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Abstract: Photonic reservoirs are machine learning based
systems that boast energy efficiency and speediness.
Thus they can be deployed as optical processors in fiber
communication systems to aid or replace digital signal
equalization. In this paper, we simulate the use of a
passive photonic reservoir to target nonlinearity-induced
errors originating from self-phase modulation in the fiber
and from the nonlinear response of the modulator. A 64-
level quadrature-amplitude modulated signal is directly
detectedusing the recentlyproposedKramers–Kronig (KK)
receiver. We train the readout weights by backpropagating
through the receiver pipeline, thereby providing extra
nonlinearity. Statistically computed bit error rates for fiber
lengths of up to 100 km fall below 1 × 10−3 bit error rate,
outperforminganoptical feed-forwardequalizer asa linear
benchmark. This can find applications in inter-datacenter
communications that benefit from the hardware simplicity
of a KK receiver and the low power and low latency
processing of a photonic reservoir.

Keywords: Kramers–Kronig receiver; nonlinearity mitiga-
tion; photonic reservoir computing.

1 Introduction
Machine Learning (ML) models are ubiquitously used for
solving problems across research areas. Often however,
powerful models are limited due to their difficult training
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and high power consumption. Recurrent Neural Networks
(RNNs), for example, feature feedback connections that
make them well-suited for temporal problems but com-
plicate their training. To this end, Reservoir Computing
(RC) has emerged as an alternative for training RNNs [1].
Rather than considering a fully trainable RNN, as seen
in Figure 1, the reservoir consists of randomly weighted
connections that are left unchanged during training. Only
the outer layer weights, collectively known as the readout,
are optimized. While RC has fewer free parameters during
training, it remains strongly capable of solving machine
learning tasks. Moreover, these weights can be found by
solving a convex linear function, circumventing the need
for iterative methods.

Reservoirs are also advantageous for non-digital com-
puting [2] where physical systems are used as computing
substrates. This form of alternative computing is gaining
considerable momentum, driven partly by the faltering
performance of the conventional Von Neuman structures
when training neural networks [3]. A reservoir can be
created from a dynamic system by defining function-
performing nodes that leverage the system’s natural non-
linearities. The nodes are connected through weighted
interconnections that are tolerant to the inherent man-
ufacturing variations or natural uncertainty present in
hardware. These physical reservoirs are leveraged for
performingmachine learning tasks andare implementable
in different substrates, anywhere from mechanical to
biological systems [4]. Of significant importance are
photonic-based reservoirs, which utilize optical modules
to manipulate light [5]. Indeed, the maturing discipline
of photonics boasts high bandwidths, allows parallelism
through wavelength multiplexing, can be deployed as an
integrated circuit, and enjoys optoelectronic interfacing
technologies [6]. Moreover, both linear and nonlinear
operations can be performed, the former at no additional
power costs and the latter occurring inherently in many
optical components.

An important propeller for the advancement of pho-
tonic reservoirs is their easy integration in fiber optic
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Figure 1: RNNs are networks with feedback connections where all
connections are trained. For RC, the network is split into a reservoir
layer where connections are untrained, and a readout layer with
trainable connections. The readout signals, which can be taken from
any and all the reservoir nodes, are summed to generate the output.

communication systems to perform optical signal process-
ing. Traditional Digital Signal Processing (DSP) methods
suffer from high power consumption and unimpressive
performance for someof the challenging problems, includ-
ing nonlinearity equalization. Although digital-based ML
solutions, including neural networks, are also investigated
for improved performance [7–10] they do not address the
power, memory, and latency issues of electronics. Thus, a
photonic reservoir can be added to the processing pipeline
to target some of the fiber impairments, offloading parts
of the electronic DSP into the optical domain with the
aim of eventually migrating to fully optical-based signal
equalizers. Initial successes were reported on the use
of passive photonic reservoirs on an integrated chip for
dispersion compensation and nonlinear equalization of
intensity modulated signals in simulations [11] and in
experiments [12]. Another integrated reservoir architecture
comprising ring resonators showed successful equaliza-
tion numerically [13]. Time-delay photonic reservoirs [5]
havealsoshowngoodtransmissionequalization insimula-
tions [14, 15]andexperiments [16]. In [17],aphotonicneural
network, rather than a reservoir, was experimentally
shown to mitigate transmission nonlinearities.

