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Abstract: The photonics platform has been considered increasingly promising for neuromorphic
computing, due to its potential in providing low latency and energy efficient large-scale parallel
connectivity. Phase change materials (PCMs) have been recently employed to introduce all-optical
non-volatile memory in integrated photonic circuits, especially finding application as non-volatile
weighting element in photonic artificial neural networks. Interestingly, these weighting elements
can potentially be used as building blocks for large-scale networks that can autonomously adapt
to their input, i.e. presenting the property of plasticity, similarly to the biological brain. In
this work, we develop a computationally efficient dynamical model of a silicon ring resonator
(RR) enhanced by a phase change material, namely Ge2Sb2Te5 (GST). We do so starting from
two existing dynamical models (of a silicon RR and of a GST thin film on a straight silicon
waveguide), but extending the optical equations to properly account for the high absorption
and asymmetry in the ring due to the phase change material. Our model accounts for silicon
nonlinear effects due to free carriers and temperature, as well as for the phase change of GST,
whose energy efficiency and optical contrast can be enhanced by the RR resonant behaviour. We
also restructure the optical equations so that the model can be efficiently employed in a modular
way within a commercial software for system-level photonics simulations. Moreover, exploiting
the developed model, we explore several design parameters and show that both speed and energy
efficiency of memory operations can be enhanced by factors from six to ten. Also, we show
that the achievable optical contrast due to GST phase change can be increased by more than a
factor ten by leveraging the resonant properties of the RR, at the expense of higher optical loss.
Finally, by exploiting the nonlinear dynamics arising in silicon RR networks, we show that a
strong contrast is achievable while preserving energy efficiency.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photonics is a promising platform for scaling up neuromorphic computing in a sustainable way, as
it can significantly outperform electronics in energy efficiency and parallelism of communication,
enabling the large-scale connectivity required by hardware implementations of artificial neural
networks (NNs) at low energy cost and latency [1]. However, training hardware neuromorphic
systems still poses several important challenges [2–4]. One major reason is that backpropagation,
i.e. the method of choice to train software-based NNs, generally requires accurate control over
the network parameters, knowledge of the loss function gradient w.r.t. parameters and full
observability of the system’s internal states. These requirements significantly limit the scalability
of physical networks. In contrast, the human brain learns by letting its network parameters
adapt (e.g. through synaptic plasticity) to the propagating signals that carry information through
the biological neural network, achieving far superior performance despite consuming only the
power of two LED light bulbs [5]. In other words, the response of the components of the brain
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depends on their past input, i.e. they exhibit non-volatile memory, or plasticity, w.r.t. their input
signal. Inspired by the brain, a lively research interest has grown towards developing effective
biologically plausible training algorithms, often based on plastic properties of network nodes or
connections [6–8].

Recently, non-volatile all-optical memory based on phase change materials (PCMs), using
Ge2Sb2Te5 (GST for short) in particular, was introduced into integrated photonic circuits [9,10],
bringing a convenient source of plasticity into play. In particular, GST-based devices were
employed for arithmetic operations [11,12] and as neuro-synaptic components to build or
accelerate NNs [13–17]. GST presents a strong complex refractive index contrast between its
amorphous and crystalline phase. Moreover, the phase of a thin GST layer deposited on top of
a waveguide can be changed by optical input pulses of appropriate powers and lengths, so that
many different levels of waveguide transmission can be obtained. These memory operations are
relatively fast (down to tens of ns) and can be reversed many times [18]. The photonic platform of
choice is usually silicon nitride, which presents overall higher efficiency and memory operation
contrast than silicon, due to the lower optical mode confinement and thermal dissipation [19].
Nonetheless, the silicon photonics platform has an advantage in terms of integration, device
footprint and speed of memory operations [19].

In order to build scalable plastic neuromorphic photonic systems, cascadability of memory
and nonlinear operations is key. In this context, cascadability is the degree to which an input
signal (one or more optical spikes) is able to activate the nonlinear and plastic behaviour of a
large number of network components connected in series, in a way that the activation of each
device is dependent on the activation of the previous ones in the series. However, the plastic
devices based on conventional rib-type straight waveguides with integrated GST cells on top
tend to require relatively powerful optical pulses to change the memory state, and present quite
high optical loss, especially when the GST is in the crystalline phase and the silicon photonics
platform is considered. This significantly limits cascadability of these devices when employed as
components in a photonic NN.

In this work we investigate and propose to exploit the combination of optical resonance
and low-power nonlinear effects in silicon ring resonators (RR) [20], in order to build more
cascadable plastic nodes for scalable photonic networks. In particular, the optical response of a
RR presents an increased sensitivity to small variations in complex refractive index of its internal
ring waveguide. Therefore, by covering a shorter length of the ring waveguide with GST, it is
still possible to obtain high contrast due to phase change. This improves energy efficiency of
memory operations in two ways: first, the phase state of a shorter GST cell obviously requires
less optical energy to be modified; second, lower cavity losses due to a shorter GST cell allow
the RR to accumulate more optical energy when resonant (higher cavity finesse), enhancing
the internal power w.r.t. the input power. Such a power enhancement allows us to change the
GST material phase distribution using a lower input optical power. These improvements can, for
example, compensate for the disadvantages of the silicon photonics platform w.r.t. to the silicon
nitride platform, i.e. lower energy efficiency and lower contrast of memory operations [19].

It should be stressed that there are several other experimental or simulation-based published
works that focus on RRs partially coated with GST [9,14–16,21–26]. However, to the best of our
knowledge, none of those considered to exploit the enhanced power and sensitivity of the ring
waveguide to improve energy efficiency and optical contrast of GST phase change. Moreover,
the models and simulations employed in the other works did not fully account for the dynamics
of silicon nonlinear effects. In fact, the enhanced power level in the silicon ring waveguide can
easily trigger competing nonlinear effects, due to an increase of free carrier density (with faster
timescale, around 5 ns) and temperature (with slower timescale, around 100 ns). These effects
can temporarily but significantly modify the RR resonance wavelength and thus the effective
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coupling strength with the input-output waveguides. Therefore, it is important to consider these
effects when simulating or designing plastic optical devices based on a silicon RR with GST.

