystem,
resulting in three statematrices (for training sourcedataset
dataset, for training target dataset and test dataset). By
using different 𝜌 parameters for the input data, we are
effectively changing the task, while still using the same RC
system.

Figure 3 shows the NMSE on the test dataset for
𝜌 = 42 as a function of the transfer rate 𝜇 when we train
on various datasets conventionally (without any transfer
learning) and with transfer learning. We distinguish three
different cases for conventional training, using only the
training source dataset 


(shown in purple), using only

the training target data 

(shown in red) or using a

combined dataset of both the training source dataset and

Figure 2: Time traces of the two Lorenz
systems with noise, where 𝜎 = 10, 𝛽 = 8∕3
and with different 𝜌 (for the x-coordinate,
top figure, and for the z-coordinate, bottom
figure).

6 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

Figure 3: NMSE as a function of the transfer rate 𝜇 for predicting a Lorenz system with noise with different 𝜌 parameter, and comparison to
conventional training.

training target dataset (shown in green). In these three
cases, we use the weights found during training and apply
these during testing, as explained in Section 3.1. All three
cases result in horizontal lines in Figure 3, because no
transfer learninghasbeenappliedand the results therefore
do not depend on the transfer rate 𝜇. The NMSE values for
the three horizontal lines in Figure 3 can be understood
conceptually. When we apply conventional training on
only the training source dataset, we have a large amount
of training samples available, but test on a different Lorenz
system (with𝜌 = 42 insteadof𝜌 = 28). The resultingNMSE
is the highest compared to the other two horizontal lines.
When we use conventional training on only the training
target dataset, we have the smallest amount of training
samples available, but they correspond to the same Lorenz
system as the test dataset (both 𝜌 = 42), which results in
the best NMSE out of the three horizontal lines. If we,
however, train on a combined dataset of both training
source and training target datasets, we have the largest
dataset available of the three cases, and would mainly
expect thebestperformance.This isnot thecase,because it
contains data of amix of two Lorenz systemswith different
𝜌 parameters. This results in an NMSE which is situated
between the previous two cases.

Wecan improve the total performanceof theRCsystem
by controlling the amount of information transferred from
the training source dataset 


to the training dataset



, by using transfer learning. We show the NMSE in

the case where we apply transfer learning, and scan the
transfer rate (shown in blue dots) in Figure 3. We observe

that when we apply transfer learning, we have an NMSE
for 𝜇→ 0 corresponding to the horizontal line when we
only train on training target data. For 𝜇→ +∞, the NMSE
will correspond to the horizontal line where we train
conventionally on only the training source dataset. These
two extreme regimes of the transfer rate can be explained
as follows. For very low transfer rates (𝜇→ 0), Eq. (11)
will reduce to a least square minimization on the training
target dataset. This results in no information transfer from
the training source dataset to the training target dataset,
thus reducing the training to the conventional RC training
on the training target dataset. If the transfer rate becomes
very large (𝜇→ +∞), the regularizing term of Eq. (11) will
becomethedominant factor, resulting in𝛿wbecomingvery
small. This implies thatweaddno correction to theweights
found from the training source dataset, thus transferring
no information from the training target dataset to the
weights.

For𝜇 values between these two extreme cases, we find
that around 𝜇 ≈ 10−2 there exist a minimum in the NMSE,
after which the NMSE increases drastically to a maximum
value. This global NMSE minimum, around 𝜇 ≈ 10−2,
indicates that there exists an optimal transfer rate 𝜇 for
which the NMSE is the lowest compared to all other cases,
and which thus results in the best performance. At this 𝜇
value, the information from both the training source and
training target dataset is combined optimally to achieve
the lowest NMSE. Ultimately, Figure 3 shows that transfer
learning results in at least the same NMSE as conventional
training, and in general a lower NMSE, for these tasks

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 7

where we are able to combine information and fine-tune
the transfer rate𝜇. Themainadvantageof transfer learning
lies in the fact that when we already have previously
trained on a similar dataset (the training source dataset



), we are able to use this information and are able to use

fewer data samples for a new dataset (the training target
dataset


). Thismeans that less trainingwouldneed tobe

performed and results in a computational speed increase.
This will be investigated in Section 4.2.