In this work, we target nonlinearities in coherent
optical communication systems deploying quadrature-
amplitude modulation (QAM). Through modulation of
both the amplitude and phase of light, higher data rates
are achieved at modest electronic bandwidth require-
ments. To simplify the detection process, which is
otherwise hardware-demanding, the recently proposed
Kramers–Kronig (KK) receiver [18] is used. The KK receiver
boasts a simple hardware implementation consisting of a
single photodiode, and performs the phase reconstruction

of the complex signal by leveraging the well-known KK
relations. Its hardware simplicity addresses cost concerns
associated with coherent detection in short to medium-
length links. While there are concerns on the elec-
tronic bandwidth requirements to perform the processing
required post-detection, this receiver has been gaining
popularity due to its hardware simplicity and accurate
signal reconstruction compared to other schemes [19].
Several experimental setups were recently demonstrated
in optical high-capacity transmissions [20–22] and even in
wireless THz communications [23]. An important system
consideration is that a high-power subcarrier must be
added to the signal at the receiver or the transmitter. For
complexity and cost constraints, the latter is preferred but
may give rise to high nonlinear effects in the transmission
fiber.

To this end, we numerically simulate the use of an
on-chip photonic reservoir for the nonlinear equalization
ofahigh intensity64-QAMsignalpropagating inastandard
singlemode fiber (SSMF) spanning lengths of up to 100 km
and received by a KK receiver. Nonlinearities originating
from the fiber Kerr effects and the transmitter’s nonlinear
behavior are considered. In contrast to classical RC which
computes the readout weights using ridge regression,
our equalizer uses backpropagation through the receiver
pipeline to train the optical readout weights. This readout
optimization is done to leverage the receiver’s nonlinearity
to our advantage which, as will be shown, provides
better performance. Furthermore, the reservoir uses 16
readout weights which are trained as single units, rather
than separating them into real and imaginary weights,
using a complex-input real-output loss function. The test
results per data point are found for over half a million
bits generated using aWinchman–Hill random generator,
and testing errors reported fall well below the 1e-3 pre-
forward error correction (FEC) bit error rate (BER) [24]. This
implementation can easily cope with higher data rates,
unlike electronic solutions which would require higher
sampling operation rates. Indeed, as will be shown later,
the main adjustment required for higher data rates would
be using shorter waveguides, which is both more power
efficient and has a smaller chip footprint. As such, it is
a powerful solution for mitigating communication system
errors, which along with the KK receiver can be viable
solutions for the deployment of high data rate and high
modulation format systems for inter- and intra-data center
applications.

The remainder of this paper is organized as follows: in
Section 2 the photonic reservoir architecture used in these
simulations is presented along with some background on
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reservoir computing. In Section 3, the working principle of
the KK receiver is outlined. In Section 4, the system design
and simulation results are discussed. Finally, the paper is
concluded in Section 5.

2 Photonic reservoir computing
Figure 1 shows both an RNN and an RC system, as they are
both recurrent structures thatdiffermainly in their training
degrees of freedom. Assuming discrete time signals, and
using vector notations to denote several such signals, an
input u⃗[n] is injected to thenetworkatasubsetof thenodes.
Every node’s output is given by the node’s transformation
function on its inputs. These inputs can either come from
within the reservoir or from the input sources. As such, the
reservoir’s internal states evolve and can be described by
[5]

x⃗[n+ 1] = f
(
Win u⃗[n+ 1]+Wres x⃗[n]

)
; (1)

where f is the node’s transformation function,
W in is a sparse matrix that indicates the weighted con-
nectedness of the input signal to the network, andW res is
a matrix resembling the weighted reservoir connections.
The output of the reservoir, yreadout[n], is a weighted sum
of x⃗out[n]:

yreadout[n] = Wreadout x⃗out[n]; (2)

where x⃗out[n] refers to the portion of x⃗[n] that is directed
to the readout andW readout denotes the adjustable readout
weights.

