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Linear light-processing functions (e.g., routing, splitting, filtering) are key functions requiring configuration to
implement on a programmable photonic integrated circuit (PPIC). In recirculating waveguide meshes (which
include loop-backs), this is usually done manually. Some previous results describe explorations to perform this
task automatically, but their efficiency or applicability is still limited. In this paper, we propose an efficient
method that can automatically realize configurations for many light-processing functions on a square-mesh
PPIC. At its heart is an automatic differentiation subroutine built upon analytical expressions of scattering ma-
trices that enables gradient descent optimization for functional circuit synthesis. Similar to the state-of-the-art
synthesis techniques, our method can realize configurations for a wide range of light-processing functions, and
multiple functions on the same PPIC simultaneously. However, we do not need to separate the functions spatially
into different subdomains of the mesh, and the resulting optimum can have multiple functions using the same
part of the mesh. Furthermore, compared to nongradient- or numerical differentiation-based methods, our
proposed approach achieves 3× time reduction in computational cost. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.474606

1. INTRODUCTION

Photonic integrated circuits (PICs) have drawn increasing
attention over the past two decades. Their primary goal is to
integrate complex manipulation of light (such as routing, filter-
ing, coupling, interfering) onto a single chip [1–3]. Today, a
PIC is usually designed for one specific application, so that
it can be compact and power-efficient [4]. The design meth-
odology for these chips is similar to that of application-specific
integrated circuits (ASICs) in the electronic domain, and thus
this kind of PIC is usually referred to as an application-specific
PIC (ASPIC).

In contrast, another mainstream type of electronic circuit is
the field-programmable gate array (FPGA). These circuits are
generic in concept, and their functionality is programmed by
configuring the on-chip connectivity of the logical building
blocks. The photonic counterpart of FPGA, the programmable
photonic integrated circuit (PPIC) [4–15], has been introduced
recently based on the idea of run-time manipulation of light
after a chip has been fabricated. Such reconfigurability is usually

made available by controlling the active components (e.g., op-
tical PSs [4]) with electrical/thermal signals. Due to its pro-
grammability, a PPIC is suitable for various applications
such as fast prototyping of ASPICs [4], building optical neural
networks (ONNs) [16], and processing quantum information
[17,18].

A PPIC is composed of a mesh of tunable basic units
(TBUs) [12], also called analog optical gates [4]. The most
common implementation of a TBU is a 2 × 2 Mach–
Zehnder interferometer (MZI) circuit [4,12]. Considering
the interconnections of TBUs, PPICs can generally be classified
into two categories: (i) forward-only topologies [6–11,19–21],
and (ii) loop-back (recirculating) topologies [4,12–15]. In a for-
ward-only PPIC, light propagates in one direction (e.g., from
left to right). It has been proven that with particular forward-
only structures, a PPIC can realize any unitary transformation
[10,19,22]. When fixed-length delay lines are introduced, it is
also possible to implement finite impulse response (FIR) digital
filters [11]. Feed-forward PPICs are commonly used to imple-
ment ONNs for AI computing. The first notable experimental
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realization of an ONN was published in 2017 [16]. Later works
have considered in situ ONN training [20,21] via novel optical
backpropagation techniques.

However, without loop-back connections, a forward-only
PPIC cannot realize a ring resonator or an infinite impulse re-
sponse (IIR) digital filter. Such shortcomings have motivated
researchers to consider recirculating-based PPICs [15,23,24].
The most common recirculating configurations are triangular,
square, or hexagonal close packing [25]. However, while these
loop-back meshes offer the possibility of implementing more
complex connectivities as well as FIR and IIR filters, the con-
figuration of those functions is mostly done by manually
assigning and configuring the optical gates in the mesh.
Such an ad hoc method will not be applicable (i) when we want
to synthesize several filters at the same time, and (ii) when the
size of a recirculating PPIC increases substantially.

To address these issues, a few published results [13,14,26]
have proposed methods to perform this task automatically. The
authors in Ref. [26] proposed to use optimization techniques to
synthesize optical ring resonators and MZIs on a hexagonal-
mesh PPIC. In Ref. [14], the authors proposed an auto-routing
method based on graph theory for a hexagonal-mesh PPIC, and
multiobjective routing is demonstrated by Ref. [13]. However,
these methods can be dramatically improved to overcome the
following key limitations: (i) their application range is restricted
and many light-processing functions are not considered; and
(ii) since many optical PSs need to be optimized in a PPIC,
this high-dimensional optimization problem is not efficient
with current methods that rely on nongradient methods
(e.g., particle swarm optimization (PSO) in Ref. [26]) or gra-
dient methods with numerical differentiation (e.g., Eqs. (4) and
(5) in the supplementary material of Ref. [26]).

In this paper, we address these two main points by relying
on scattering matrix theory, together with efficient calculation
of analytical gradients. Specifically, we propose an efficient
method that can realize configurations for many different
light-processing functions on a square-mesh PPIC, without re-
quiring a priori human design guidance. We start with the com-
pact model of a TBU and derive the analytical transfer
functions of the entire circuit according to scattering matrix
theory. Built upon this, we implement an automatic differen-
tiation subroutine that can analytically calculate the mean
squared error (or other cost functions) between the target fre-
quency responses and the configured circuit responses, and the
cost function derivative, with respect to all tunable parameters
inside the PPIC. This enables us to efficiently perform gradient
descent optimization that realizes a variety of light-processing
functions with different magnitude or/and phase responses.
Our work has a close relationship with Ref. [24], where the
authors derive a system-level analytical scattering matrix for
a hexagonal mesh. However, our approach goes beyond that
work by calculating and utilizing gradients for functional syn-
thesis. In overview, our major contributions include the
following.

• In Section 2, we propose a TBU compact model appro-
priate for the task of optical filter synthesis, and analytically
derive the TBU transfer functions using scattering matrix
theory.

• In Section 3, we consider a simplified case where all the
horizontal TBUs in a PPIC are fixed to bar states, from which
several useful observations can be made.

• In Section 4, we demonstrate our efficient synthesis
method based on automatic differentiation and gradient
descent optimization. We also develop a logarithmic cost func-
tion suitable to the case when we want to optimize both the
stop band and passband of a wavelength filter response.

• In Section 5, we demonstrate that our proposed method
can be applied to a wide range of light-processing functions at
run-time scales of minutes. We also show that our method can
synthesize multiple light-processing functions simultaneously
in the same waveguide mesh.

• Finally, in Section 6, we discuss the limitations of our
method and future considerations, such as how to extend it
to suit a PPIC containing hundreds or even thousands of
TBUs with arbitrary connections.

2. THEORY OF SCATTERING MATRICES

Following Refs. [4,9,15], we consider the TBU structure as
shown in Fig. 1 throughout this paper. As shown in the top
row of Fig. 1, we assume that two time-harmonic optical inputs
fa�I�1 ejωt , a�I�2 ejωtg are provided, respectively, at the two left
ports fA1,A2g. Then the outputs can be calculated based on
the transfer matrix F,�

b�O�
1

b�O�
2

�
� F

�
a�I�1

a�I�2

�
, (1)

where we use the superscripts “I” and “O” in parentheses to
represent the direction of light going into and coming out of
the TBU, respectively. The transfer matrix F is given as [4,9]

F �
ffiffiffi
2
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right DC
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, (2)

where the optical phase shifts (PSs) are parameterized by θ and
ϕ, and the DCs are fixed 50%:50% splitters. Here we empha-
size that the signals fa�I�1 , a�I�2 , b�O�

1 , b�O�
2 g are all complex scalar

variables. In our notation, we choose ejωt dependence instead of
e−jωt , so that it is consistent with the conventional Fourier
transform from the time domain to the frequency domain.
This results in the minus signs ahead of the complex unit j

Fig. 1. Simplified schematic of a TBU. It is made up of two
50%:50% DCs on the left and right, and two optical PSs parameter-
ized by fθ,ϕg in the middle. fθ,ϕg can be adjusted freely in �0,2π� by
thermo- or electro-optic control of the two PSs.