4.2 Influence of training target dataset size
In order to investigate the influence of the size of this train-
ing target dataset


, we again predict the z-coordinate of

anormalizedLorenzsystemwithnoiseby thex-coordinate,
butwherewewill nowchange theamountof training target
data samples. In order to incorporate transfer learning, we
take the state matrix of two different Lorenz systems, one
which functions as training source dataset (where 𝜌 = 28)
and another which functions as training target and test
dataset (where 𝜌 = 42). For the training source and test
dataset, we fix the amount of samples, respectively, to 104
and2 × 103,whilewechangeand iterateover theamountof
training target samples. After simulation,we again discard
thefirst 10 input samples to take intoaccount the transients
which can occur when switching between datasets. For
every training target size we perform a scan for the value
of the transfer rate 𝜇 which results in the lowest NMSE, as
demonstrated in Section 4.1, in order to achieve the most
optimal performance per training target dataset size.

The top panel of Figure 4 shows the NMSE for predict-
ing the z-coordinates of a Lorenz system where 𝜌 = 42,
as training target and test datasets, using information
of a Lorenz system where 𝜌 = 28, as training source
dataset. This is calculated with both the transfer learning
technique, where we use the optimal information transfer

from training source to training target dataset, and for
conventional training, where we only train on the training
target dataset and do not use the training source dataset.
For every training target dataset size, we have calculated
the mean and standard deviation for 7 different iterations,
where we have used a different mask m(t) for every
iteration.

We find that the transfer learning method, at optimal
𝜇, has a lower NMSE for all training target dataset
sizes compared to the conventional training method. This
corresponds to the results in Section 4.1. As expected,
we observe that for both training techniques the NMSE
decreaseswith increasingamountof training targetdataset
samples. If the training target dataset becomes small, the
NMSE of the conventional training increases drastically,
whereas the NMSE for transfer learning remains fairly
small. This canbe explainedby the fact that for the transfer
learning case, we already have plenty of information
gained from the training sourcedataset. This is not the case
for the conventional training method, where the training
target dataset is the only training dataset available. The
decreases in NMSE with increasing size of the training
target dataset continue to a training target dataset size
of around 2 × 103 data samples, from where the NMSE
saturates to a quasi constant value.

The bottom panel of Figure 4 shows the values of
the most optimal transfer rate 𝜇 found for each of the 7
iterations per size of the training target dataset. It demon-
strates that for increasingsizeof the training targetdataset,
the most optimal transfer rate 𝜇 gradually decreases. This
is in agreement with the observations found in Figure 3,
where we show that small 𝜇 values correspond to giving
more importance to the training target dataset. This is also
the case here, if we have a large training target dataset
available. Figure 4 demonstrates that instead of retraining

Figure 4: Mean and standard deviation of
NMSE as a function of the training target
dataset size for predicting the coordinates of
Lorenz systems with different 𝜌 parameters,
using transfer learning or conventional train-
ing on the training target dataset (top figure).
The most optimal values for the transfer rate
𝜇 are also shown (bottom figure). In both
figures, 7 different masks choices of the RC
system are used in the calculations of the
mean and standard deviation.

8 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

the RC system with a large training target dataset, we
can instead reuse already trained weights from another
training source dataset combined with transfer learning.
For example, we only have to use 1.5 × 103 training target
samples combined with already trained weights from a
training source dataset, to achieve the same NMSE as
conventionally training on a training target dataset of
around 2.5 × 103 samples.

5 Results: mitigating influence of
feedback phase changes on
performance of Santa Fe task

Any experimental setup is subject to variations of its
internal system parameters, which can be induced by
different effects during operation. For example, in our
delay-based RC system a change in temperature can lead
to a change in the optical length of the delay line. This
eventually results in a fluctuating feedback phase, which
leads to a worsening of the performance of the reservoir
computing system. Typically, the temperature is controlled
by thermoelectric cooling (e.g. using Peltier elements).
However, very small changes in the feedback phase can
still occur, which is why we investigate the use of transfer
learning to mitigate performance worsening due to these
effects.

Instead of varying the task, which we have done in
Sections 4.1 and 4.2, we can instead look into varying the
internal RC parameters itself. We thus study if it is possible
to compensate for the shift in the feedback phase by
applying transfer learning. We try to use transfer learning
to quickly calculate the weights, i.e. with a small amount

of input samples in the training target dataset used for
retraining.