Our implementation of the reservoir is a silicon nitride
(SiN) based photonic integrated circuit, making it a small-
footprint on-chip reservoir. This reservoir, which we term
the four-port architecture [25], is made of 3 × 3 multi-
mode interferometers (MMI) that serve as nodes and are
interconnectedbywaveguides.Aschematicof the reservoir
is shown in Figure 2, where theMMIs are indicated by grey
rectangular elements and the waveguides are shown as
arrowed connectors. Every node has an external input,
an external output, two inputs from within the reservoir,
and two outputs leading into the reservoir. External inputs
are used for injecting signals into the reservoir, where
optimal injection locations are investigated in Section 4.
The investigated inputs are marked in green in Figure 2.
The inputweights that impact the signalbefore its injection
to the reservoir manifest in the form of random phase
changes on the signal due to waveguide connections from
thecoupler to theMMI. Theseare randomandunoptimized
weights. The MMI outputs are connected to the readout
weighting elements where they can be weighted and
summed; these aremarked in orange in Figure 2. Note that

Figure 2: Schematic of the photonic 4-port reservoir. Grey boxes
indicate 3 × 3 MMIs, green ports indicate the subset of input
injection locations which are to be investigated, and orange dots are
where output ports connect to the trainable readout weights. MMIs
are connected by waveguides as shown by the black connectors.

a node may be used to inject a signal, read out a signal,
both, or neither. The waveguide delay lines connecting
nodes slow down the signal to allow meaningful mixing
on the timescales of the input signal. In the silicon nitride
platform, the delay lines exhibit typical waveguide losses
of 25dB/mand theMMIshavean insertion lossof 1dB,both
creating the fadingmemory effect necessary for reservoirs.
Without sufficient losses, signals will remain echoing in
the reservoir leading to undesired performance.

Thewaveguide-inducedphaseandamplitudechanges
that occur in the reservoir are largely caused by the
manufacturing tolerances and imperfections inevitably
present in silicon photonics. These act as internal reservoir
weights thatwedonot trainnor optimize.Weare, however,
interested in the length of these lines, as they control the
amount ofmemory in the reservoir and the timedifferences
between two mixing signals. Thus, the delay line length is
an optimizable parameter in our setup.

This is a passive reservoir by design; it is driven
by the input signal itself and consumes no additional
power. It should be noted, however, that the use of the
term passive is solely indicative of the need for external
power in the reservoir. Currently, due to the lack of more
power conservative coupling and photonic components,
inevitable losses incurred would require the signal to be
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amplified. In the SiN chip which this simulation is based
on, coupling light into the chip induced around 7 dB loss
per coupler. Other losses within the reservoir including
insertion losses (1 dBperMMI) andwaveguidepropagation
losses (25 dB/m) are less impactful and are considered
necessary for the fading memory of the reservoir. While
passive nodes are a power advantage, MMIs perform linear
functions that just redistribute portions of the inputs
over the outputs, which would not be sufficient to solve
nonlinear tasks. The required nonlinear transformation is
then added through utilizing innate components in the
system where the reservoir is inserted and which may
be application specific. In a telecommunication system,
a photodetector performing the squaring function is a
suitable candidate [26]. Our system is therefore a slight
variant of a standard reservoir, where the nonlinearity
happens after the readout weights as opposed to within
the reservoir. The final output of the reservoir, yfinal[n], is
then the nonlinear transformation of the readout output

yfinal[n] = f (yreadout[n]). (3)

In the next section, we describe through the intro-
duction of the KK receiver’s algorithm the nature of such
transformations.