644 Vol. 11, No. 4 / April 2023 / Photonics Research Research Article



on the right-hand side of Eq. (2); however, from the calculation
perspective, the alternative representation can be equivalently
employed.

If we reverse the direction of light propagation, as shown in
the bottom row of Fig. 1, then the vector on the left-hand side
of Eq. (1) will be �a�O�

1 , a�O�
2 �T , while �b�I�1 , b�I�2 �T will be on the

right. Combining the two propagation cases together, we have
the scattering matrix relation,2

666664
b�O�
1

b�O�
2

a�O�
1

a�O�
2

3
777775 �

�
F 0

0 F

�
2
666664
a�I�1

a�I�2

b�I�1

b�I�2

3
777775: (3)

For our filter synthesis application, the model in Eq. (2) is
insufficient: we will never obtain a frequency-dependent re-
sponse using this model, because F does not rely on the
light frequency ω. To remedy this, we modify the previous
transfer matrix by taking the role of the TBU waveguides into
consideration,

F � 0.5
�

e−jθ − e−jϕ −je−jθ − je−jϕ

−je−jθ − je−jϕ −e−jθ � e−jϕ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eq: �2�

αe−jω
neff L
c , (4)

where neff �ω� is the effective index of the propagating mode, L
represents the length of the waveguide in the TBU, c is the
speed of light in free space, and α represents the transmission
loss introduced by the waveguides and couplers in the TBU. At
the device level, there might be several waveguides in one TBU
(e.g., between the left DC and the PSs, between the PSs and the
right DC). Our compact model in Eq. (4) is valid as long as the
waveguides are balanced in the upper and lower arms. See
Appendix A for more details. Moreover, without considering
dispersion (i.e., neff is a constant independent of ω ), the
e−jω

neff L
c factor naturally corresponds to a time delay neffL

c accord-
ing to the Fourier transform, and thus PPICs can rely on digital
filter theory to realize optical filter functions.

The circuit schematic of the recirculating PPIC waveguide
mesh is shown in Fig. 2. In this paper, we ignore the TBUs in
the right-most column. We also assume that the top and

bottom connections (the yellow lines) are ideal connections,
i.e., their transfer function is identity. These two assumptions
are made for mathematical simplicity and the purpose of dem-
onstration; note that our method is applicable without these
assumptions.

Next, we introduce naming conventions for the ports and
propagation directions. As shown in Fig. 3, we adopt the fol-
lowing conventions for the ports in this PPIC: (i) the letters “A”
and “B” are used to denote the ports on the left and right edge
of a vertical TBU, respectively; (ii) the subscript �n,m� is used
to express that the port is on the nth row and mth column,
where n � 0, 1, …; 2N � 1 and m � 0, 1, …,M . As shown
in Fig. 3, for any port, the light can propagate in two directions.
We define going into and out of the vertical TBU device as “I”
(i.e., orange arrows) and “O” (i.e., purple arrows), respectively.
One minor subtlety arises when applying this direction naming
convention to the top line shown in Fig. 2, since this top line
does not associate with any vertical device. In this case, we con-
sider there to be virtual vertical TBUs above this top line, and
then apply our direction naming convention. Similarly, we con-
sider there to be virtual vertical TBUs beneath the bottom line
in Fig. 2 for the purpose of notation consistency.

Following Eq. (3) and applying the scattering matrix to the
two propagating directions shown in the right figure in Fig. 3,
we have 2

6666664
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b�O�2i,j

a�O�2i−1,j
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2i−1,j

3
7777775 �
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2
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a�I�2i,j

b�I�2i,j

3
7777775: (5)

If we expand all terms in Eq. (5) and rearrange the terms to
locate those related to b and a at the left-hand and right-hand
side, respectively, we obtain2

6666664

b�I�2i−1,j

b�O�
2i−1,j

b�I�2i,j

b�O�2i,j

3
777775 � V

2
666664
a�I�2i−1,j

a�O�
2i−1,j

a�I�2i,j

a�O�
2i,j

3
777775, (6)

where V is of size 4 × 4, and with some algebra, we have

Fig. 2. Schematic of an N ×M square-mesh PPIC. For derivation
simplicity, we disable the TBUs at the right-most column marked by
dashed lines and assume that the top and bottom connections (yellow
lines) are ideal.

Fig. 3. Naming conventions for port and direction. Capitalized “A”
and “B” should be regarded as port names, and lowercases “a” and “b”
are the complex magnitudes ahead of e jωt . For conciseness, we have
omitted the e jωt dependence.
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V 11 � V 33 � −F 11∕F 12,

V 22 � V 44 � F 22∕F 12,

V 41 � V 32 � 1∕F 12,

V 23 � V 41 � F 21 − F 11F 22∕F 12, (7)

and other entries of V are all zero. Here we use Fkl to denote
the entry on the kth (k � 1,2) row and l th (l � 1,2) column of
matrix F. Similar notations are applied to V as well as all later
occurring matrices. It is important to note that Eq. (6) holds for
the index i � 1, 2, � � � ,N and j � 0, 2, …,M − 1, which
covers all vertical TBUs in the middle, except the top and bot-
tom lines in Fig. 2. The top and bottom lines correspond to
row index 0 and 2N � 1 under our naming convention, and
the following relations hold on these two lines because we as-
sume the yellow lines in Fig. 2 are ideal,"

b�I�k,j

b�O�k,j

#
�

�
0 1

1 0

�" a�I�k,j

a�O�
k,j

#
, k � 0 or 2N � 1: (8)

Recall that in writing Eq. (5), we apply the scattering matrix
method to the two propagation directions of a vertical TBU.
We can do the same thing for a horizontal TBU, which gives
the following equation:2
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7777775: (9)

Similarly, we now move all terms related to b and a to the right-
hand and left-hand side, respectively, and obtain2
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3
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2
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b�O�2i,j
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3
7777775, (10)

where H is of size 4 × 4, and with some algebra, we have

H 12 � F 11, H 14 � F 12,

H 32 � F 21, H 34 � F 22,

H 21 � F 22∕ det�F�, H 23 � −F 12∕ det�F�,
H 41 � −F 21∕ det�F�, H 43 � F 11∕ det�F�, (11)

and all other entries of H are zero. Here det�F� �
F 11F 22 − F 12F 21 represents the determinant of F. Again note
that Eq. (10) holds for the index i � 0, 2, � � � ,N and
j � 0, 2, …,M − 1.

For a specific column index j, if we vary the row index i
and k in Eqs. (6) and (8), and next stack all the resulting equa-
tions in one column, we obtain a scattering matrix for the
mapping: fa�I�n,j ,a

�O�
n,j g→ fb�I�n,j ,b

�O�
n,j g, where n�0,1, ���,2N�1.

Similarly, if we vary the row index i in Eq. (10), we can write

down the scattering matrix for the mapping: fb�I�n,j , b
�O�
n,j g →

fa�I�n,j�1, a
�O�
n,j�1g. Combining these two steps gives us the scatter-

ing matrix representing the mapping: fa�I�n,j , a
�O�
n,j g →

fa�I�n,j�1, a
�O�
n,j�1g. Mathematically, that is to say,

2
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3
7777777775
, (12)

where Tj is of size �4N � 4� × �4N � 4� and can be expressed
as the product of two block diagonal matrices,

Tj � Diag�H,…,H
zfflfflfflffl}|fflfflfflffl{N�1

�Diag

��
0 1
1 0

�
,V, ⋅⋅⋅,V|fflfflfflffl{zfflfflfflffl}

N

,
�
0 1
1 0

��
:

(13)

We emphasize that the first block diagonal matrix on the right-
hand side of Eq. (13) is constructed via putting �N � 1�Hma-
trices along the main diagonal. Here readers should be aware
that the �N � 1�H matrices correspond to �N � 1� different
horizontal TBUs from top to bottom, and that to keep the no-
tation uncluttered, we have not introduced subscripts or super-
scripts on H to distinguish them. Each H might be different.
The second matrix on the right-hand side of Eq. (13) is con-
structed by putting a 2 × 2 matrix at the front and end, while
the middle is filled with NV matrices corresponding to N dif-
ferent vertical TBUs from top to bottom. Similarly, each V can
be different.