Nonetheless, the aforementioned nonlinear effects can be exploited, in combination with the
non-volatile memory given by GST, to implement scalable neuromorphic computing systems
within a small footprint. In particular, these effects can provide the nonlinear activation function
required by neurons, together with short-term and long-term nonvolatile memory, which can
greatly expand the network’s effective temporal dimension without any footprint increase. In
addition, RRs present a spectrum with many quasi-periodic resonances that are all linked together
by silicon nonlinear effects and the GST crystalline fraction, providing an additional dimension
for effective network expansion, i.e. through wavelength division multiplexing approaches.
Finally, considering several silicon RRs with GST connected in series and with aligned resonance
wavelengths, a pulse used to modify the memory state of the first RR might also have the effect of
temporarily shifting its resonance away from the laser wavelength, freeing the way for a second
laser pulse, which can reach the second device undisturbed, and so on. Such a mechanism has
the potential to make these plastic devices very cascadable in practice, if design parameters are
suitably chosen.

In this article, we first derive a computationally efficient numerical model that accounts for
both the GST unit cell dynamical behavior (by integrating the compact behavioural model
proposed in [26]) and the main silicon nonlinear effects in the RR, for the first time. In contrast
to previous models, we accurately model the asymmetry introduced by the GST cell and we
write optical equations based on the time-dependent couple mode theory (CMT) without the
usual high finesse approximations. To motivate and validate these modifications, we show that
they significantly improve the accuracy of the RR steady-state response for different example
cases. Then we mathematically restructure the model so that it can be efficiently employed in a
modular way for system-level simulations, within a commercial circuit simulator for photonic
integrated circuit design (Luceda Caphe). In the second part, we employ the derived model to
show that a silicon RR with a short GST cell is a particularly promising neuromorphic element in
terms of speed and efficiency of memory operations. Moreover, we show that the GST crystalline
fraction can have a strong impact (high contrast both in terms of output optical power and phase)
on the nonlinear dynamics arising in a small silicon RR network. These results show that the
proposed devices are promising candidates as all-optical plastic nodes with high cascadability for
dynamical neuromorphic systems, such as photonic recurrent NNs.

2. Model development

In this section we describe the development of a numerical model for integrated silicon RRs
with a PCM cell (namely a GST layer on top of part of the ring waveguide), which can be used
to efficiently simulate this component both in time and frequency domain, as a building block
of photonic integrated circuits. The model is implemented and evaluated using a commercial
photonic integrated circuit (PIC) simulator (Luceda Caphe).

2.1. Time-dependent coupled mode theory (TCMT) model of a silicon RR

2.1.1. Mathematical structure of a Caphe TCMT model

In this work we build on an existing node-based simulator for large-scale photonic circuits that
works both in frequency and time domain [27]. It allows for fast circuit analysis through a
high-level simplified description of the optical signal propagation, similarly as in coupled mode
theory [28] (CMT). In particular, time-domain simulations are sped up by virtually splitting
a circuit in memory-containing (MC) components and memoryless (ML) components, the
latter not requiring costly time-dependent simulations. In practice, we employ a commercial
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implementation of such simulator, which is called Caphe and is part of Luceda’s environment for
PIC design.

In this work, we are interested in time-domain simulations of microring resonators excited with
monochromatic infrared light (wavelengths around 1550 nm), where the relevant nonlinear effects
of silicon and of the GST layer can be accounted for. Caphe employs a specific mathematical
structure for these kinds of nonlinear optical cavities, called TCMT models, which is based on the
time-dependent CMT formalism (see [29] or section 3.9 of [30]). A TCMT model is shaped so
that it builds a circuit node with an arbitrary number of input ports, output ports and internal
variables whose time evolution is described through coupled 1st order ordinary differential
equations (ODEs).

In particular, let us consider a time-dependent vector v(t), whose elements are the internal
variables of a TCMT model, and a vector sin(t), whose elements are given input signals. The
time evolution of v(t) is governed by the following 1st order ODE in its general form:

d
dt

v(t) = Mv(t) + KTsin(t) + N(v(t), t) (1)

where M and KT are complex-valued constant matrices, and N is a complex-valued vector
function that can be time-dependent. Specifically, the linear contribution of v to its own time
derivative is expressed by M, while the nonlinear contributions are expressed by the function N.
Note that d

dt v depends only linearly on the input signals in sin. The output signals, collected in the
vector sout(t), are given in general by a linear combination of the inputs and the internal variables:

sout(t) = Ssin(t) + Dv(t) (2)

where S and D are suitable complex-valued constant matrices. The restrictions imposed by this
mathematical structure allow for faster simulations of circuits comprising several TCMT nodes
both in time and frequency domain.

2.1.2. Dynamical model of a high finesse silicon RR

A TCMT model for time-domain simulations of a high finesse silicon RR is described in [31],
where an all-pass configuration (i.e. with one coupled waveguide, see Fig. 1) is excited by
infrared monochromatic light. In the next sections we will expand this model to take into account
the asymmetry introduced by the GST cell, but before doing that, we describe the original basic
model here in this subsection, going only into the details that are most important for our case.
The model accounts for the most relevant nonlinear dynamics in a silicon RR, which arise from
the coupling between optical power, temperature and free carrier concentration in the silicon ring
waveguide. In particular, the physics behind the considered nonlinear effects can be summarized
as follows.

The two photon absorption (TPA) effect, which is responsible for an increase in silicon optical
absorption proportional to the square of the optical power, generates free carriers. These populate
the ring waveguide for a certain time, before they recombine or diffuse away. The presence of free
carriers increases both light absorption, through the free carrier absorption (FCA) mechanism,
and the silicon refractive index, due to the free carrier dispersion (FCD) effect, resulting in a
blueshift of the RR resonance wavelength. The total absorbed electromagnetic power heats up
the waveguide, so that the silicon refractive index is increased through the thermo-optic effect
(TOE) and the RR resonance is redshifted.