3 Kramers–Kronig receiver
The Kramers–Kronig receiver employs a simple photode-
tector to detect a complex signal’s power and reconstructs
its complex nature through a series of processing steps.
This is possible when a complex signal’s phase is uniquely
related to its amplitude,which canbeguaranteedprovided
that a pair of conditions is respected [27]. First, it must be a
single side-band (SSB) signal. Thus, an additional optical
subcarrier should be added to either edge of the signal’s
spectrum. Second, the subcarrier must have sufficiently
higher power with respect to the signal; this is termed
the carrier-signal power ratio (CSPR). Figure 3 shows how
the reconstruction of a 64-QAM signal is affected by the
CSPR in a back-to-back setup. As the CSPR increases,
the signal’s reconstruction becomes more accurate (i.e.
negligiblemean-squareerror compared to thesignalbefore
detection).With compatible signals, thephase information
φ(t) can be found from the magnitude of the signal |s(t)|
[18], since

𝜑(t) = 1
𝜋
P∫

∞

−∞

ln(|s(t)|)
t − 𝜏

d𝜏 (4)

where P is the Cauchy principal value and ln is the natural
logarithm. This equation is based on the well-known KK

Figure 3: Reconstruction of a 64 QAM signal at different CSPR
values. Lower CSPR values (in blue) show large errors, as
reconstruction becomes more accurate at higher CSPRs (in red).

relations that relate the real and imaginary part of a signal.
Through taking the logarithm of the signal, its amplitude
and phase become separated into the sum of a real and
imaginary part allowing the use of these relations. Indeed,
consider the following complex signal,

s(t) = ||s(t)||e j𝜑(t) (5)

and by taking its natural logarithm becomes

ln(s(t)) = ln(|s(t)|)+ j𝜑(t) (6)

Although this is the basic theory, practical implementa-
tions of the KK receiver may circumvent performing time
integrals as they can be quite involved. Alternatively, going
through the frequency domain and utilizing the Fourier
coefficients can be simpler. Some of the detailed imple-
mentations are found in [27–29]. Our readout pipeline,
including the receiver blocks, is shown in Figure 4. Con-
sider a complex optical signal s(t) that is impinging
on a photodetector. The current from the detector, i(t),
is the measurable signal obtained and its square root
corresponds to|s(t)|. The natural logarithmof this quantity
is the real part of ln(s(t)) as shown in Eq. (6). A Fourier
transform then finds the frequency coefficients of this
real-valued signal. From those, the frequency coefficients
of the imaginary part, j𝜑(t), are computed and the union
of both form the Fourier transform of the complex ln(s(t))
[27]. The inverse Fourier transform then generates the time
signal which requires exponentiating to retrieve s(t).

Figure 4 also shows how the KK receiver is integrated
into the readout pipeline so as to serve as the nonlinear
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Figure 4: Readout pipeline including receiver blocks, where orange is used for the optical domain and blue for the electronic. Operations –
dot, dot product of readout states and optical weights; |·|2, photodetector squaring; ln, natural logarithm; FFT, fast fourier transform; KK, KK
relations in frequency domain where frequency coefficients for f > 0 are doubled and those for f < 0 are zeroed; IFFT, inverse fast fourier
transform; exp, exponential; C.R, DC carrier removal; F.S, frequency shifting to the baseband; RRC, root-raised cosine filter; scaling and
shifting for constellation alignment signals –s(t), complex optical readout signal; i(t), current; ln(|s(t)|), real part of eq. (6); F rn, frequency
coefficients of the real signal ln(|s(t)|); F in, frequency coeffecients of the imaginary signal j𝜑(t); ln

(
s(t)

)
, retreived complex signal as in

eq . (6); s(t), electronic reconstruction of the optical s(t). Trainable parameters – weights: complex optical weights; beta, gamma: electronic
nonlinearity weights; scale, bias: electronic aligning parameters.

transform described by Eq. (3). Although ideally the KK
receiver is a linear block [18], it may behave nonlinearly
when its minimumphase conditions are violated. This can
be seen, for example, in the imperfect reconstruction of the
receiver shown inFigure 3when theCSPR is low.Moreover,
while a certain CSPR may be sufficient for accurate signal
reconstruction of an undistorted signal, this may not be
the case if the signal’s peak-to-average power ratio (PAPR)
changes due to dispersion [30]. Other violations including
the growth of frequency components in the suppressed
sideband will also result in some nonlinear behavior [31].
These violations may become significant when the signal
is strongly distorted prior to detection due to dispersion
and/ornonlinearities. To further capitalizeon thepotential
nonlinear behavior, electronic weights are added in the
receiver pipeline at the natural logarithm and exponent
functions, as shown in Figure 4. These are simply trainable
electronic weights that are initialized at 1 + 0j values,
so as to have no impact in their worst-case performance.
The weights are then adjusted through the backpropaga-
tion algorithm during the training phase of the readout.
Finally, to allow proper alignment with the QAM alphabet,
electronic scaling and biasing terms are also included.
Together, the optical readout weights, the nonlinearity
electronic weights, and the electronic scale and bias form
the set of trainable parameters adjustedduring the readout
training phase. This training is an iterative process, since
backpropagation through the receiver blocks is required to
train the different parameters.