If we repeat Eq. (12)M times for different column indices j,
then we can obtain the overall scattering matrix for the map-
ping from fa�I�n;0, a

�O�
n;0 g to fa�I�n,M , a�O�

n,M g,
2
6666666664

a�I�0,M

a�O�
0,M

..

.

a�I�2N�1,M

a�O�2N�1,M

3
7777777775
� T

2
6666666664

a�I�0,0

a�O�
0,0

..

.

a�I�2N�1,0

a�O�
2N�1,0

3
7777777775
, (14)

where

T � TM−1 � � �T1T0: (15)

If we rearrange the order of entries to put the values related to
the direction I in the first several rows, and those related to the
direction O in the last several rows, we obtain

646 Vol. 11, No. 4 / April 2023 / Photonics Research Research Article



2
6666666666664
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3
7777777777775
, (16)

where P is a row permutation matrix of size
�4N � 4� × �4N � 4�. Note that P has a known structure,
and its entries are either 0 or 1. For later simplicity, we will
introduce the symbol a�I�M � �a�I�0,M ,…, a�I�2N�1,M �T and a�O�M �
�a�O�0,M ,…, a�O�

2N�1,M �T for the left-hand side of Eq. (16). Similar
notations are also used for the right-hand side of Eq. (16), so
that it can be simplified as�

a�I�M

a�O�M

�
� T⋆

�
a�I�0

a�O�
0

�
�

�
T⋆
11 T⋆

12

T⋆
21 T⋆

22

��
a�I�0

a�O�0

�
, (17)

where

T⋆ � PTTP, (18)

and we adopt the block matrix notation in the last equality.
Thus far, we have obtained a relation between the input

and the output. The ultimate scattering matrix T⋆ is related
to the individual V (or H) matrix of a vertical (or horizontal)
TBU device via Eqs. (18), (15), and (13), in sequence.
Furthermore, the relations from V and H matrices to the indi-
vidual PSs fθ,ϕg are also clear via Eqs. (11), (7), and (4). Thus,
we have obtained an analytical expression of T⋆ defined by all
PSs fθ,ϕg. Although it is difficult to explicitly write down the
expression for every entry in the T⋆ matrix, we do know the
sequential operations to construct it. Most importantly, all of
the operations involved (e.g., matrix-vector multiplication) are
differentiable, so that we can easily calculate ∂T⋆

∂θ or ∂T⋆

∂ϕ for any
fϕ, θg of any TBU device. As demonstrated later, this will form
the basis for our synthesis method.

Without loss of generality, we assume that our desired for-
ward light propagation is from left to right in the PPIC shown
in Fig. 4. Then we can regard the forward input a�I�0 at the left

and the backward input a�O�
M at the right both as given constant

vectors. Based on Eq. (17), we can now express the forward
output at the right a�I�M and the backward output at the left
a�O�0 as

a�I�M � �T⋆
11 − T

⋆
12T

⋆,−1
22 T21�a�I�0 � T12T

⋆,−1
22 a�O�M ,

a�O�
0 � T⋆,−1

22 a�O�
M − T⋆,−1

22 T⋆
21a

�I�
0 , (19)

where we use T⋆,−1
22 to represent the inverse of the matrix T⋆

22.
In reality, the backward input at right a�O�M will usually be set to
a zero vector, and the forward output at right is regarded as the
final response of the PPIC,

a�I�M � �T⋆
11 − T

⋆
12T

⋆,−1
22 T21�a�I�0 � G⋆a�I�0

, (20)

where for simplicity, we have denoted G⋆ � T⋆
11 −

T⋆
12T

⋆,−1
22 T21.

Several points are worth noting. First, both a�I�0 and a�I�M are
of size �2N � 2� × 1. This provides us with some flexibility to
synthesize multiple light-processing functions simultaneously.
For instance, we can feed an input wave from the top port
of the first vertical TBU, i.e., a�I�1,0 equal to 1 and all other entries

of a�I�0 equal to 0. Then the outputs at the second and third
entries of a�I�M can be used to synthesize two different light-
processing functions. Second, a�O�0 might not be zero in
Eq. (19) even if a�O�M is zero, because the information brought
by a�I�0 can recirculate back. This is revealed by the term
T⋆,−1
22 T⋆

21a
�I�
0 at the second line in Eq. (19). Third, recall we

assume that the yellow lines in Fig. 2 are ideal connections,
leading to the zero-one matrix in Eqs. (8) and (13). If the yel-
low lines are instead not ideal, we just need to revise the 2 × 2
zero-one matrix, while our derivation (as well as the later syn-
thesis method) still holds.

We make two additional remarks related to the yellow direct
connections in the top and bottom rows. First, from the appli-
cation perspective, the yellow direct connections in the top and
bottom rows of the mesh introduce a peculiarity. These con-
nections break the connection symmetry of the mesh, and
in particular break the clockwise/counterclockwise degeneracy
of the square waveguide mesh. Normally, when injecting light
in a square waveguide mesh, light will either circulate in a
clockwise or counterclockwise direction inside a unit cell,
but these circulations are not coupled. This means that in
the scattering matrix of a square waveguide mesh, at least half
of the elements are zero. By adding the connections in the top
and bottom rows, these clockwise/counterclockwise circula-
tions can be coupled and more generic mesh functions can
be defined.

Second, from the calculation perspective, introducing the
yellow direct connections lets us only need to provide the for-
ward input a�I�0 (i.e., 2N � 2 scalars) if we assume the back-
ward input aOM � 0. However, without these yellow direct
connections, we would have to set input values for those float-
ing ports in the top and bottom rows; otherwise, the conditions
are insufficient to determine the circuit response. Analytical
gradients can still be calculated in such a case, but our deriva-
tion will need substantial modification.

Fig. 4. Illustration of the forward input at the left and the backward
input at the right. Note that the directions I and O in the paren-
thesized superscripts are defined according to going into or coming
out of the associated vertical TBU, as defined in Fig. 3.
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3. HORIZONTAL RELAXATION

In the previous section, we derive the scattering matrix for a
square-mesh PPIC in a general form. In this section, we con-
sider a simplified case under the assumption of horizontal re-
laxation: all horizontal TBUs are configured with θ � 0 and
ϕ � π, and thus operate in the bar state [4]. This implies that
in Fig. 1, the light propagates from Port A1 to B1, A2 to B2, or
in reverse, but does not go from A1 to B2. Namely, when pass-
ing a horizontal TBU, the light is confined in the upper or
lower arm.