In order to quantify the performance of the RC setups,
with varying feedback phase, we choose a one-step ahead
prediction task on a time-series used frequently in litera-
ture. The used input dataset is the Santa Fe dataset, which
consists of 9093 data samples. This dataset is recorded
using a far-IR laser in a chaotic regime [27].

In order to investigate the influence of the feedback
phase on the performance, we inject – as input data – the
first 3010 normalized data samples of the discrete Santa
Fe time-series into the RC system. The task is to predict
sample k + 1 when data up until sample k is injected. This
results in the state matrix A which we use for calculating
weights during the training phase. As test dataset, we use
the following 1010 data samples of the Santa Fe time-series
after the training dataset, with a 10 data sample break,
which we also inject into the RC system. After simulation,
we discard for both the training and test datasets the first
10 samples to remove any effects of transients occurring
fromswitchingdatasets.Weperforma scanof the feedback
phase of the RC system, with 𝜙FB ∈ [0, 2𝜋], in order to find
the most optimal feedback phase for the RC system. This
optimal feedback phase is defined as the feedback phase
for which we achieve the best performance, i.e. the lowest
NMSE.

Figure 5 shows the NMSE as a function of the feedback
phase 𝜙FB for the one-step ahead prediction of the Santa
Fe time-series. In the top right a zoom is shown of the plot
near its minimum NMSE. Simulations of RC systems with
𝜙FB = 0 typically result in NMSE values around 0.01 and
0.02 for the Santa Fe one-step ahead predictions, which
agrees with the values found in Figure 5 [14, 24].

In Figure 5, we find that the performance of our RC
system on this task is very sensitive to the feedback phase

Figure 5: NMSE as a function of the feedback
phase of the RC system, for one-step ahead
prediction of Santa Fe data, with a zoomed in
plot in the top right corner.

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 9

𝜙FB. Feedback phases between 𝜙FB ∈ [3𝜋∕2, 2𝜋] result
in the best NMSE, while feedback phases outside this
range perform rather poorly, with higher NMSE. We find
that a value for the feedback phase around 𝜙FB ≈ 5.68
corresponds to the lowest NMSE. Therefore, we use this
feedback phase as the most optimal feedback phase for
our RC systems.

Having found the most optimal feedback phase, we
again inject the first 3010 data samples of the normalized
Santa Fe time-series into our RC system, which has a
constant feedback phase 𝜙FB,S = 5.68. The resulting state
matrix AS corresponds to the training source response



. In order to apply transfer learning, we need to

define a training target response 

. This training target

response is defined as the state matrix AT resulting from
injecting the first 510 data samples of the normalized Santa
Fe time-series into our RC system, but with a different
feedback phase 𝜙FB (where 𝜙FB,T ∈ [5.70, 5.71, 5.72, 5.73]).
The values for these feedback phases are small deviations
from themost optimal feedback phase, with themaximum
deviation only being 0.5%. In a similar fashion, we define
the test response as the next 1010 data samples, with a
10 sample break, after the training source data samples of
the same time-series, for the same feedback phase 𝜙FB as
for the training target response. After simulation, we again
discard the first 10 samples of the responses to remove any
effects of transients occurring from switching responses.

Figure 6 shows the NMSE corresponding to the differ-
ent training schemes. It shows the performance when we
conventionally train on only the training target response
(in red), on only the training source response (in purple),
on a combined response of both training source and
training target data (in green) and when training on the
optimal RC system (with the same optimal feedback phase
𝜙FB,S = 5.68 for the training response as the test response).
This last NMSE is used as the reference NMSE value,
because it corresponds to the best NMSE value we can
expect, since the 𝜙FB of the RC system is optimal and
identical for both the training and test response. All of the
previously mentioned NMSE values do not vary with the
transfer rate 𝜇, since no transfer learning has been used.
The training scheme where we apply transfer learning
between the training source and training target response
(shown with blue dots) varies with the transfer rate 𝜇.

These results are shown in Figure 6 for the four
investigated feedback phases 𝜙FB,T of the training target
response. The feedback phases closest to the optimal
𝜙FB,S have a better NMSE when performing conventional
training on only the training source response compared to
conventional training on only the training target response.