Following the KK processing, additional steps may
be required to obtain the baseband signal. Namely, the
additional subcarrier, which will show as a DC component
after reconstruction, must be removed. Moreover, the sig-
nal should be frequency shifted since it will be offset from
its baseband form [29]. Finally, if any matched filtering is
used at the transmitter (e.g. a root-raised cosine filter), a
similar one should be used at the receiver.

Other practical considerations may be of relevance in
the receiver. For example, the logarithmicoperationcauses

spectral broadening and thus would require the input
signal to be oversampled. This means that although the
Nyquist criterion for the unambiguous signal detection is
just 2 samples/symbols, for accurate reconstruction using
the KK receiver at least 6 samples/symbols are needed
as per the original implementation [18]. Moreover, the
issue of the subcarrier and its required power for accurate
reconstruction with minimal nonlinearities is a subject
of investigation. These and other practical considerations
and alternative implementations are discussed in several
papers including [20, 29, 32–34]. In this paper we keep a
sufficiently high carrier power and investigate, as will be
shown in the following section, the added benefit of the
photonic reservoir in mitigating the nonlinearity-induced
errors.

4 System setup and results
The transmission system is simulated using VPI Photonics
Transmission Maker software [35]. A single polarization
transmitter deployingapair of single-driveMach–Zehnder
modulators (MZMs) is used for 64 QAM transmission.
The nonlinear behavior of the modulators is not pre-
compensated for. The laser is set to have an average power
of 0 dBm before modulation. After modulation, the signal
is amplified such that the average power of the signal is 3
dBm.Thesignal is thennoise loaded to 27dBoptical signal-
to-noise power ratio (OSNR). A subcarrier is frequency
shifted from the main carrier and transmitted with the
signal through links between 20 and 100 km of SSMF. The
main role of the reservoir is to target nonlinearity-induced
errors generated from self-phase modulation due to the
Kerr effect and from the nonlinear response of the MZMs.
In order to focus on that role, we compensate linear
dispersion separately using a dispersion compensation
fiber with (negatively) matched dispersion parameters to
those of the transmissionfiber. The signal is then amplified
to correct for the fiber attenuation and adds an additional
15 dB of power. The receiver is the KK receiver pipeline
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described in the previous section,where the photodetector
simulated exhibits shot and thermal noise as described by
theparameters in Table 1. Noother impairments, including
polarizationmodedispersion (PMD), laserphasenoiseand
receiver filter imperfections are considered. The system
parameters are listed in Table 1 and the setup is shown
in Figure 5.

A 16-node reservoir, whose internal topography is the
same as that shown in Figure 2, was simulated using
Photontorch [36]. This is a photonic circuit simulator
written in Python that uses adjustable parameters and
scatter matrices to describe components. To allow the
components parameters to be optimized using iterative
methods, Photontorch uses the machine learning frame-
work Pytorch [37].