As a starting point, we consider a 1 ×M square-mesh PPIC
under this horizontal relaxation. Its schematic is shown in
Fig. 5. In this case, the G⋆ matrix defined in Eq. (20) is of
size 4 × 4. When M is odd, its expression is

G⋆ �

2
664
e−jMωτ 0 0 0
0 0 −ξM 0
0 ξM 0 0
0 0 0 −e−jMωτ

3
775 �M � 1, 3, …�,

(21)

and when M is even, its expression is

G⋆ �

2
664
e−jMωτ 0 0 0
0 ξM 0 0
0 0 ξM 0
0 0 0 e−jMωτ

3
775 �M � 2, 4, …�:

(22)

The e−jMωτ term inside the matrix corresponds to the output at
the top or bottom line in Fig. 5. Intuitively, this makes sense,
since we have M horizontal TBUs at the top line, and under
horizontal relaxation, these M TBUs function as M time delay
elements. This in turns implies that the absolute value of ξM in
Eqs. (21) and (22) is more interesting and can be utilized to
synthesize light-processing functions. jξM j can be proven to
have the following form:

jξM j �

��������
QM−1

m�0�cmf m − dmem�
� 0 1 � ·QM−1

m�0

�
cm dm
em f m

�
·
�
0
1

�
��������, (23)

where fcm, dm, em, f mg are scalar values associated with themth
vertical TBU (m � 0, 1, …,M − 1). Specifically, as shown in
Fig. 5, if we denote the PSs inside the mth vertical TBU as
fθm,ϕmg, we have the following relations:

cm � je−j2ωτ
p2m − q2m
2qm

,

dm � −je−jωτ
pm
qm

,

em � jejωτ
pm
qm

,

f m � −2jej2ωτ
1

qm
, (24)

where for simplicity, we have denoted τ�ω� � neff �ω�L
c , and

pm � e−jθm − e−jϕm ,

qm � −e−jθm − e−jϕm : (25)

With Eq. (24), the numerator in Eq. (23) can be proven to be
1, and the denominator is a polynomial in ej2ωt . As an example,
we have

jξ1j �
���� 1

2ej2ωτ∕q0

���� �
���� q02 e−j2ωτ

����,
jξ2j �

���� 1

�−4ej4ωτ � p0p1�∕q0q1

���� �
���� q0q1e

−j4ωτ

−4� p0p1e
−j4ωτ

����: (26)

Thus, a 1 ×M square PPIC, under horizontal relaxation, can be
used to synthesize an IIR filter with zeros at the origin and poles
generally complex.

A natural thought would be to extend the 1 ×M square
PPIC under horizontal relaxation to an N ×M square
PPIC. Fortunately, due to the assumptions of our horizontal
relaxation, this is straightforward. Specifically, in Eqs. (21)
and (22), we have a G⋆ matrix with a size of 4 × 4 correspond-
ing to N � 1. For N > 1, we will have a G⋆ matrix with a size
of �2N � 2� × �2N � 2�. Its first and last entries on the main
diagonal will still be e−jMωτ, as in Eqs. (21) and (22). The
middle part of G⋆ will be filled with N different ξM in a
similar way to in Eqs. (21) and (22), where the nth ξM corre-
sponds to the nth row in the PPIC. To intuitively understand
this, notice that the horizontal relaxation actually confines the
horizontal propagation of signals in the same arm. Thus, the
light propagating in the first row will never go to the second
row, which means the transfer functions of two different rows
are decoupled.

An important implication from this example is that even
under this simplifying horizontal relaxation, the final transfer
function shown in Eq. (23), though it has an analytical form,
does not provide a direct solution–that is, it does not provide us
with a direct analytical filter synthesis method. This motivates
our optimization-based synthesis method proposed in the next
section.

4. REALIZATION OF LIGHT-PROCESSING
FUNCTIONS

In this section, we explain how we utilize our derivation to ef-
ficiently synthesize light-processing functions on an N ×M
square-mesh PPIC. Assume that we want to attain N light-
processing functions represented by the complex transfer func-
tions fUn�ω�jn � 1, 2, ⋅⋅⋅,N g specifying the magnitude and

Fig. 5. Schematic of a 1 ×M square PPIC. The PSs in green hori-
zontal TBUs are fixed to θ � 0 and ϕ � π.
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phase responses in a range �ωmin,ωmax�. We choose N grid

frequency points fω1 � ωmin,ω2 � ωmin � Δω,…,ωN grid
�

ωmaxg in this desired angular frequency range with incremental
step equal toΔω. Then we can define an error or cost function,

Cost �
XN grid

k�1

XN
n�1

ja�I�2n,M �ωk� − Un�ωk�j2: (27)

Note that here we have made the dependence of a�I�2n,M on the
angular frequency explicit. If we can make the cost in Eq. (28)
sufficiently small by adjusting all PSs fθ,ϕg of all vertical and
horizontal TBUs, then we succeed in synthesizing the nth light-
processing functions at the bottom port of the nth row
(i.e., A2n,M ). This can be done by using an optimization tech-
nique: we minimize the cost in Eq. (28) with respect to all PSs
fθ,ϕg,

min
x

Cost �
XN grid

k�1

XN
n�1

ja�I�2n,M �ωk, x� − Un�ωk�j2, (28)

where we use x to collectively represent all PSs fθ,ϕg and make
the dependence of x explicit in the cost function.

However, the difficulty lies in the fact that this optimization
problem is extremely high-dimensional. For an N ×M square-
mesh PPIC as shown in Fig. 2, it has 2�2N � 1�M PSs in total.
Considering a fairly small 10 × 10 PPIC, there are already 420
PSs to tune. To the best of our knowledge, such a high-dimen-
sional optimization problem is inefficient to solve unless using a
gradient descent method with analytical gradients. Specifically,
nongradient methods take a long time to converge, and gra-
dient descent methods based on numerical differentiation re-
quire many function evaluations to calculate the gradient
once. Importantly, in our case, we do have the analytical deriva-
tive ∂Cost∕∂θ or ∂Cost∕∂ϕ for any θ and ϕ based on our pre-
vious derivations, because the operations that relate θ (or ϕ) to
the variable Cost are all differentiable. As a result, we can use
gradient descent optimization to minimize Eq. (28) to perform
the synthesis task. For details about how to calculate the gra-
dient, please refer to Appendix B.

We note that in some applications, the desired light-process-
ing functions only have requirements on the magnitude, but
with no constraints on the phase. In such cases, we can choose
fUn�ω�jn � 1, 2, …,N g to be real functions representing
the desired magnitude response and revise the cost in
Eq. (28) as

CostLinear Mag �
XN grid

k�1

XN
n�1

rkjja�I�2n,M �ωk, x�j − Un�ωk�j2, (29)

where rk (k � 1, 2, …,N grid) is a user-defined positive real sca-
lar controlling the weight ratio. As will be demonstrated in our
numerical results, we find that building upon Eq. (29) and us-
ing logarithm magnitude works even better, especially for syn-
thesizing an optical filter where stop band and passband have
very different magnitude requirements. This logarithm cost is

CostLog Mag �
XN grid

k�1

XN
n�1

rkjln ja�I�2n,M �ωk,x�j− lnUn�ωk�j2: (30)

5. NUMERICAL RESULTS

In all our numerical experiments, we choose neff � 2.35,
L � 250 μm, c � 3 × 108 m∕s, and α � 0.99. We do not
take dispersion effects into account (i.e., neff is considered to
be constant and independent of ω, which means that
ng � neff � 2.35). Real waveguides do have dispersion, but
this does not affect the method, as long as the dispersion of
neff can be described by an analytically derivable function
(e.g., with the help of ng ). Moreover, we emphasize that in high
refractive index contrast platforms, neff usually depends on fre-
quency, and the dispersion effect causes a narrow free spectral
range (FSR) in the PPIC. Before moving on, we define a value
for later simplicity,

Δf � c
ngL

� 3 × 108

2.35 × 250 × 10−6
≈ 510.638 GHz: (31)

When plotting the figures of frequency response, we will nor-
malize the frequency x axis following the rule,

Table 1. Detailed Information for All Our Experimentsa

Input Port Output Port Target (s) Cost Results Run Time Phase Acc/FSRb

No. 1, routing A1,0 A2,5 Mag, phase Eq. (28) Fig. 6 0.27 min 8L
No. 2, splitting A1,0 A2,5,A4,5,A6,5 Mag Eq. (29) Fig. 7 1.09 min 8L, 10L, 17L
No. 3, splitting (c) A1,0 A3,5,A7,5 Mag, phase Eq. (28) Fig. 8 0.63 min 10L, 10L

No. 4, splitting (c) A5,0 A1,5,A3,5,A7,5,A9,5 Mag, phase Eq. (28) Fig. 9 4.48 min Δf
2 , Δf