This is the case for Figure 6(a) and (b), where the feedback
phase of the training source system is similar to that of
the training target system. However, when the feedback
phase of the training target response 𝜙FB,T is too different
from that of the training source response 𝜙FB,S, training
on the training source response results in a large NMSE,
surpassing that of the situation when the RC is trained
on the training target response. This result can be seen
in Figure 6(c) and (d). This again shows that the value of
the feedback phase for the training target response is very
sensitive for the performance of the RC, which was already
indicated by Figure 5.

The performance of conventional training on a com-
bined response consisting of both the training source
and training target response is also shown in Figure 6
for all four cases. This combined response can therefore
be seen as a response for which the feedback phase
has changed during the experiment. It contains the most
amount of data samples, in total 3500 samples. Training
conventionally on this combined response always results
in better performance when compared to purely training
conventionally on either the training source or training
target response. However, we are able to improve this per-
formance by introducing transfer learning, which controls
the information transfer between both training source and
training target responses.

We observe in Figure 6 that, similar to Figure 3, for
small𝜇wehave thesituationcorresponding toconvention-
ally training only on the training target response. When
𝜇 is further increased, the NMSE will decrease until an
optimal 𝜇 value is found. At this optimal transfer rate,
around 𝜇 ≈ 102 to 𝜇 ≈ 1, all four figures of Figure 6 show a
minimumvalue for theNMSE.Thispointcorresponds to the
most optimal transfer rate of information between training
source and training target response and thus results in the
best performance using both responses. For large 𝜇, the
situation is similar to training on only the training source
response. This is to be expected, and is also described in
Section 4.1.

From Figure 6, we observe that if we start from the
optimal feedback phase 𝜙FB,S, and there is a small drift in
the feedback phase, that retraining using transfer learning
is the best option. This is due to a better performance than
conventional training on only the training target response
and also because it is more time and energy efficient
than conventional training on the combined response of
the training target and training source response. We also
observe that if 𝜙FB,T is strongly different from 𝜙FB,S, we do
not get good performance from transfer learning. This is
in agreement with the results of Figure 5, where we have

10 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

(a) (b)

(c) (d)

Figure 6: NMSE as a function of the transfer rate 𝜇, using a training source response with 𝜙FB,S = 5.68 and four training target responses
originating from different RC systems: 𝜙FB,T = 5.70 (a), 𝜙FB,T = 5.71 (b), 𝜙FB,T = 5.72 (c) and 𝜙FB,T = 5.73 (d).

shown that achieving a good performance for these phases
is simply not possible.

We have investigated the effect of phase variations in
the feedback term and found that the performance quickly
deteriorates when this parameter is changed, even with
small variations.We found that transfer learning is slightly
able to limit this worsening in performance, but only
within a limited percentage from the optimal value for the
feedback phase. We thus conclude that transfer learning
can only be used when confronted with small changes in
the feedback phase of delay-based photonic RC systems. In
the next section, we investigate the performance when the
RC system is retrained using transfer learning when three
other parameters are varied. These parameters have less
influence on the performance of the RC systems, compared
to the feedback phase, and are investigated for larger
parameter variations.

6 Results: mitigating influence of
multiple parameter variations on
performance of Santa Fe task

In this section, we investigate the performance of RC
systems when they are retrained using transfer learning,
and when three parameters are varied: the injection rate

𝜇, the feedback rate 𝜂 and the excess pump current rate
ΔI∕e.

The injection of Santa Fe data is identical to the
procedure described in Section 5, with the only difference
that instead of varying the feedback phase, we vary the
injection rate, the feedback rate and the excess pump
current rate. The optimal values for these three parameters
are defined in Table 1 (denoted here as 𝜇opt, 𝜂opt,ΔIopt∕e)
and are used for creating the state matrix AS. We again
define the training target response 


as the state matrix

AT resulting from injecting normalized Santa Fe samples
into our RC system, but with different values for 𝜇, 𝜂
and ΔI∕e. The values for these three parameters are
defined as x𝜇opt, y𝜂opt, zΔIopt∕e where (x, y, z) are three
random numbers drawn from a Gaussian distribution
with a mean of 1 and standard deviation given by 𝜎.
This 𝜎 dictates the amount of deviation from the optimal
values of 𝜇opt, 𝜂opt,ΔIopt∕e, and is varied over 20 different
values ranging between 0.01 and 0.20. For every 𝜎, we
repeat the simulation 10 times, and thus with 10 different
(x𝜇opt, y𝜂opt, zΔIopt∕e) combinations. This implies that for
each 𝜎, we repeat the experiment multiple times, and are
thus able to achieve a better statistical result. As defined in
Section 5, the test response is also created using the same
parameters as for the training target response.