All the reservoir’s nodes are connected to the readout
and the complex-valued optical weights of the readout
are trained to approximate the target signal. Initially, the
target signal before the KK receiver is used, which is an
SSB signal with an additional subcarrier. This results in
the rotating target signal shown in Figure 5. The target
signal is generated from an ideal transmitter that does
not suffer from the nonlinear modulator response and
without the noise loading performed for the distorted
signal. The same subcarrier generated for the distorted

data is used for the target signal, since in both cases no
linewidth was considered. It was observed that training to
optimize for the center samples of the waveforms yields
better performance than training to optimize for the full
waveform, and as such is used throughout the training
processes. This training is helpful in addressing the out
of band noise in the signal and conditions the reservoir
to behave as a bandpass filter. Without such filtering,
strong violation of the SSB condition is observed due to
noise and due to the growth of frequency components
from four-wave mixing, which significantly deteriorates
the performance of the receiver. Using this signal as a
target is beneficial in reducing errors, however suffers
from two deficits. Primarily, no nonlinear component was
introduced in the pipeline, which limits the nonlinear
problem-solving capacity of the reservoir. Additionally,
this target is not the final target in the pipeline, and
hence optimizing for it would be suboptimal. Thismethod,
where the pre-receiver target is used, is referred to as the
linear RC (L-RC), in reference to the linear nature of the
readout. The final target is only available after the KK
DSP and post processing, in which case the undistorted
signals are used but without the subcarrier. As seen in
Figure 5, these are the standard 64 QAMwaveforms. Using
this targetmandates backpropagating through the receiver

Table 1: System parameters.

Transmitter (Tx) Fiber Receiver (Rx)

Root-raised cosine filter rolloff= 0.01 Attenuation = 0.02 dB/km Bandwidth = 70 GHz
Gray-coded 64 QAM Nonlinear coefficient= 1.31 W−1 km−1 Samples/symbol = 8
Baud rate = 64 Gbauds Length = 20–100 km Responsivity = 0.5 A/W
Signal power (without subcarrier) = 3 dBm Dispersion parameter = 16 ps/(nm km) Dark current= 5 nA
Subcarrier power = 14 dBm PMD coefficient= 0 ps/

√
km

Subcarrier frequency offset = 34 GHz
Laser linewidth = 0 Hz
OSNR= 27 dB

Figure 5: Simulation setup generating high intensity 64-QAM signals passed through fiber links that are dispersion compensated,
nonlinearity equalization to take place in: (a) 16 node reservoir with complex readout weights found linearly and through backpropagation;
or (b) 16 tap feed forward equalizer with complex weights found linearly. Acronyms–SSB Tx, single-sideband transmitter; CDC, chromatic
dispersion compensation; Amp, amplifier; KK RX, Kramers–Kronig receiver; wejθ, complex weight with amplitude w and phase 𝜃.
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blocks to bridge the gap between the readout weights
and the final target. This also gives rise to a nonlinear
“function” which encompasses the photodiode, the KK
algorithm, and the post-processing steps. This is referred
to as the non-linear RC (NL-RC) since a nonlinear function
is now involved. In spite of more complicated training,
through this adjustment a significant error reduction can
be obtained as will later be shown in Figure 8.

Wewill compareour results to a linear baseline,whose
pipeline is shown in Figure 5b, utilizing an optical 16-tap
feed-forward equalizer (FFE) instead of the reservoir. The
FFE passes the signal through a series of 15 cascaded
time delays (implemented optically as waveguides). The
signals at the output of every delay and a portion of the
original signal areweightedwith trainable complex-valued
weights and then summed. The equalized signal is then
sent to the receiver for detection. This is a linear block and
would use the target before the receiver for adjusting the
weights, similar to the L-RC target. Although the choice
of an optical FFE deviates from the standard electric
one, we opted for the optical implementation as a closer
benchmark to our optical reservoir. Furthermore, if the
FFE were implemented digitally, an additional optical
bandpass filter prior to detection would still be needed
making the direct comparison unfair.

In such data-assisted equalization, relevant system
parameters (like the nonlinearity coefficient value) are not
needed for adjusting the equalizer. Instead, supervised
learning is done to adjust the weights through utilizing
a labelled training dataset. Around 50,000 bits are used
for training, generated through the random seeding of a
Wichmann–Hill number generator, with a cycle length
exceeding 2 × 1013 [38]. This set is passed through the
transmission fiber and, aided with its undistorted version
used as a target, the weights are found.