2 , Δf
4 , Δf

4

No. 5, filtering A1,0 A2,5 Mag Eq. (30) Fig. 10 81.59 min Δf
2

No. 6, WDM A5,0 A3,5,A7,5 Mag Eq. (30) Fig. 11 108.25 min Δf
12 ,

Δf
12

No. 7, WDM and filtering 1 at A1,0, 1j at A10,0 fA2,5,A6,5g,A10,5 Mag Eq. (30) Fig. 12 110.34 min Δf
12 ,

Δf
12 ,

Δf
2

aAll are performed on a 5 × 5 square mesh. “c” is short for “coherent.” “Mag” is short for “magnitude.”When using the logarithm cost Eq. (30), we set rk to 10 and 1
for frequency points in the passband and stop band, respectively. If there is no stop band (e.g., Case 2), rk is set to 1.0 for all k.

bIn Cases 1, 2, and 3, the synthesized results have no interference; we use phase accumulation to depict how many TBUs the light path passes through (e.g., 8L). In
Cases 4, 5, 6, and 7, interference occurs and it becomes less clear that the light path goes through a specific number of TBUs. Thus, we use the metric FSR (e.g.,Δf ∕2)
in these cases.
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f norm � 2

Δf
�f − f center�, (32)

where f norm and f represent the frequency value after and be-
fore normalization, respectively. Here f center represents the
center frequency,

f center �
c

λcenter
� 3 × 108

1550 × 10−6
≈ 193.548 THz: (33)

For instance, Eq. (32) will map ff center − 0.5Δf , f center,
f center � 0.5Δf g to f−1,0,1g, respectively. Recall that FSR rep-
resents the periodicity of the frequency response when interfer-
ence occurs. Provided our introduced notation Δf , these
statements are equivalent: (i) FSR � c∕ng�K L� � Δf ∕K ;
and (ii) in the normalized frequency figure, a range of �−1,1�
corresponds to K periods, or one period has the length
2∕K . Defining the value Δf and plotting the frequency re-
sponse on a normalized frequency axis give us a consistent
way to visualize the results in different examples.

Our algorithm is implemented in Python, and all our
numerical experiments are performed on the same RedHat
Linux server with 16 Intel Xeon E7-4850 CPUs working at
2.1 GHz. The initial guess required by the gradient descent
optimization is randomly generated, consistent with our claim
that our synthesis method does not require human design
knowledge. However, we emphasize that in most of our exam-
ples, we are optimizing an interferometric system with many
phase variables, and thus the cost function for most configu-
rations will have many local peaks and valleys. The specific con-
figuration coming out of the optimization algorithm will
therefore depend strongly on the initial condition. Table 1
comprehensively lists the detailed information of all our experi-
ments. In the following paragraphs, we comment on each case.

For Case 1, we consider routing the input light to an output
port with minimum cost over the entire frequency band.
Results are shown in Fig. 6. The synthesized path shown in
Fig. 6(e) has gone through eight TBUs. Thus, according to
Eq. (4), we know that the synthesized configuration has a phase
accumulation corresponding to 8L, or more specifically, that

the output port has an e−j
ωneff 8L

c dependence. This implies that
we should witness a phase change of 2π over a frequency range
of c∕ng�8L� � Δf ∕8, i.e., an interval with length 0.25 in the
normalized frequency figure. This is indeed the case, as shown
in Fig. 6(h). Also, if zooming in, Fig. 6(h) is exactly the same as
Fig. 6(b). Since we have considered a loss term α � 0.99 in our
compact TBU model, the synthesized normalized power trans-
mission shown in Fig. 6(g) cannot reach 0 dB. We see that the
synthesized light path shown in Fig. 6 relies on the top line and
passes through eight TBUs, and a quick calculation shows
20 log 0.998 ≈ −0.70, consistent with Fig. 6(g). Last, but
not least, Fig. 6(d) also demonstrates that only the first few rows
have been adjusted by the optimization routine. This is as ex-
pected, since our input and output ports are both located at the
top part of the mesh.

For Case 2, we consider equal power splitting to three out-
put ports. Results are shown in Fig. 7. We note that due to
reciprocity, combining three light inputs can also be readily
solved. As shown in Fig. 7(d), the three light paths pass through
8, 10, and 17 TBUs, respectively, implying the three output

responses should have phase accumulations corresponding to
8L, 10L, and 17L. Namely, we will see a phase change of
2π over a frequency range of Δf ∕8, Δf ∕10, and Δf ∕17, re-
spectively, corresponding to an interval with length 2/8, 2/10,

Fig. 6. Case 1, routing. (a) and (b) show the target response U �ω�
with magnitude normalized to input, and phase, respectively, used in
the cost function. (c) shows a heat map of all optimized PS values (see
Appendix C for colored cell ordering details). (d) shows the resulting
optimized configuration (π omitted). Red lines are those PS changes
larger than 0.2π before and after optimization, while blue lines are
those with changes smaller than 0.2π. (e) shows the port magnitude
at frequency f center—orange for inward direction and purple for
outward direction (refer to Fig. 3 for definition). Port magnitudes less
than 0.2 are not drawn. The light path is plotted in black. (f ) shows the
power coupling ratio (i.e., cos2 ϕ−θ

2 ) of each TBU with a percentage in a
shaded bounding box. The edge color of the TBU shows common PS
π−ϕ−θ

2 ; see Appendix D; (g) synthesized magnitude response; (h) syn-
thesized phase response; (g) and (h) show the frequency response that
the optimized configuration is able to achieve. The square meshes in
(e) and (f ) share the same color bar, shown in (c).
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and 2/17 in the normalized frequency figure. As shown in
Fig. 7(g), these correctly reflect the 4, 5, and 8.5 periods in
the interval of �−0.5,0.5�. One subtlety here is that when
designing the target function U �ω�, we consider the power loss
due to α � 0.99 and provide some margin in advance. Namely,
the target magnitude chosen here is 0.5 on a linear scale
[i.e., about −6.0 dB in Fig. 7(a)], such that 0.52 × 3 �
0.75 < 1.0. Alternatively, choosing all three target magnitudes
to be

ffiffiffiffiffiffiffiffi
1∕3

p
on a linear scale would be problematic. From a

numerical perspective, the optimization routine would seek

to push all three output magnitudes to
ffiffiffiffiffiffiffiffi
1∕3

p
, but since this

is unattainable simultaneously due to the loss term α, it could
happen that the resulting three outputs would be unequal
(e.g.,

ffiffiffiffiffiffiffiffiffi
0.30

p
,

ffiffiffiffiffiffiffiffiffi
0.31

p
,

ffiffiffiffiffiffiffiffi
1∕3

p
). Using a target magnitude that

is attainable, as we do here, can prevent this issue. However,
one side effect of a preprovided power loss margin is that it
might encourage the light path to go through more TBUs.
For instance, the zigzag light path with 17L in this example
is only one possible solution. It is obvious from Fig. 7(d) that
this light path could propagate to the right bottom direction at
the port with magnitude 0.57 in the middle, instead of going to
the left bottom as it currently does.

For Case 3, we consider coherent splitting. Namely, we want
to split the input light to two output ports but now with iden-
tical phase. Results are shown in Fig. 8. As seen in Fig. 8(e),
both light paths pass through 10 TBUs, implying that a fre-
quency range of Δf ∕10 (i.e., an interval with length 0.2 in
the normalized frequency figure) is required for a phase change
of 2π. This is also confirmed by Fig. 8(h). Moreover, we note
that in a 5 × 5 square mesh, without using the top or bottom
line, the minimum number of TBUs required to propagate
light from a port at left to a port at right is 10. Moreover,
the optimization routine obtains a synthesized result that seems
natural and readily understandable. Namely, we chose the out-
put port row indices to be 3 and 7 in this case, while the input
port row index was 1 (see Table 1). The resulting synthesized
light path first goes from top left to the bottom right direction
without any splitting, and then approximately stops at the
middle between the output ports. Then it performs a
50%:50% power splitting and the resulting two light paths
keep propagating without further splitting all the way to the
output ports. This approach of first propagating to the middle
followed by a 50%:50% splitting is a generic strategy to syn-
thesize one-input to two-output coherent splitting and is auto-
matically found by the optimization.