Interestingly, FCD and TOE are responsible for opposite shifts in resonance wavelength.
Moreover, the first effect is typically weaker but significantly faster than the second one (example
characteristic times are 5.3 ns and 65 ns respectively). Under these conditions, a silicon RR
excited with a strong enough and constant optical signal can exhibit a periodic oscillation of
its resonance wavelength, emitting a pulsed optical signal at its output [31,32]. The dynamic



Research Article Vol. 30, No. 14 / 4 Jul 2022 / Optics Express 25181

Fig. 1. A schematic of a RR in all-pass configuration (i.e. with one coupled waveguide):
sin and sout represent the input and the output optical signals respectively; a is the mode
amplitude of the optical signal travelling inside the ring; a straight waveguide is coupled to the
ring waveguide through a directional coupler whose transmission and coupling coefficients
are represented by τ and κ respectively; o is the complex factor accounting for the attenuation
and the phase shift applied to a(t) when travelling one ring round trip, not including the
coupling transmission τ. For high enough input powers, o significantly depends on the
excess ring temperature ∆T and on the amount of free carriers N.

CMT description under consideration is mainly built to account for this phenomenon, called
self-pulsing.

Now, let us see how Eq. (1) is applied to the all-pass RR case we just described, considering a
single-mode ring waveguide, input light with wavelength λ that is close to a given resonance
wavelength λr and neglecting backscattering. The internal variables contained in the vector v(t)
are:

1. a(t), the complex amplitude of the RR optical mode, in the context of the slowly varying
envelope approximation, normalized so that its squared modulus equals the electromagnetic
energy in the ring at time t.

2. ∆T(t), the mode-averaged temperature difference w.r.t. the environment.

3. N(t), the number of free carriers populating the RR.

The employed system of equations, written as an element-wise splitting of Eq. (1), is [31–33]:

d
dt

a =
[︁
i(ωr + δωr(∆T , N) − ω) − Ll − Lnl(|a|2, N)

]︁
a +

iκ
√

Tr
sin(t) (3)

d
dt
∆T = −

∆T
τth
+Ath(|a|2, N) (4)

d
dt

N = −
N
τfc
+Afc(|a|2) (5)

In the first ODE (Eq. (3)), the term i(ωr + δωr(∆T , N) − ω) represents the influence of the
detuning between the light source angular frequency ω and the resonance angular frequency
ωr + δωr(∆T , N) of the RR, where ωr is its unperturbed value and δωr a time-dependent
perturbation. The terms Ll and Lnl(|a|2, N) respectively provide the damping effect of the linear
(unperturbed) and the nonlinear cavity losses. The coupling factor iκ/

√
Tr determines the ring

excitation by the input optical signal sin(t), which is a mode complex amplitude similarly as a(t),
but with the difference that it is normalized so that |sin(t)|2 equals the input power at time t. In
particular, iκ is the coupling coefficient of the directional coupler and Tr = L/vg, where L and
vg are respectively the length and the group velocity of the ring waveguide. Tr is called the
round trip time and approximately estimates the time needed by an optical signal to travel one
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round trip through the ring. Since approximately all the energy |a|2 stored in the ring has to pass
through a given ring cross section in a round trip time Tr, we set |sring |

2 = |a|2/Tr, where |sring |
2

is the optical power flowing in the ring and sring is the corresponding mode complex amplitude.
Therefore

√
Tr is in this case a factor that translates power mode amplitudes, such as sin and sout,

into energy mode amplitudes, such as a. In the last two ODEs , τth and τfc are the relaxation
times for respectively ∆T and N, while Ath and Afc respectively represent their source, given by
the absorption of the signal a in the ring waveguide. A derivation of Eq. (3) is discussed in the
Supplement 1 (Section 1). Additionally, further details and the full derivation of these equations
can be found in [32] and in [30].

Finally, the equation for the output signal is:

sout(t) = τsin(t) +
iκ
√

Tr
a(t) (6)

This corresponds to the optical mixing performed by the directional coupler, where τ =
√

1 − κ2

is its transmission coefficient and a(t)/
√

Tr is the power amplitude in the ring waveguide. (Note
that strictly speaking, this equation is only valid for the exact model, and not for the approximate
model where κ is taken to be small, in which case τ should be 1 for consistency reasons.)

It should be stressed that the nonlinear perturbations in the ODEs, as well as ∆T and N, are
negligible for a low enough optical input power |sin(t)|2, typically ≪ 1 mW. Moreover, the first
ODE (Eq. (3)) is valid for high-finesse RRs, i.e. for small ring losses and coupling coefficient
(Ll ≪ 1/Tr and κ ≪ 1). Moreover, it should be noticed that a more accurate equation for
the ODE governing the temperature was recently reported [34], which might allow for a more
accurate fit of experimental data.

In the all-pass configuration that we considered until now, all the input optical power that is
not transmitted through the output is lost through absorption and radiation loss. In this work,
instead, we consider a RR coupled with two waveguides (add-drop configuration, see Fig. 2
(b)), since such a configuration is arguably more interesting for neuromorphic computing, where
network connectivity and energy efficiency are key aspects. Indeed, the add-drop configuration
allows for two input signals to interact in the ring and a single input can be split, depending on
the resonance, among two output ports. This allows us, for example, to connect a few add-drop
RRs to form optical networks that present very rich dynamics, such as chaotic behavior, and
non-localized resonances coming from the interaction of two or more resonators [33,35]. These
characteristics are especially interesting for hardware reservoir computing [36].

Fig. 2. (a): Cross section of the PCM cell, i.e. a rib silicon waveguide with PCM (GST)
layer, modelled by the considered GST model [26]. The GST layer and the ITO protective
layer are both 10 nm think. (b): Schematic of a silicon RR with GST cell, in the add-drop
configuration (i.e. with two couples waveguides).

In Section 2.4 we will discuss the first ODE (Eq. (3)) in more detail and we will propose
suitable modifications to account for the presence of a PCM layer on a segment of the ring
waveguide.

https://doi.org/10.6084/m9.figshare.20073452
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2.2. Introduction of a compact behavioural model of GST cell in a dynamical RR model

In this work we aim to simulate the dynamical behaviour of a silicon RR when a small part of its
waveguide is covered with a thin PCM layer [16,19] (GST in our case, see Fig. 2). We do so by
combining two pre-existing numerical models: a dynamical model of a waveguide with a PCM
cell and a dynamical RR model such as the one described in Section 2.1 (then adapted for our
specific case in Section 2.4). In particular, we are interested in developing a modular model that
can easily be used as building block in larger circuit simulations, comprising several photonic
devices. For this purpose, we incorporated the compact behavioural model described in [26],
whose parameters were suitably modified to simulate a silicon waveguide covered with a GST
layer (see Section 4 in the Supplement 1 for details) and which will be referred to as the GST
model from now on, into a RR TCMT simulator.