When using a linear readout, as in the L-RC and
the FFE, weights can be calculated using a closed-form
solution from the input signal matrix X and the output
target y. This is given by

W =
(
XHX + 𝛼I

)−1XH y (7)

where W is the weight matrix, 𝛼 is a regularization
parameter to limit overfitting, I is the identity matrix. The
superscriptH refers to the conjugate-inverse of the matrix,
which is needed for complex-valued data.

For the NL-RC the weights are trained through back-
propagation [39] to minimize a loss function. This training
method relies on computing the gradient of the error func-
tion with respect to the weights. The gradient calculation
begins from the output and propagates in the direction of

the input, i.e. moving backwards. The weights are then
adjusted in the direction of the decreasing gradient to
approach the localminimaof the loss function.This isdone
iteratively over a number of training steps. For training, the
machine learning framework Pytorch was used.

The loss function used was the mean-square-error
(MSE) loss function with complex valued inputs. This is
not inherently supported in Python’s Pytorch, but MSE’s
definition can naturally be extended for such data types.
The computed loss is then is real-valued and can be
supported by Pytorch.

loss = (|y − X|)2 (8)

An issue of the backpropagation algorithm is that it
may get trapped in high-energy local minima. To avoid
this, we initialize the weights with well-chosen initial
values prior to backpropagation, as opposed to starting
from a random initialization. For these initial weights
we use those of the closed form solution, i.e. the L-RC.
The backpropagation then starts from this point and then
iteratively adjusts the weights to approach a lower loss
value.

Theperformancesof both the reservoir and theFFEare
reliant on their configurable parameters. For the reservoir,
this includes the length of the delay lines connecting the
nodes, as well as the choice of nodes that the input is
injected at. For the FFE, only the delay line length is
relevant. Thus, the performance of different configurations
is compared by sweeping through the optimizable parame-
ters, finding the weights, and then using them to calculate
the achievable BER. Since this is part of the optimization
process, the training dataset is used to guide the process
(later on we will use a separate testing set for the final
performanceevaluation). Furthermore, theoptimizationof
the reservoir parameters is done based on the performance
of the L-RC weights since backpropagation is a time-
costly process. The underlying rationale is that the best
performing configuration for the L-RC is very likely to be
the best one for the NL-RC. The results of the architecture
optimizations are shown in Figure 6.

Initially, the interconnection length is investigated
(Figure 6a), where this refers to a single value used to spec-
ify the lengthofall the reservoir’snode tonodeconnections
as shown in Figure 2. To choose the best length, we sweep
over values expressed as a ratio of the induced delay (in
time) to thebaudrateof the signal. Since the reservoir inter-
connections contain inherent phase uncertainties because
of the waveguide’s sidewall roughness, it is important to
ensure that the performance is consistent over multiple
random reservoirs. Thewaveguide variations aremodelled
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Figure 6: Optimization of reservoir parameters using BER metric for all link lengths individually, two parameters are studied: (a) (Left) the
interconnection delay expressed as a ratio of the delay induced in seconds to the symbol rate of the signal. (b) (Right) the nodes used to
inject the signal into the reservoir.

in simulations as a phase shift of 2𝜋r,where r is a random
number sampled from a uniform distribution between 0
and 1. Every waveguide in the reservoir is assigned a
different random phase shift and these vary from one
reservoir initialization to another. Furthermore, the input
signals to the reservoir are assigned random phase shifts
governed by the same distribution as above. Thus, every
datapoint is the averaged performance of several different
reservoirs each with a separate random (but static) set of
interconnection phases. Moreover, since every fiber length
constitutes a different problem, its optimization is done
independently.However, optimizations for all fiber lengths
show that the best performance is achieved around a ratio
of 0.5. The dependence of this ratio on the data rate of
the signal indicates that higher data rates would require
shorterwave guides tomaintain the same ratio. Thus, such
a reservoir would scale well with higher baud rates since
the required shorterwaveguideswill have lower losses and
a smaller footprint.