For Case 4, we consider a more complicated version of
Case 3. Now, we attempt to do coherent splitting to four out-
put ports. Results are shown in Fig. 9. Due to the structure of
the square mesh, it is actually impossible to find four light paths
all with the same length, meaning that the goal in this case
is unachievable. Specifically, because the four output ports do
not belong to the same clockwise/counterclockwise sub-mesh,
there will be at least one L light path difference. As shown in
Fig. 9(e), it seems that the optimization attempts to utilize in-
terference to approach this unattainable goal as closely as pos-
sible. From Fig. 9(g), we see that the red and blue curves both
have an FSR equal to 0.5Δf , while the green and cyan curves
both have an FSR equal to 0.25Δf . The difference of FSRs
also indicates that we cannot achieve coherent splitting at an
arbitrary frequency point, since these paths have a periodicity
mismatch. This is also verified in Figs. 9(g) and 9(h). Our syn-
thesized results do satisfy the given targets shown in Figs. 9(a)
and 9(b): the optimization achieves coherent splitting in the
normalized range �−0.05,0.05�, which corresponds to around
a 25 GHz range in reality. However, we also notice that outside
this range, the optimization cannot always achieve coherent
splitting. An important note is that there are several rings in
the synthesized configuration in this case and explains why

Fig. 7. Case 2, splitting. (a) Target equal three-way split magnitude
response (normalized to the input); (b) heat map of all optimized PS
values; (c) optimized configuration (π omitted); (d) port magnitude at
frequency f center; (e) power coupling ratio and common PS; (f ) syn-
thesized magnitude reponse; (g) synthesized phase response; (f ) and
(g) show the frequency response that the optimized configuration is
able to achieve. There are three lines colored in red, blue, and green
in (a), and they overlap here and in (f ).
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we obtain a frequency-dependent response in Fig. 9(g).
However, port magnitudes associated with some of the rings
are smaller than 0.2, and thus are not drawn.

For Case 5, we consider optical filtering. Results are shown
in Fig. 10. As seen in Fig. 10(d), many rings have formed in the
obtained configuration. We successfully achieve near 0 dB in
the passband, and about −70 dB in the stop band. The FSR is
about 0.5Δf , as depicted in Fig. 10(f ).

As Case 6, we consider two-way wavelength division multi-
plexing (WDM), also called an optical interleaver, where the

spectrum is separated into even and odd frequency channels
over two outputs. From the results in Fig. 11(d), it is clear that
many rings have formed in the optimized configuration.
Moreover, Fig. 11(d) is plotted at the central frequency, and
thus the other output port magnitudes are less than 0.3 and
not drawn.

For Case 7, we consider synthesizing two light-processing
functions (WDM and optical filtering) at the same time, given
two in-phase inputs. Namely, we provide a complex input
1.0� 0.0j at A1,0 and a complex input 0.0� 1.0j at A10,0.

Fig. 9. Case 4, coherent four-way splitting. (a) and (b), respectively,
show the target equal four-way magnitude split and phase response.
(c) Heat map of all optimized PS values; (d) optimized configuration
(π omitted); (e) port magnitude at frequency f center; (f ) power cou-
pling ratio and common PS; (g) synthesized magnitude response;
(h) synthesized phase response; (g) and (h) show the frequency re-
sponse that the optimized configuration is able to achieve. There
are four lines colored in red, blue, green, and cyan in (a), and they
overlap here and in (b).

Fig. 8. Case 3, coherent two-way splitting. (a) and (b), respectively,
show the target equal magnitude split with equal phase response.
(c) Heat map of all optimized PS values; (d) optimized configuration
(π omitted); (e) port magnitude at frequency f center; (f ) power cou-
pling ratio and common PS; (g) synthesized magnitude response;
(h) synthesized phase reponse; (g) and (h) show the frequency response
that the optimized configuration is able to achieve. There are two lines
colored in red and blue in (a), and they overlap here and in (b), (g),
and (h).

652 Vol. 11, No. 4 / April 2023 / Photonics Research Research Article



The two output ports for WDM are A2,5 and A6,5, while that
for filtering is A10,5. Results are shown in Fig. 12. Note that in
Fig. 12(d), we see that some inner port magnitudes are larger
than 1.0. This is possible because (i) the total input power is
2.0, and (ii) when a ring is formed, it can lead to the “intensity
buildup” phenomenon [27,28] near resonance.

To better quantify the performance of our method, we im-
plement two baseline methods for comparison: (i) differential
evolution, a population-based gradient-free global optimization
approach; and (ii) gradient descent optimization with numeri-
cal differentiation. Table 2 summarizes the run time of our
method and the two baselines. We see that our proposed

method achieves about 3× computation time cost reduction
compared with the implemented baseline methods.

We emphasize that gradient descent optimization (with po-
tentially nonconvex cost functions such as ours) is known to be
only able to find local minima, and thus the specific configu-
ration coming out of the optimization algorithm will depend
strongly on the initial condition. To justify the practical utility
of the proposed method, we also need to show that even with
different initializations, the optimization routine can always
yield a good result. Due to space limitations, we take Cases
1 and 5 as examples. We run our method with different ini-
tializations and plot the results in Figs. 13 and 14. These

Fig. 10. Case 5, optical filtering. (a) Target magnitude response;
(b) heat map of all optimized PS values; (c) optimized configuration
(π omitted); (d) port magnitude at frequency f center; (e) power cou-
pling ratio and common PS; (f ) synthesized magnitude response;
(g) synthesized phase response; (f ) and (g) show the frequency re-
sponse that the optimized configuration is able to achieve. Note that
in this case, only port magnitudes over 0.3 are plotted in (d) for clarity.

Fig. 11. Case 6, WDM. (a) Target magnitude response; (b) heat
map of all optimized PS values; (c) optimized configuration (π omit-
ted); (d) port magnitude at frequency f center; (e) power coupling ratio
and common PS; (f ) synthesized magnitude response; (g) synthesized
phase response; (f ) and (g) show the frequency response that the opti-
mized configuration is able to achieve. Note that in this case, only port
magnitudes over 0.3 are plotted in (d) for clarity.
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demonstrate the robustness of our method to random initial-
ization. Note that for our applications, we do not necessarily
need a global optimum, while a locally optimal configuration
is already sufficient. Note that when the PPIC size further scales
up, we would expect the optimization result to be more
strongly impacted by the initialization, because more local op-
tima might exist for a higher dimensional optimization
problem.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an efficient synthesis method that can
be applied to realize configurations for a wide range of light-
processing functions on a square-mesh PPIC. The key property
that makes our method efficient is that we analytically derive
the gradients of the mean squared error, or the log ratio, be-
tween target and realized circuit response with respect to the
tunable PSs based on scattering matrix theory. Then, a gradient

Fig. 12. Case 7, simultaneously synthesizing two light-processing
functions for two in-phase inputs. Figure caption is similar to that
of Fig. 6, except that in this case, only port magnitudes over 0.3
are plotted in (d) for clarity.

Table 2. Run Time (in min) Comparison of Our Method
with DE and NDa

Ours DE ND

No. 1, routing 0.27 >100 ≈22.44
No. 2, splitting 1.09 >100 ≈78.02
No. 3, splitting (c) 0.63 >100 ≈61.72
No. 4, splitting (c) 4.48 >100 ≈80.26
No. 5, filtering 81.59 >400 >400
No. 6, WDM 108.25 >400 >400
No. 7, WDM and filtering 110.34 >400 >400

aDE is short for differential evolution, a population-based gradient-free global
optimization approach. ND is short for gradient descent optimization with
numerical differentiation. We stop DE/ND when the synthesized results attain
similar cost values to ourmethod or similar curve shapes in themagnitude or/and
phase response figures. The “>” sign indicates that the corresponding algorithm’s
result is not comparable to ours within the specified time.