The pre-existing GST model allows to predict how a pump optical pulse (tens of nanoseconds
long and with peak power from few to few tens of milliwatts) that excites the single-mode silicon
waveguide may change the position of the amorphous-crystalline phase interface in the thin GST
layer. In particular, the GST layer is modelled so that such interface can only move along one
direction, i.e. parallel to the waveguide. Intuitively, if the interface is at the beginning (front
edge) of the layer, the GST cell is completely crystalline and its strong light absorption implies
a weak waveguide transmission. On the other hand, if the interface is located at the end (back
edge) of the layer, the GST cell reached its maximum amorphization degree, corresponding to the
maximum waveguide transmission. Intermediate phase interface positions provide intermediate
waveguide transmissions. In the model, also the effective refractive index of the waveguide (and
thus the phase shift of the propagated light) depends on the GST amorphous fraction, but the
effect is weaker. However, as opposed to changes in absorption, the parameters regarding the
changes in effective index were not directly validated through experiments in [26]. The dynamics
of the phase interface are driven by the temperature of the GST layer, which in turn depends
on the heating caused by the optical power propagating through the waveguide. In spite of its
significant simplifications, the GST model can accurately fit experimental data (see [26] and
Section 4 of the Supplement 1). In order to host the GST model and properly account for the
additional physical properties, in Section 2.4 and in Section 3 of the Supplement 1 we developed
a dedicated RR Caphe model by suitably modifying the pre-existing one. Essentially, in the
resulting TCMT Caphe model we added two more ODEs to Eqs. (3), (4) and (5), governing the
time evolution of the variables TGST and zint (these ODEs can be found in [26]). The first variable
is the temperature of the GST layer while the latter is the position of the amorphous-crystalline
phase interface in the GST layer. It should be stressed that, even if in [26] a model of a RR with
GST is proposed, it does not account for silicon nonlinear effects and the related dynamics, as
opposed to the TCMT model we develop in this work.

The main input and output quantities of the GST model are respectively the input optical power
and the complex effective index of the waveguide covered with PCM. Therefore, keeping in mind
the configuration we want to simulate (Fig. 2 (b)), the simplest way of combining this model with
a RR model is to run the two models in parallel so that, at each timestep, the RR provides the input
optical signal to the GST waveguide segment, which in turn updates its complex effective index.
In this case, a change in complex effective index of the ring waveguide segment simply results in
a variation of the attenuation and of the phase shift of the light passing through it, respectively
resulting in a change of width and position of the RR resonance peak in the frequency domain.

Also note that the complex refractive index provided by the GST model depends both on the
corresponding temperature at that location of the waveguide, and on the degree of amorphization
of the GST layer.

https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
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2.3. Test comparison with numerical steady-state calculation

In Section 2.4 we will modify the optical equations of the TCMT model, i.e. Eq. (3) (or see
Eq. (S6) in the Supplement 1 for a more detailed version of it) and Eq. (6), in order to account
for the high losses and asymmetry due to the introduction of the GST cell. To motivate such
modifications, but also to check the correctness of the employed differential equations and of the
implemented code, we compare the linear steady-state response computed using the following
three optical models (Fig. 3):

1. A naive model (called "uncorrected" in the shown plots) based on Eq. (S6) in the
Supplement 1 and on Eq. (6), where the optical loss due to GST (comprising the scattering
loss) is simply incorporated in the attenuation coefficient α of the ring waveguide (so
that the factor e−αL accounts for the the field amplitude attenuation due to both the ring
waveguide and the GST cell).

2. Our proposed model (called "corrected" in the shown plots) based on Eqs. (11), (12)
and (13), which are derived in Section 2.4.

3. A simple steady-state calculation (called "analytical" in the shown plots, see Section
5 of the Supplement 1 for details). Importantly, such a steady-state analysis accounts
for the asymmetric addition of the GST cell and does not assume any approximation
regarding time-domain behaviour or small resonance detuning. Moreover, it is based on
simple analytical formulas and it does not require any numerical integration of differential
equations.

The main parameters employed for this comparison, regrading the ring silicon waveguide,
are: the effective index neffSi = 2.7, the group index nSi

g = 3.8, the radius R ≈ 15 µm and the
attenuation coefficient αSi, dB = 8dB/cm. Regarding the ring waveguide segment covered by
crystalline GST: the scattering loss A2

scat = 0.97, length LGST = 0.5 µm and complex effective
index neff,cGST = 2.69512− i0.039111 (see Section 4 of the Supplement 1). The power coupling
of the ring to the waveguide is chosen to be κ2 = 0.15. To obtain steady-state linear spectra
from the developed dynamical RR model for the validation test, we run a short time-domain
simulation for each input wavelength and at low input power (linear regime). As a first example,
we simulated the excitation of the in port only and we considered a resonance with even azimuthal
number m = 164 (Fig. 3(a)). In such a case, it can be noticed that the "uncorrected" model
presents a significant error in its transmission spectrum w.r.t. the expected steady-state behaviour,
which is given by the "analytical" model. However, the error in the corresponding phase shift
spectrum is less pronounced. As a second example, the in and add ports were excited with the
same phase and two constant optical power levels of ratio 2:1, while the same even azimuthal
number was considered (Fig. 3 (b)). In this case, instead, the "uncorrected" model presents a
substantial error also in its phase shift response. As a third and final example, we considered
the same simulation with the only difference of employing an odd azimuthal number m = 165
(Fig. 3 (c)). In this case, since the two input beams with aligned phase interfere destructively
in the ring waveguide, a very different response is obtained w.r.t. the even azimuthal number
case. To account for this in the "uncorrected" model, we adjusted the equations by changing
the sign of the terms connecting a with the add and the drop ports. Finally, we can notice that
steady-state response of the proposed "corrected" model is in very good agreement with the
expected "analytical" response in all cases. For completeness, in Section 6 of the Supplement
1 we also show plots corresponding to the ones in Fig. 3, with the only difference that the RR
inputs are switched (the higher input power is at the add port and the lower at the in port). In
the next section we will discuss the derivation of our "corrected" model and we will outline the
differences w.r.t. the "uncorrected" model.