For each of the 10 iterations, we perform a scan for
the value of the transfer rate which results in the lowest

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 11

NMSE. This is done in order to achieve the most optimal
performance for every iteration. Figure 7 shows the NMSE
for the one-step ahead prediction of the Santa Fe dataset.
In this figure, we show themedian and interquartile range,
calculated over the 10 different parameter combinations,
each with identical mask. This is done for the case when
we use transfer learning with the training source and
target response, at themost optimal transfer rate (in blue),
and when we conventionally train on the training target
response (in red). As a reference value, we also show
the performance without any deviations (i.e. 𝜎 = 0) in
the RC’s parameters where we conventionally train on the
training source response, at the optimal values for the
three parameters (in dark green). Additionally, we show
the results when we inject the entire source input samples
into the RC system with the same parameter combination
as the test response, andconventional trainon thisdataset.
These results are shown for various 𝜎 (in light green) and
represent the best possible results. We use the median
and interquartile range, instead of the mean and standard
deviation, to show the spread of the NMSE since they are
less influenced by large outliers of the NMSE.

Figure 7 shows that the median NMSE is consistently
lower when using transfer learning compared to conven-
tional trainingon the training target response, as shownby
the blue line always being below the red line. The median
when using transfer learning remains aroundNMSE≈0.03
for𝜎 ⪅ 5%, whereas for conventional training on the target
response we typically obtain NMSE ≈0.05. This should be
compared with the best possible result of the NMSE being
around ≈0.02 for conventional training. This is referred
to as the best result for conventional training, as it uses
3000 data samples in an RC system which has the same
parameter combinationas the test set for its training source
response, as opposed to only 500 samples for the training

target response. Thismeans that these best possible results
correspond to fully retraining the system, which is very
time-intensive and we thus want to avoid, while with
transfer learning we only partially retrain the system.

In Figure 7, we observe that the median NMSE for
transfer learning and conventional training increase when
𝜎 increases. The increase of the median NMSE with 𝜎 is,
however, not monotone in both cases due to the fact that
only 10 random iterations are used for the calculation of
themedian. Therefore, it is possible that certain parameter
combinations were chosen, even at increased 𝜎, where
a good performance, and thus low NMSE, is found (e.g.
around 𝜎 = 8%). However, we observe that for transfer
learning, the increaseordecrease inmedianNMSEwith𝜎 is
also present for the conventional learning case. This canbe
explained by the fact that the medians are calculated with
the same parameter combinations of 𝜇, 𝜂 and ΔI∕e. This
implies that awell-performingparameter combinationwill
lead to a good NMSE, for both the transfer learning case
and conventional learning case.

Additionally, the interquartile range is also smaller,
with slightly lower NMSE, when using transfer learning,
indicating that transfer learning is able to improve the
performance of RC systems. However, for both cases,
the fluctuations for the interquartile range increase with
increasing parameter deviation. This can be explained
by the fact that for increasing 𝜎, the probability of
having parameter combinations which result in a poor
performance increases, due to the larger parameter devia-
tions. Due to these fluctuations, we limit the applicability
of transfer learning to around parameter deviations of
𝜎 ≈ 10%, as the NMSE becomes too large for higher 𝜎.

Finally, we conclude that transfer learning can be
used for parameter deviations of 𝜇, 𝜂 and ΔI∕e up to
𝜎 ≈ 10%, where a lower NMSE is found when compared

Figure 7: Median and interquartile range of
NMSE as a function of the deviation from
the optimal parameters of injection rate,
feedback rate and excess pump current rate,
for one-step ahead prediction of Santa Fe
data. 10 different parameter combinations
are used for the calculations of the median
and interquartile range, where the same
mask is reused for every realization.

12 | I. Bauwens et al.: Transfer learning for photonic delay-based RC

to conventional training on the training target response,
and where the fluctuations in NMSE remain small.