Fig. 13. Three different configurations are obtained under three
random initializations; all satisfy the goal of routing in Case 1.
Each row represents one synthesized configuration. Figure 6 is not
included here. Left column, the optimized configuration (π omitted);
right column, power coupling ratio (%) and common PS; all syn-
thesized magnitude responses are identical to those in Fig. 6(g), hence
not shown.
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descent optimization can be carried out to synthesize the de-
sired light-processing functions at time scales of minutes.

Other PPIC connection topologies: We consider a square mesh
in this paper because it provides the clearest derivation of the
scattering matrix elements, compared to triangular and hexago-
nal meshes, due to the fact that the TBUs are placed either
vertically or horizontally. Nevertheless, we emphasize that even
though identifying column 1, 2, …,M as shown in Fig. 2 is
harder for a triangular or hexagonal mesh, it is still possible, and
thus our method is also applicable to these topologies. For ex-
ample, the authors in Ref. [24] have successfully derived a sys-
tem-level transfer function for a hexagonal mesh using an
approach similar to ours. However, when a mixture of triangu-
lar, square, and hexagonal mesh is used, or an arbitrary connec-
tion of TBUs is adopted, the current implementation of our
method or Ref. [24] can fail because it may not be possible
to divide the circuit into columns, and we both build the scat-
tering matrix iteratively going through column by column. In
the future, we will expand our approach to arbitrary connection
topologies.

Dealing with nonideality: Two assumptions used in this pa-
per (i.e., omitting the last column and assuming ideal yellow
lines in Fig. 2) are only for ease of mathematical notation.
These assumptions can be relaxed, consistent with our method.

In a real-world scenario, dispersion effects can exist either due
to the frequency-dependent effective index of the waveguide, or
due to a frequency-dependent power coupling ratio in the
50%:50% DCs. Furthermore, each building block TBUmight
be slightly different due to process variations in manufacturing.
All of these nonidealities can be addressed, as long as we can
describe them as differentiable functions of frequency. Indeed
we can do so, for example by using a Taylor expansion and
introducing a group index for dispersion.

Another major source of nonideality comes from the ther-
mal cross talk of heaters, which we have not considered in the
main text. However, by using thermal eignemode decomposi-
tion [29], our proposed method remains applicable under a
change of optimized variables and can account for thermal cross
talk. A similar treatment can be adopted for other nonidealities
of actuators in PPICs. Please refer to Appendix E for details.

Last, but not least, we emphasize that when nonidealities
(e.g., process variation, dispersion effect, or beam-splitting
error) are considered, a more complex variant of the proposed
compact model might be needed. Please refer to Appendix F for
details.

Numerical considerations: As shown in our numerical results,
choosing an appropriate cost function is of crucial importance,
especially in a case when both a stop band and a passband are
present at the same time. In our paper, we use a weighted log-
arithm cost function for such cases, but note that other options
also exist, such as a combination of linear and logarithm cost
[30]. The choice of cost function can substantially impact the
optimized results, and it will be interesting to consider if better
cost functions exist. When doing so, it will be beneficial to
explore differentiable cost functions, since gradient descent
optimization is preferred in this problem. Exploration could
also overcome another limitation of our current cost func-
tions. Ideally, we want the cost to be zero if the achieved re-
jection ratio (e.g., j−80j dB) is already larger than the target
(e.g., j−70j dB) in the stop band. However, implementing this
threshold strategy might degrade the performance of gradient
descent optimization, as it will introduce nondifferentiable
points in the optimization search space.

We also note that the matrix V shown in Eq. (6) is not
invertible when the two PSs fθ,ϕg have a π difference
(i.e., θ � π � ϕ or vice versa). In this case, our approach will
fail. This is consistent with our intuition: when the PSs have
a π difference, the vertical TBU is in the bar state, and knowing
all port magnitudes related to “A” does not confer any knowl-
edge on the port magnitudes related to “B” [see Fig. 3 and
Eq. (6)]. In a real numerical implementation, this means that
if the phase difference jϕ − θj is close to π, then the associated
V will be ill-conditioned, and our simulated frequency response
at ports and the gradients might be inaccurate. Fortunately, in
our optimized results, we have not encountered this issue.
Observant readers might find that, for example, in Fig. 11(e),
there exist a few vertical TBUs with a power coupling ratio
reported as 0, implying that they are in bar states. However, this
is because we only display up to integer percentage when draw-
ing the figure for space reasons. To support the claim made in
the main text, we have printed the condition number of T⋆

defined in Eq. (18) as a way to examine numerical stability

Fig. 14. Three different configurations are obtained under three
random initializations; all satisfy the goal of filtering in Case 5.
Each row represents one synthesized configuration. Figure 10 is
not included here. Left column, synthesized magnitude response; right
column, optimized configuration (π omitted).
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when running the program. But we warn of the need to pay
attention to this case. In the future, this problem should readily
be solved when we expand our approach to support any con-
nections, since at that time, our scattering matrix will be set up
based on graph theory, without requiring inverting V.

APPENDIX A: JUSTIFICATION FOR THE
COMPACT MODEL

Here we justify the validity of the compact TBUmodel given in
Eq. (2). Considering all possible locations of waveguides in a
TBU, the most general form of the compact model is

F � 1

2
Λ1

�
1 −j
−j 1

�
Λ2

�
e−jθ 0
0 e−jϕ

�
Λ3

�
1 −j
−j 1

�
Λ4, (A1)

where we have defined Λi (i � 1, 2, 3, 4),

Λi �
�
αie

−jω
neff Li

c 0

0 α 0
ie
−jω

neff L
0
i

c

�
, (A2)

and fLi, L 0
ig represent the length of waveguide in the upper and

lower arm, respectively. For instance, here Λ2 represents the
waveguides between the right DC and the middle PSs. As long
as the waveguides are balanced in the upper and lower arms
(i.e., Li � L 0

i and αi � α 0
i for all i � 1, 2, 3, 4), then Eq. (A1)

can be simplified as

F � 1

2

�
1 −j
−j 1

��
e−jθ 0
0 e−jϕ

��
1 −j
−j 1

�
αe−jω

neff L
c , (A3)

where L equals the sum of all Li, and α equals the product of
all αi,

L �
X4
i�1

Li, α �
Y4
i�1

αi : (A4)

Fortunately, the assumption of balanced waveguides is only a
mild one: imbalanced waveguides are seldom used in PPICs, so
our compact model remains applicable.

APPENDIX B: EXAMPLE OF CALCULATING THE
GRADIENT

According to Eq. (20) of the main text, we can calculate the
derivative of a�I�M with respect to one PS θ,

∂a�I�M

∂θ
� ∂

∂θ
�G⋆a�I�0 � � ∂G⋆

∂θ
a�I�0 � ∂�T⋆

11 − T
⋆
12T

⋆,−1
22 T21�

∂θ
a�I�0

�
�
∂T⋆

11

∂θ
−
∂T⋆

12

∂θ
T⋆,−1
22 T21

− T⋆
12

∂T⋆,−1
22

∂θ
T21 − T⋆

12T
⋆,−1
22

∂T21

∂θ

�
a�I�0

�
�
∂T⋆

11

∂θ
−
∂T⋆

12

∂θ
T⋆,−1
22 T21

� T⋆
12T

⋆,−1
22

∂T⋆
22

∂θ
T⋆,−1
22 T21 − T⋆

12T
⋆,−1
22

∂T21

∂θ

�
a�I�0 ,

(B1)

where in the last line we have used the property of derivative of
matrix inverse. Namely, for a matrix R, we have

∂R−1

∂θ
� −R−1 ∂R

∂θ
R−1: (B2)