https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
https://doi.org/10.6084/m9.figshare.20073452
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Fig. 3. Linear steady-state response (to a constant low-power input) of our "corrected"
RR dynamical model with GST cell (discussed in Section 2.4) in comparison with an
"uncorrected" naive implementation of the dynamical model (see Eq. (S6) in the Supplement
1) and with the expected "analytical" steady-state calculation (see Section 5 of the Supplement
1). The power coupling coefficients are set to 0.15 and the crystalline GST cell length to
0.5 µm. (a) Only the in input port is excited, as shown by the bottom left RR schematic. A
resonance with even azimuthal number (namely 164) is considered. (b), (c) Respectively
corresponding to an even and an odd azimuthal number (namely 164 and 165), the in and
add input ports are excited with the same phase and two constant optical power levels of
ratio 2:1, as shown by the bottom right schematic. In (c), the "uncorrected" model was
adjusted to account for the sign changes due to an odd azimuthal number.

2.4. Optical dynamical CMT equations for a silicon RR with PCM cell

As we explained in Section 2.2, the considered PCM model, which accounts for the GST cell,
provides the complex effective index of the corresponding waveguide segment, which depends on
the solid state phase of the GST layer. In particular, the optical loss of the PCM cell is much higher
than the loss in a corresponding silicon waveguide without GST, and it varies significantly when
the GST phase distribution is changed. Namely, the absorption loss is estimated to be around
1.377 dB/µm and 1.152 dB/µm respectively for the maximum and the minimum achievable
crystalline fraction (see Section 4 in the Supplement 1 for more details), while the scattering loss
is estimated to be around 3%. Moreover, the higher the losses in the ring waveguide, the higher
the required power coupling coefficient κ2 to achieve critical coupling. Indeed, in our case, a RR
near the critical coupling regime is desired, so that changing the GST phase distribution through
an optical input pulse is more energy efficient. Therefore, the high finesse approximations (for
low ring losses and κ2) employed in the previous derivation of the RR optical ODE have to be
revised.

Another important change introduced by the presence of the PCM cell is that the resonant
optical mode in the ring is not symmetric anymore w.r.t. the coupling sections, due to the
different effective refractive index of the waveguide segment with GST. We account for this by
mathematically treating the two halves of the RR, divided by the coupling regions, separately.
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An introduction to better understand the following arguments can be found in Sections 1 and 2 of
the Supplement 1.

With reference to Fig. 4, let us consider the propagation coefficient h1 corresponding to the
right half of the ring:

h1 = Ascate(−αSi−i ωc neffSi(ω))(L/2−LGST)+(−αGST−i ωc neffGST(ω))LGST

Here, neffSi and neffGST (αSi and αGST) are respectively the unperturbed effective refractive
index (attenuation coefficient) of the silicon ring waveguide and of the GST cell, whose length is
LGST. Ascat is a factor representing the scattering loss of the GST cell. We keep the loss-related
part of this expression as it is, while, as in Section 1 of the Supplement 1, we consider a first-order
chromatic dispersion relation for the effective refractive indices:

e−i ωc neffSi(ω)(L/2−LGST)−i ωc neffGST(ω)LGST ≈

≈ e−i ωr
c neffSi(ωr)(L/2−LGST)−i ωr

c neffGST(ωr)LGST · e−i ∆ωc ngSi(ωr)(L/2−LGST)−i ∆ωc ngGST(ωr)LGST ≈

≈ e−i ωr
c neffSi(ωr)(L/2−LGST)−i ωr

c neffGST(ωr)LGSTe−i
LngSi(ωr )

2c ∆ω ≡ m1e−iTr∆ω/2

(7)

Here, ngSi, ngGST are respectively the group index of the silicon ring waveguide and of the
GST cell. We neglected the term ∆ω

(︂
ngGST(ωr) − ngSi(ωr)

)︂
LGST/c in the exponent, since we

assume both ∆ω ≪ ω and LGST ≪ L (e.g. LGST = 0.5 µm and the ring radius is R = 15 µm). In
this case, the linear approximation of the exponential containing ∆ω (like in the ring without
GST) is not employed, since there are other exponential functions multiplying it. Indeed, it is
computationally cheaper to sum all the exponents in a single exponential function. Therefore, we
have:

h1 ≈ Ascate−αSi(L/2−LGST)−αGSTLGSTm1e−iTr∆ω/2 (8)

h2 ≈ e−αSiL/2e−i ωr
c neffSi(ωr)L/2e−iTr∆ω ≈ m2e−αSiL/2−iTr∆ω/2 (9)

It should be noticed that, because of the loss of symmetry of the optical ring mode w.r.t. the
coupling sections, m1 and m2 can take on a continuous range of complex values of unit modulus,
as opposed to m (see Section 2 of Supplement 1), which in the case of a normal add-drop RR
ideally takes on 1 and −1 only. This happens because the RR resonance condition has changed
with the introduction of the GST cell:

ωrneff Si(ωr)(L − LGST)/c + ωrnGST
eff (ωr)LGST/c = 2πm (10)

and therefore we have the relation m1m2 = 1. Finally, through a similar derivation as for Eq. (S5)
in the Supplement 1 but omitting the high finesse approximations, we obtain the optical ODE:

d
dt

a =
[︂
τ1τ2e−αSi(L−LGST)−αGSTLGST−iTr∆ω − 1

]︂ a
Tr
+ i
κ1
√

Tr
sin1 + i

κ2τ1
√

Tr
m2e−αSiL/2−iTr∆ω/2sin2 (11)

Following the structure of Eqs. (S9) and (S10) in the Supplement 1, the outputs are:

sout1 = iκ1τ2e−αSi(L−LGST)−αGSTLGST−iTr∆ω
a

√
Tr
+ τ1sin1 − κ1κ2m2e−αSiL/2−iTr∆ω/2sin2 (12)

sout2 = iκ2m1e−αSiL/2−iTr∆ω/2 a
√

Tr
+ τ2sin2 (13)

To account for silicon nonlinear effects, these equations are solved together with Eqs. (4) and (5),
and the following dependencies, discussed in detail in [31,32], are considered: ∆ω = ∆ω(∆T , N)

and αSi = αSi(|a|2, N), similarly as in Eq. (3). Moreover, also the quantities that depend on the
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Fig. 4. A schematic of a RR in add-drop configuration with GST cell. In this schematic two
complex mode amplitudes a1 and a2 are considered, located right after coupling Section 1
and 2 respectively.