7 Conclusions
In this work, we have numerically investigated the appli-
cation of a novel training scheme, transfer learning,
for delay-based reservoir computing with semiconductor
lasers. With transfer learning, one is able to control the
information transfer between two training sets, a training
source and training target dataset, by controlling the trans-
fer rate parameter, 𝜇. This allows one to combine previous
information and reuse previously foundweights, resulting
in less training data being required in the training target
dataset. We have found that by using transfer learning,
we are able to increase the performance on predicting
coordinates of a Lorenz system with different parameters,
even with relatively small training data available on that
target Lorenz system.We have also investigated how small
this training target dataset can be made and still result
in improved performance compared to conventionally
training on a training target dataset, when predicting
the behaviour of a Lorenz system. We have found that
using transfer learning with only 1.5 × 103 training target
samples, combined with 104 training source samples,
have the same performance as conventionally training on
2.5 × 103 samplesas training targetdataset.Sincewedonot
have to retrain the weights corresponding to the training
source dataset, this implies that ultimately we have to
perform less retrainingwhen theweights corresponding to
the training source dataset are already available. Finally,
we have also investigated the possibility of using transfer
learning to compensate for the worsening of reservoir
computing performance by parameter variations. In order
to study this, we have first looked into the effect of changes
in the feedback phase of the reservoir computing systems.
We are able to update the weights – originally obtained
at the optimum feedback phase 𝜙FB – when the feedback
phase drifts by using a limited amount of training target
samples combined with transfer learning. By training on a
reservoir computing system at the most optimal feedback
phase, we were able to mitigate, to a certain degree,
this performance worsening for slightly varying feedback
changes. If we, however, use transfer learning when
confrontedwith parameter deviations of the injection rate,
feedback rate and excess pump current rate, we were able
to achieve better results, up to large parameter deviations.
Therefore,we conjecture that transfer learning canbeused
to enhance the performance of other photonic RC systems,
which are also suffering from internal parameter drift.

Author contributions: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: This research was funded by the
Research Foundation Flanders (FWO) under grants
G028618N, G029519N and G006020N. Additional fund-
ing was provided by the EOS project “Photonic Ising
Machines”. This project (EOS number 40007536) has
received funding from the FWO and F.R.S.-FNRS under the
Excellence of Science (EOS) programme.
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References
[1] F. Rider, Scholar and the future of the research library,

New York, Hadham Press, 1944.
[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,

2016. Available at: http://www.deeplearningbook.org.
[3] G. E. Moore, ‘‘Cramming more components onto integrated

circuits, Reprinted from Electronics, volume 38, number 8,
April 19, 1965, pp.114 ff.,’’ IEEE Solid-State Circuits Society
Newsletter, vol. 11, no. 3, pp. 33−35, 2006..

[4] Y. Paquot, F. Duport, A. Smerieri, et al., ‘‘Optoelectronic
reservoir computing,’’ Sci. Rep., vol. 2, no. 1, pp. 1−6, 2012..

[5] H. Jaeger and H. Haas, ‘‘Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless
communication,’’ Science, vol. 304, no. 5667, pp. 78−80,
2004..

[6] E. S. Skibinsky-Gitlin, M. L. Alomar, E. Isern, M. Roca,
V. Canals, and J. L. Rossello, ‘‘Reservoir computing hardware
for time series forecasting,’’ in 2018 28th International
Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS), IEEE, 2018, pp. 133−139.

[7] D. Canaday, A. Griffith, and D. J. Gauthier, ‘‘Rapid time series
prediction with a hardware-based reservoir computer,’’
Chaos: An Interdiscip. J. Nonlinear Sci., vol. 28, no. 12,
p. 123119, 2018..

[8] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van
Campenhout, ‘‘Isolated word recognition with the liquid state
machine: a case study,’’ Inf. Process. Lett., vol. 95, no. 6, pp.
521−528, 2005..

[9] M. Reza Salehi, E. Abiri, and L. Dehyadegari, ‘‘An analytical
approach to photonic reservoir computing−a network of
SOA’s−for noisy speech recognition,’’ Opt. Commun.,
vol. 306, pp. 135−139, 2013..

[10] D. Verstraeten, S. Benjamin, and D. Stroobandt,
‘‘Reservoir-based techniques for speech recognition,’’ in The
2006 IEEE International Joint Conference on Neural Network
Proceedings, IEEE, 2006, pp. 1050−1053.

[11] G. Van der Sande, D. Brunner, and M. C. Soriano, ‘‘Advances
in photonic reservoir computing,’’ Nanophotonics, vol. 6,
no. 3, pp. 561−576, 2017..