Next, we look into the effect of the choice of input
nodes on the performance. Referring to Figure 2, nodes
are assigned numbers from 0 to 15 from left to right (the
numbering continues from the left at every new row). All
nodes, and any subset of them, can be used to inject the
signal into the reservoir which affects how they mix. To
ensure fair comparison, the signal power is divided equally
between the input nodes, i.e. the total power injected in
the system is kept constant, regardless of the number of
inputs. Three input configurations are contrasted, which
are indicated on the x-axis of Figure 6b. The reported

BER of the training set is again averaged over multiple
randominitializationsof the reservoir. Thebestperforming
input configuration for every link length is indicated by a
star whereas all the other suboptimal configurations are
indicated by a dot.

Based on the results shown in Figure 6, the optimum
architecture parameters for every fiber link are chosen.
This is also done for the FFE where its delay line length
is optimized for every fiber link length. The length of the
delay lines governs the delay of signals with respect to one
another and as such it also governs the points at which the
signals are summed. Then, for each of these optimized
architectures, the training dataset is used to find the
trainable weights. Finally, a testing dataset is generated to
investigate the performance of the equalizers. The unseen
testing set is generated through the same Wichmann–Hill
generator but using different seeds to that of the training
set. Over 130,000 symbols are tested and the statistical
BER is found using a gaussian approximation. To illustrate
the difficulty of the problem, Figure 7 shows an example of
the detection of a distorted signal (after chromatic disper-
sion compensation). The high-power subcarrier induces
nonlinearities to which the high-level modulation format
becomes very susceptible. Additionally, due to the growth
of unwanted components in the suppressed sideband
of the subcarrier, the receiver conditions are violated
contributing to the high errors post-detection. As a result,
the BER is on the order of 1e-2.

Figure 8 shows the averaged statistical BER on the test
set for the different fiber lengths. The statistical errors are
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Figure 7: Density distribution of a linearly and nonlinearly distorted
64-QAM showing the highly distorted signal.

Figure 8: Testing BER versus link length for linear reservoir (blue)
where no external nonlinearity is present, nonlinear reservoir
(orange) where the KK receiver is leveraged as a nonlinear block,
and an optical feed forward equalizer (green) for benchmarking.

computed using VPI’s error estimators which assume that
theprobability of receivingadatapointbelonging toaQAM
symbol follows a gaussian distribution. The probability
that the symbol will be in error is computed statistically
using the standard deviation and mean of the points. This
provides the symbol error rate while the BER is found by
dividing by 6 (i.e. the number of bits per symbol). The
statistical errors are very close to the errors found by error
counting since the test set is rather large. Linear solutions,
i.e. FFE and L-RC, improve the BER by means of filtering
and by utilizing information from neighboring symbols
since they behave as optical linear filters. While filtering
improves the performance of the receiver reconstruction
approximating that of an ideal coherent receiver, the linear
mixing also contributes to reducing errors by utilizing
any linear information that is relevant from neighboring
symbols. However, the excessive mixing in the reservoir

does not directly have a positive impact as compared to
that of the FFE. It is only when the nonlinear readout is
involved that the BER improves and is on average one
third that of the FFE. The performance of the NL-RC for
all the fiber lengths reduced the BER well below 1e-3
and maintained this performance with different reservoir
simulations and datasets, as indicated by the error bars.
The error bars are derived as the standard deviation of
10 results obtained by evaluating the performance of a
random reservoir (generated as described for the random
initializations of Figure 6), trained and tested on different
and randomly generated data sets.

5 Conclusions
The transmission of a 64 QAM signal and its detection
using the KK receiver was shown to benefit from the
use of a photonic reservoir to mitigate the effects of the
fiber nonlinearities and the transmitter imperfections.
We used a novel training scheme, which included the
entire KK processing pipeline to increase the nonlinear
computational capacity of the setup. This optical solution
is passive, process signals in real time, and future-proofed
to operate at high baud rates which makes it superior to
other electronic solutions. Simulation results showed that
the reservoir outperformed a linear feed-forward equalizer
implemented optically, thus displaying beneficial nonlin-
ear functionality.Statisticalbit error rateswereobtainedon
testing sets of over 130,000 randomly generated symbols
for link lengths of up to 100 km and were well below
the 1e-3 threshold. Future work will target the integration
of this solution with the well-established digital signal
processing to evaluate its performance with additional
system impairments like phase noise.
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