GST layer state vary with time according to the employed GST model (see Section 2.2). These
quantities are ∆ω = ∆ω(∆T , N, TGST , zint) and αGST = αGST (TGST , zint).

Let us now list and analyse the main differences (which can be considered as corrections)
between the naive "uncorrected" optical equations (as employed for the comparison discussed in
Section 2.3 and Fig. 3, and based on Eqs. (S6) in the Supplement 1) and the "corrected" optical
equations developed in this section:

1. Direct dependency of the through port output on the input at the add port, provided by the
last term in Eq. (12). This term becomes increasingly important as the power loss due
to the GST patch on the right arm of the RR grows. Indeed, by contradiction, it can be
noticed that without this term there would be no light coming from the ring to the though
port in the limit case of infinite optical attenuation at the GST cell. Moreover, this term
includes a factor κ1κ2 and thus, for small coupling coefficient values, it might be negligible
w.r.t. the first right hand term in the same equation (related to the light accumulated in
the RR), which includes a κ1τ2 factor instead. However, this is not true anymore if κ1
is not much smaller than unity and the maximum power accumulated in the ring is not
much higher than the input power (i.e., for low finesse RRs). E.g., considering sin1 = 0,
κ21 = κ

2
2 = 0.15 and a ring power enhancement of |a|2/(Tr |sin2 |

2) = 3, the first right hand
term in Eq. (12) is only around four times larger than the last right hand term.

2. The two half-ring complex factors h1 and h2 are kept separated. Not only does this allow
to seamlessly account for the large difference in response due to the azimuthal number
parity (e.g., see Fig. 3(b) and 3(c)), but it also allows to model any asymmetry (both in
terms of optical loss and phase shift) of the optical paths between the coupling sections, for
example due to a PCM cell. Such an asymmetry, for example, accounts for the differences
between the steady-state responses shown in Fig. 3 and the corresponding reversed-input
plots in Fig. S3 of the Supplement 1.

3. In our model we do not employ e−αL ≈ 1 − αL, i.e. we do not approximate the exponential
accounting for the optical attenuation in the ring waveguide. e.g., setting the power loss of
the silicon ring waveguide (without GST cell) to 8dB/cm, the approximation error would
be less than 0.004%. However, if we also include the power loss due to a 0.5 µm GST cell
in α, then the error increases to around 0.57%, and to around 1.9% for a 1 µm GST cell.
Importantly, since this error is made at every time step of the ODEs integration, its effect
can accumulate and strongly influence the nonlinear dynamical behaviour of the RR. It
should be stressed that, since we need to employ exponential functions anyways to account
for the asymmetric phase shift through the RR arms, this approximation would not provide
any improvement in computational efficiency.
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4. Our model does not employ the small coupling approximation τ =
√

1 − κ2 ≈ 1 − κ2/2.
E.g., for κ21 = κ

2
2 = 0.15, the approximation error is around 0.33% per coupling section

and it doubles for κ21 = κ
2
2 = 0.2. As for the previous point, also this error can accumulate

during the ODEs integration and have a strong impact on nonlinear dynamics.

It should be stressed that this model is not meant to accurately describe the involved physical
processes. The goal is instead to develop a model that can approximately reproduce experimental
data in a certain parameter window (suitable parameter values can be found later on in Sections
2.3 and 3.1, and in Section 4 of the Supplement 1), and that allows to efficiently simulate large
circuits of coupled RRs with PCM cells. In particular, our model allows to account for a PCM
cell on the ring waveguide, without being constrained by high finesse and spatial symmetry
requirements.

In our model we do not consider backreflection due to the medium discontinuity at the
GST cell borders, since published simulation results show that it is negligible (around -30dB)
[37]. Moreover, the most relevant effect that can arise from counterdirectional coupling is
resonance-splitting, which usually has a tangible impact only in high-finesse RRs [20]. Indeed,
in the literature presenting experimental measurements or simulations of RRs with GST cell
there is no evidence or mention of observable resonance splitting [9,14–16,21–26]. In any
case, backreflection could be accounted for by simply adding an optical ODE describing the
counterpropagating beam in the RR, which would be coupled with the main beam by reflective
elements such as the edges of the GST cell.

Equations (11), (12) and (13) were reshaped in order to fit the mathematical structure required
by a TCMT Caphe model, namely represented by Eqs. (1) and (2). This allowed to significantly
reduce the computational cost of the simulations, and thus the execution speed [29]. A detailed
derivation of the final employed equations is reported in Section 3 of the Supplement 1. Finally,
if the dynamics of optical time-dependent variables present much faster timescales than their
non-optical counterparts, the computational efficiency of the model may be greatly improved by
adiabatic elimination [38]. That is, after checking that the error on the dynamics is negligible,
the steady-state equations (e.g. see Section 5 in the Supplement 1) can be used instead of the
optical ODEs, allowing to employ much larger time steps in the integration of the other ODEs.

3. Simulation results

In this section, we show how the developed RR model with GST cell can be used to obtain
crucial insight into the potential improvement of all-optical memory operations, enabled by the
optical resonance of RRs. We do so keeping in mind the goal of developing optically tunable
weights for neuromorphic computing or photonic plastic synapses, i.e. integrated devices whose
transmission is changed in a non-volatile way by a powerful enough optical input. These devices
can be used as building blocks for all-optical coherent neural networks whose synaptic weights
can adapt to the network input, similarly to what happens in the biological brain.