[12] T. F. De Lima, B. J. Shastri, A. N. Tait, M. A. Nahmias, and P. R.
Prucnal, ‘‘Progress in neuromorphic photonics,’’
Nanophotonics, vol. 6, no. 3, pp. 577−599, 2017..

http://www.deeplearningbook.org

I. Bauwens et al.: Transfer learning for photonic delay-based RC | 13

[13] R. Alata, J. Pauwels, M. Haelterman, and S. Massar, ‘‘Phase
noise robustness of a coherent spatially parallel optical
reservoir,’’ IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 1,
pp. 1−10, 2019..

[14] M. C. Soriano, S. Ortín, D. Brunner, et al., ‘‘Optoelectronic
reservoir computing: tackling noise-induced performance
degradation,’’ Opt. Express, vol. 21, no. 1, pp. 12−20, 2013..

[15] J. Pauwels, G. Van der Sande, G. Verschaffelt, and S. Massar,
‘‘Photonic reservoir computer with output expansion for
unsupervized parameter drift compensation,’’ Entropy, vol.
23, no. 8, p. 955, 2021..

[16] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, ‘‘A survey of
transfer learning,’’ J. Big Data, vol. 3, no. 1, pp. 1−40,
2016..

[17] K. Harkhoe, G. Verschaffelt, A. Katumba, P. Bienstman, and
G. Van der Sande, ‘‘Demonstrating delay-based reservoir
computing using a compact photonic integrated chip,’’ Opt.
Express, vol. 28, no. 3, pp. 3086−3096, 2020..

[18] M. C. Soriano, S. Ortín, L. Keuninckx, et al., ‘‘Delay-based
reservoir computing: noise effects in a combined analog and
digital implementation,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 2, pp. 388−393, 2014..

[19] H. Toutounji, J. Schumacher, and P. Gordon, ‘‘Optimized
temporal multiplexing for reservoir computing with a single
delay-coupled node,’’ in The 2012 International Symposium
on Nonlinear Theory and its Applications (NOLTA 2012),
2012.

[20] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, ‘‘High-speed photonic reservoir

computing using a time-delay-based architecture: million
words per second classification,’’ Phys. Rev. X, vol. 7, no. 1,
p. 011015, 2017..

[21] L. Appeltant, M. C. Soriano, G. Van der Sande, et al.,
‘‘Information processing using a single dynamical node as
complex system,’’ Nat. Commun., vol. 2, no. 1, pp. 1−6, 2011..

[22] D. Lenstra and M. Yousefi, ‘‘Rate-equation model for
multi-mode semiconductor lasers with spatial hole
burning,’’ Opt. Express, vol. 22, no. 7, pp. 8143−8149,
2014..

[23] K. Harkhoe and G. Van der Sande, ‘‘Delay-based reservoir
computing using multimode semiconductor lasers: exploiting
the rich carrier dynamics,’’ IEEE J. Sel. Top. Quantum Electron.,
vol. 25, no. 6, pp. 1−9, 2019..

[24] R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. Van der
Sande, ‘‘Fast photonic information processing using
semiconductor lasers with delayed optical feedback: role of
phase dynamics,’’ Opt. Express, vol. 22, no. 7, pp.
8672−8686, 2014..

[25] F. Stelzer, A. Röhm, K. Lüdge, and S. Yanchuk, ‘‘Performance
boost of time-delay reservoir computing by non-resonant
clock cycle,’’ Neural Netw., vol. 124, pp. 158−169, 2020..

[26] M. Inubushi and S. Goto, ‘‘Transfer learning for nonlinear
dynamics and its application to fluid turbulence,’’ Phys. Rev.
E, vol. 1024, p. 043301, 2020..

[27] A. S. Weigend and N. A. Gershenfeld, ‘‘Results of the time
series prediction competition at the Santa Fe Institute,’’ in
IEEE International Conference on Neural Networks, IEEE, 1993,
pp. 1786−1793.

	1 Introduction
	2 Numerical implementation of delay-based reservoir computing using semiconductor lasers
	3 Training procedures
	3.1 Conventional training procedure
	3.2 Transfer learning procedure

	4 Results: transfer learning applied to different tasks
	4.1 Predicting coordinates of Lorenz system
	4.2 Influence of training target dataset size

	5 Results: mitigating influence of feedback phase changes on performance of Santa Fe task
	6 Results: mitigating influence of multiple parameter variations on performance of Santa Fe task
	7 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