Due to the block matrix definition,

T⋆ �
�
T⋆
11 T⋆

12

T⋆
21 T⋆

22

�
, (B3)

we also have

∂T⋆

∂θ
�

" ∂T⋆
11

∂θ
∂T⋆

12

∂θ
∂T⋆

21

∂θ
∂T⋆

22

∂θ

#
: (B4)

In other words, if we know T⋆ and ∂T⋆

∂θ , then the derivative ∂a�I�M
∂θ

is known. T⋆ is straightforward, as depicted in Eq. (18).
As an example, if the θ we consider corresponds to the ver-

tical TBU at Row 1 and Column 0, then only T0 depends on
this θ, so that we have

∂T⋆

∂θ
� PTTM−1…T1 ∂T

0

∂θ
P: (B5)

According to Eq. (13) in the main text, we know

T0 � Diag�H,…,H
zfflfflfflffl}|fflfflfflffl{

�
N�1

Diag

��
0 1
1 0

�
, V,…,V|fflfflfflffl{zfflfflfflffl}

N

,
�
0 1
1 0

��
,

(B6)

and that the considered θ of the vertical TBU at Row 1 and
Column 0 occurs in the first V matrix inside Diag�·�. Thus,
we have

∂T0

∂θ
�Diag�H,…,H

zfflfflfflffl}|fflfflfflffl{
�

N�1

Diag

��
0 0
0 0

�
,
∂V
∂θ

,0,…,0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N

,
�
0 0
0 0

��
:

(B7)

Since ∂V∕∂θ is straightforward using Eqs. (7) and (4) in the
main text, we can calculate ∂a�I�M ∕∂θ by using Eqs. (B7),
(B5), (B4), and (B1) in sequence. With the derivative
∂a�I�M ∕∂θ available, it is easy to calculate the derivative of
Cost defined in Eq. (28) in the main text with respect to θ,

∂Cost
∂θ

� 2
XN grid

k�1

XN
n�1

�a�I�2n,M �ωk� − Un�ωk��
∂a�I�2n,M �ωk�

∂θ
: (B8)

Here
∂a�I�

2n,M �ωk�
∂θ is the entry at index 2n of ∂a�I�M

∂θ .

APPENDIX C: COLOR CELL ORDER IN
HEAT MAP

We replot Figs. 6(c) and 6(e) in Fig. 15 below to demonstrate
how we draw the heat map. Starting from the top left corner of
the heat map with a row-first order, the color cells represent θ of
vertical TBUs (cells with gray number annotations 1 through
25), then ϕ of vertical TBUs (cells with annotations 26 through
50), then θ of horizontal TBUs (cells annotated from 51 to 80),
and finally ϕ of horizontal TBUs (cells annotated from 81
to 110).

656 Vol. 11, No. 4 / April 2023 / Photonics Research Research Article



APPENDIX D: POWER COUPLING AND
COMMON PS

Recall the compact model of a TBU as shown in Eq. (A3). If we
only focus on the first several terms, we have

0.5 ×
�
1 −j

−j 1

��
e−jθ 0

0 e−jϕ

��
1 −j

−j 1

�

� 0.5
�
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−je−jθ − je−jϕ −e−jθ � e−jϕ

�

� 0.5e−jϕ
�

e−j�θ−ϕ� − 1 −j�e−j�θ−ϕ� � 1�
−j�e−j�θ−ϕ� � 1� −e−j�θ−ϕ� � 1

�

� e−jϕ
�
j sin α

2 e
jα2 −j cos α

2 e
jα2

−j cos α
2 e

jα2 −j sin α
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�
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α
2

�
sin α

2
−cos α

2

−cos α
2 −sin α

2

�

� ej�π2−ϕ�α
2�|fflfflfflffl{zfflfflfflffl}

Common phase shift

×
�

sin α
2

−cos α
2

−cos α
2 −sin α

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Power coupling matrix

, (D1)

where for simplicity, we have denoted α � −�θ − ϕ�, and used
the following equations to do the simplification:

0.5�ejα − 1�� j sin
α

2
ej

α
2,

0.5�ejα � 1�� cos
α

2
ej

α
2: (D2)

The power coupling ratio is represented by �cos α
2�2 � cos2 ϕ−θ

2 .
This is shown by the shaded gray area in Fig. 6(f ) of the main
text. Based on Eq. (D1), we define π

2 − ϕ� α
2 � π

2 −
ϕ�θ
2 as the

common PS and mark it using colors in the background of
Fig. 6(f ).

APPENDIX E: CONSIDERING THERMAL CROSS
TALK AND OTHER NONIDEALITIES

Recall that in the main text, we solve Eq. (28) to obtain a con-
figuration for a desired light-processing function. In one impor-
tant real-world scenario (thermally controlled phase shifters),
the PPIC delivers power to heaters at the phase shifters.
However, this process involves nonideal thermal cross talk.
This can be mathematically represented by [29]

h�Φp� � x, (E1)

where Φ is the thermal coefficient matrix, usually with ones
on the diagonals and small off-diagonal entries (i.e., diagonal-
dominant), p denotes the delivered power by the heaters at
phase shifters, h represents the function mapping from power
to PS, and x represents all PSs. As an example, an ideal case
without thermal cross talk corresponds to Φ � I.

With the help of Eq. (E1), our proposed method remains
applicable when considering thermal cross talk. Specifically, we
can now optimize with respect to p instead of x,

min
p

Cost �
XN grid

k�1

XN
n�1

ja�I�2n,M �ωk, x� − Un�ωk�j2

s:t:; h�Φp� � x, (E2)

or, more densely,

min
p

Cost �
XN grid

k�1

XN
n�1

ja�I�2n,M �ωk, h�Φp�� − Un�ωk�j2: (E3)

Note that h and Φ are known (or could be characterized) once
a PPIC is fabricated. Thus, the above optimization is well de-
fined with respect to p. Since the extra involved operations,
multiplying by Φ and mapping by h, are differentiable, we
can still obtain analytical gradients and adopt gradient descent
optimization to solve Eq. (E3). A similar treatment can be
adopted for other nonidealities.

APPENDIX F: THE COMPACT MODEL UNDER
NONIDEALITY

Our compact model, shown in Eqs. (2) and (4), assumes that
the DCs achieve 50%:50% splitting; however, this is not the
case in many real-world scenarios. The proposed compact
model should be refined if nonidealities (e.g., process variation,
nonideal beam splitting) are important and need to be consid-
ered. Here we show how to refine the compact model for an
example nonideality,

F � 1

2
·M�η1� ·

�
e−jθ 0
0 e−jϕ

�
·M�η2� · αe−jω

neff L
c , (F1)

where fη1, η2g represent the deviation of the DC from
50%:50%, and M�η� is defined as [9]

M�η� �
�

cos�π∕4� η� −j sin�π∕4� η�
−j sin�π∕4� η� cos�π∕4� η�

�
: (F2)

Note that fη1, η2, α, Lg should be treated as random variables
due to process variation. A commonly used assumption is that
these random variables can be decomposed as the summation of
deterministic variables and perturbation variables,

η1 � η⋆1 � Δη1,

η2 � η⋆2 � Δη2,

α � α⋆ � Δα,

L � L⋆ � ΔL, (F3)

where fη⋆1 , η⋆2 , α⋆, L⋆g denote the deterministic nominal de-
sign values, and fΔη1,Δη2,Δα,ΔLg represent the probabilistic
perturbation introduced in manufacturing. For different TBUs,

Fig. 15. Demonstration of how we plot the heat map, using
Figs. 6(c) and 6(e) as an example.
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they share the values of fη⋆1 , η⋆2 , α⋆, L⋆g, but their
fΔη1,Δη2,Δα,ΔLg values are different. Moreover, we can
further combine Eq. (F1) with Eq. (A1) to generate a more
comprehensive compact model spanning all waveguides in
the TBU.

For any given instantiation of process variations (e.g., using
random sampling), the compact model remains differentiable,
and thus our proposed method can be used to generate a sol-
ution for that instance. Evaluation of performance degradation
or yield (e.g., using the Monte Carlo method), becomes pos-
sible. Future research might consider the robust synthesis prob-
lem, building on the method proposed here.
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