The employed simulation parameters, if not otherwise specified, are: the same as in Section
2.3 for what regards the optical linear part; those in [31] regarding the nonlinear dynamics of a
silicon RR without GST; the parameters presented in Section 4 of the Supplement 1. Moreover,
to roughly account for randomness due to experimental noise, white noise was added to the input
optical amplitude at each time step, with standard deviation of 3% w.r.t. the input amplitude.

3.1. Energy efficiency and speed improvement of GST amorphization and recrystal-
lization

By accounting for silicon nonlinear effects, which shift the RR resonance wavelength during the
excitation by pump pulses, our model allows to predict the optimal RR power coupling coefficients
(i.e. κ21 = κ

2
2) and wavelength detuning (i.e. the difference between resonance wavelength and
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source wavelength ∆λ ≡ λr − λ) that maximizes energy efficiency of memory operations. Such a
prediction can provide important qualitative insight, but also quantitative insight once accurate
model parameters are experimentally obtained.

We run several simulations with different values of GST cell length, pulse power, RR coupling
coefficients and wavelength detuning. In particular, in our parameter sweeps we considered κ21 =
0.01, 0.02, 0.03, . . . , 0.19, 0.20 (20 values) and ∆ω = −0.2 nm,−0.18 nm,−0.16 nm, . . . , 1.8 nm,
0.2 nm (21 values). We found that a favourable GST cell length is 0.7 µm.

Setting the GST cell length to 0.7 µm, the minimum pulse power required to reach the
maximum amorphization fraction (≈ 26 mW with 10 ns duration) is achieved for κ21 = 0.13
and ∆λ = 0.16 nm (see Fig. 5(a) for the full parameter sweep results). Clearly, this type of
information could not be obtained from simulations that do not account for the relevant nonlinear
dynamics. For example, without nonlinear dynamics, the resonant wavelength of the RR would
be fixed and therefore we would wrongly obtain that ∆λ = 0 optimizes the energy efficiency
of memory operations. Furthermore, employing the same optimal parameters and after an
exhaustive exploration of different input pulses combinations, we found that full recrystallization
(i.e. nullifying the maximum achievable amorphization) could be obtained by inserting four
pulses of 10 ns duration: the first of around 23 mW and the others of around 7 mW. The
aforementioned input pulses for amorphization and crystallization are shown in Fig. 5(b), and
the corresponding temporal evolution of the states in the developed model is represented in
Fig. 5(c). In order to obtain access to the steady state values without running the simulation
for an unnecessary longer time, we forced the volatile variables back to their initial values after
the amorphization and crystallization pulses (artificial cooldown), which has the same effect of
waiting until the system reaches its equilibrium again.

Fig. 5. (a) Colormap of the GST amorphization fraction as a function of resonance
wavelength detuning and of the power coupling coefficient. An optical pulse of 10 ns duration
and ≈ 26 mW power was considered for amorphization. (b) Inserted pulse sequences for
fast and energy efficient amorphization (1st pulse) and subsequent crystallization of the
GST cell. (c) Corresponding time evolution of the model states during the insertion of the
amorphization and crystallization pulse sequences, in (b).
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Let us now compare the obtained simulation results with the results from the employed
GST model (modelling a straight Si waveguide with 4 µm GST cell, validated by fitting the
experimental data reported in [19]). With such a comparison, we aim to show, at least qualitatively,
the advantages enabled by the RR resonance in terms of speed and energy efficiency of memory
operations. To start with, the maximum transmission contrast achieved with our model of a RR
with GST is around 15% considering a single input (see Section 3.2 for details). To obtain such
a contrast value, we considered an input amorphization pulse of 10 ns conveying only around
0.26 nJ energy, while full recrystallization is achieved within 70 ns with less than 0.5 nJ. In
comparison, to achieve a similar contrast considering the basic GST model (based on straight
silicon waveguide), a 100ns long amorphization pulse with energy of 1.6 nJ is required (see
Fig. S4(a) in the Supplement 1). This shows that, thanks to the RR resonance, both speed
and energy efficiancy of memory oprations are substantially improved. Moreover, to obtain the
same amorphization length of around 543 nm, the GST on waveguide model requires a pulse
more than 50% longer (using the same peak optical power) and it only achieves less than 3%
transmission contrast (see Fig. S4(b) in the Supplement 1), compared to around 15% for the
RR device case. This result indicates that the optical resonance improves memory operations
by reducing the energy required to amoprhize the GST and, at the same time, by enhancing the
sensitivity to changes in GST material phase distribution. In addition, the same input pulse that
causes the maximum contrast in the case of the simulated RR with GST, is not able to modify the
GST crystallinity fraction in the case of its straight waveguide counterpart (see Fig. S4(c) in the
Supplement 1). Finally, full recrystallization in the straight waveguide simulation is achieved
employing a double-step pulse (as in [19]) 530 ns long and with total energy of more than 3.9 nJ
(see Fig. S4(d) in the Supplement 1). Also in this case, the RRs enable a significant improvement
in both speed and energy efficiency.

Note that further experimental calibration of the GST model for small cell sizes, which is the
subject of future work, would be very beneficial to validate the quantitative accuracy of the above
results.

3.2. Reading the memory state: contrast and energy efficiency

The observed large advantage in terms of speed and energy efficiency of memory operations
is however relevant only if the memory state can be easily read and used to control subsequent
photonic operations. In order to take this aspect into account, in addition to calculating
the transmission relative contrast (i.e. the difference in transmitted power after and before
amorphization, divided by the latter value), we also consider the corresponding transmission
absolute contrast (i.e. the same difference in transmitted power but divided by the input power),
for each output port. The latter provides important information regarding the optical loss of the
memory state reading, since it is relative to the total input power.

Moreover, we also monitor the phase contrast (i.e. the difference in optical phase of the output
after and before amorphization, divided by π), which can be converted into transmission contrast
by optical interference. In particular, if the memory device is used as a component of a coherent
optical circuit, e.g. as non-volatile weight or as plastic synapse for neuromorphic computing,
having a high enough phase contrast can be key, even if the transmission contrast is low. Finally,
in order to measure the optical loss corresponding to the obtained phase contrast, we also monitor
the transmission of each output port after amorphization (given by the fraction of the ouput power
w.r.t. the total input power).

We explore how these measures vary in different configurations by performing the aforemen-
tioned parameter sweep (coupling coefficients and resonance wavelength detuning), but this
time using constant low optical power as input, so as to leave the RR in the linear regime. At
first, we considered a single input port (the in port) and, considering the two extremes in the
achievable crystalline fraction range, we obtained a maximum transmission relative contrast
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of around −15% at the through port (Fig. 6(a)), whose absolute value is very similar to the
maximum value reported for a straight silicon waveguide with GST in [19]. The drop port shows
a maximum value of around 21% (Fig. S5(a) in the Supplement 1), with the high contrast area in
the parameter space not well overlapping with the through port case. But for both output ports,
the transmission absolute contrast is always below 3.5% in absolute value (Fig. 6(b) and Fig.
S5(b) in the Supplement 1). This indicates that accessing the memory state in the linear regime
is quite inefficient in terms of energy. Considering this input configuration, the phase contrast
was negligible. Nevertheless, we found that the achievable contrast values can be significantly
increased by exploiting the enhanced sensitivity of interference effects in a RR. In particular, by
inserting the same constant optical power in both input ports (in and add ports), we achieved
transmission relative contrasts up to 280% at through port (Fig. 6(c)) and up to 350% at drop port
(Fig. S5(c) in the Supplement 1), with the corresponding high contrast areas in the parameter
space well overlapping. Still, we notice that the access to the memory state is not energy efficient,
being the transmission absolute contrast not higher than 2.5% in absolute value (Fig. 6(d) and Fig.
S5(d) in the Supplement 1). Moreover, it should be stressed that when two inputs are considered,
very different responses are obtained depending on whether the resonance azimuthal number is
even or odd. In this case we considered an even azimuthal number, namely 164. This value is
found by setting the resonance wavelength to 1550 nm and the RR radius to about 15 µm.

Fig. 6. (a), (b), (c), (d): Colormaps showing the results of the performed parameter sweeps
in wavelength detuning and coupling coefficient, at the through port of the simulated RR
with GST (the counterparts regarding the drop port are showed in Fig. S5 in the Supplement
1). (a) and (b): Transmission relative (and absolute, respectively) contrast when a single
input port is excited. (c) and (d): The same quantities when both input ports are excited
with same power and phase. The considered RR resonance has even azimuthal number.
(e): Results of two time-dependent simulations, one for crystalline (red) and the other for
amorphized (blue) GST cells, of the silicon photonic circuit schematized in the inset of the
top plot. From top to bottom, plots showing input optical power, output power and optical
phase at through and drop ports, as a function of time. To present clear plots in (e), no white
noise was added to the input in this case.

Another way to enhance the impact of the GST crystalline fraction on the response of a
photonic circuit, is through the excitation of dynamics provided by nonlinear optical cavities. To
show this, we employed our model as a building block of a small network of four RRs (Fig. 6(e)),
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two of which with a 0.7 µm GST cell. The execution of the 1 µs simulation (more than 330,000
time steps) required less than 40s on a fairly standard desktop computer (processor: Intel Xeon
CPU E5-2650L v3 @ 1.80GHz, 1800 MHz.) employing up to around 0.5 GB of RAM. The two
RRs without GST have a relatively small coupling coefficient (κ2 = 0.04), so that the power
enhancement in the ring waveguide allows to trigger nonlinear effects without reaching input
power levels that can change the GST memory state. Considering suitable design parameters
(κ2 = 0.1 in RRs with GST and an RR interdistance of around half the ring length), we obtained
strong contrast in the time-dependent network response, both in terms of output power and optical
phase (Fig. 6(e)). Importantly, it should be noticed that this is achieved with relatively low overall
power loss. In particular, such an effect is relevant for building plastic recurrent NNs, where the
network topology is expanded along the time dimension, and where we believe the potential of
the modelled device can be exploited at its fullest.

4. Conclusion

We developed a computationally efficient numerical model for dynamical simulations of silicon
ring resonators (RRs) with integrated phase-change material (GST) cells. It accounts for both
silicon nonlinear effects (due to free carriers density and temperature increase) and changes
in GST material phase distribution due to input optical signals. In particular, we merged a
pre-existent compact behavioural model for a waveguide covered by a thin GST film [26] with
a dynamical silicon RR model based on time-dependent coupled mode theory. Regarding the
latter model, we started from well-known equations for high finesse RRs and we adapted them to
account for the non-idealities introduced by the GST film deposited on the ring waveguide, such
as asymmetry and high optical absorption. In addition, we restructured the derived equations
so to be able to employ them in a commercial circuit simulator (Luceda Caphe) that facilitates
modularity and to improve computational efficiency of large-scale PIC simulations.

Making use of the developed numerical simulations, we explored different GST cell lengths,
optical input pulse powers, RR coupling coefficients and resonant wavelengths. In particular,
while achieving the same transmission contrast of 15%, we found that the RR type device offers,
in amorphization and recrystallization memory operations respectively, potential switching speed
improvements of factors 10 and 7, and energy consumption improvements of factors 6 and 8, as
compared to the silicon straight rib waveguide device. Even though for accurate quantitative
predictions the model should be fit with more direct experimental data, the obtained results can
provide valuable qualitative insight. It should be stressed that, to carry out this kind of numerical
investigation correctly, accounting for the dynamic interaction between silicon nonlinear effects
and RR resonance (as it is done in the proposed model) is necessary.

In addition, we numerically investigated the contrast in transmission and phase provided by
changes in GST phase distribution, for different parameters and configurations. We obtained
satisfactory values of transmission contrast in linear regime, although the corresponding energy
efficiency is low. However, we observed high power and phase contrast associated with high
energy efficiency, in the nonlinear dynamical response of a small silicon RR network. This
shows that the considered device is a promising candidate as a building block for plastic photonic
recurrent NNs based on silicon nonlinear effects and GST.

It should be stressed that we expect the developed model to easily generalize to other photonic
platforms and plastic phase change materials, once the relevant parameters are employed.

As a future development, we aim to fit the developed model with experimental data from
direct dynamic measurements of silicon RRs with short GST cells. Then, it will be possible
to accurately investigate cascadability of the proposed plastic nodes and their employment in
scalable neuromorphic hardware.
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