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Abstract: The photonics platform has been considered increasingly promising for neuromorphic
computing, due to its potential in providing low latency and energy efficient large-scale parallel
connectivity. Phase change materials (PCMs) have been recently employed to introduce all-optical
non-volatile memory in integrated photonic circuits, especially finding application as non-volatile
weighting element in photonic artificial neural networks. Interestingly, these weighting elements
can potentially be used as building blocks for large-scale networks that can autonomously adapt
to their input, i.e. presenting the property of plasticity, similarly to the biological brain. In
this work, we develop a computationally efficient dynamical model of a silicon ring resonator
(RR) enhanced by a phase change material, namely Ge2Sb2Te5 (GST). We do so starting from
two existing dynamical models (of a silicon RR and of a GST thin film on a straight silicon
waveguide), but extending the optical equations to properly account for the high absorption
and asymmetry in the ring due to the phase change material. Our model accounts for silicon
nonlinear effects due to free carriers and temperature, as well as for the phase change of GST,
whose energy efficiency and optical contrast can be enhanced by the RR resonant behaviour. We
also restructure the optical equations so that the model can be efficiently employed in a modular
way within a commercial software for system-level photonics simulations. Moreover, exploiting
the developed model, we explore several design parameters and show that both speed and energy
efficiency of memory operations can be enhanced by factors from six to ten. Also, we show
that the achievable optical contrast due to GST phase change can be increased by more than a
factor ten by leveraging the resonant properties of the RR, at the expense of higher optical loss.
Finally, by exploiting the nonlinear dynamics arising in silicon RR networks, we show that a
strong contrast is achievable while preserving energy efficiency.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photonics is a promising platform for scaling up neuromorphic computing in a sustainable way, as
it can significantly outperform electronics in energy efficiency and parallelism of communication,
enabling the large-scale connectivity required by hardware implementations of artificial neural
networks (NNs) at low energy cost and latency [1]. However, training hardware neuromorphic
systems still poses several important challenges [2–4]. One major reason is that backpropagation,
i.e. the method of choice to train software-based NNs, generally requires accurate control over
the network parameters, knowledge of the loss function gradient w.r.t. parameters and full
observability of the system’s internal states. These requirements significantly limit the scalability
of physical networks. In contrast, the human brain learns by letting its network parameters
adapt (e.g. through synaptic plasticity) to the propagating signals that carry information through
the biological neural network, achieving far superior performance despite consuming only the
power of two LED light bulbs [5]. In other words, the response of the components of the brain
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depends on their past input, i.e. they exhibit non-volatile memory, or plasticity, w.r.t. their input
signal. Inspired by the brain, a lively research interest has grown towards developing effective
biologically plausible training algorithms, often based on plastic properties of network nodes or
connections [6–8].

Recently, non-volatile all-optical memory based on phase change materials (PCMs), using
Ge2Sb2Te5 (GST for short) in particular, was introduced into integrated photonic circuits [9,10],
bringing a convenient source of plasticity into play. In particular, GST-based devices were
employed for arithmetic operations [11,12] and as neuro-synaptic components to build or
accelerate NNs [13–17]. GST presents a strong complex refractive index contrast between its
amorphous and crystalline phase. Moreover, the phase of a thin GST layer deposited on top of
a waveguide can be changed by optical input pulses of appropriate powers and lengths, so that
many different levels of waveguide transmission can be obtained. These memory operations are
relatively fast (down to tens of ns) and can be reversed many times [18]. The photonic platform of
choice is usually silicon nitride, which presents overall higher efficiency and memory operation
contrast than silicon, due to the lower optical mode confinement and thermal dissipation [19].
Nonetheless, the silicon photonics platform has an advantage in terms of integration, device
footprint and speed of memory operations [19].

In order to build scalable plastic neuromorphic photonic systems, cascadability of memory
and nonlinear operations is key. In this context, cascadability is the degree to which an input
signal (one or more optical spikes) is able to activate the nonlinear and plastic behaviour of a
large number of network components connected in series, in a way that the activation of each
device is dependent on the activation of the previous ones in the series. However, the plastic
devices based on conventional rib-type straight waveguides with integrated GST cells on top
tend to require relatively powerful optical pulses to change the memory state, and present quite
high optical loss, especially when the GST is in the crystalline phase and the silicon photonics
platform is considered. This significantly limits cascadability of these devices when employed as
components in a photonic NN.

In this work we investigate and propose to exploit the combination of optical resonance
and low-power nonlinear effects in silicon ring resonators (RR) [20], in order to build more
cascadable plastic nodes for scalable photonic networks. In particular, the optical response of a
RR presents an increased sensitivity to small variations in complex refractive index of its internal
ring waveguide. Therefore, by covering a shorter length of the ring waveguide with GST, it is
still possible to obtain high contrast due to phase change. This improves energy efficiency of
memory operations in two ways: first, the phase state of a shorter GST cell obviously requires
less optical energy to be modified; second, lower cavity losses due to a shorter GST cell allow
the RR to accumulate more optical energy when resonant (higher cavity finesse), enhancing
the internal power w.r.t. the input power. Such a power enhancement allows us to change the
GST material phase distribution using a lower input optical power. These improvements can, for
example, compensate for the disadvantages of the silicon photonics platform w.r.t. to the silicon
nitride platform, i.e. lower energy efficiency and lower contrast of memory operations [19].

It should be stressed that there are several other experimental or simulation-based published
works that focus on RRs partially coated with GST [9,14–16,21–26]. However, to the best of our
knowledge, none of those considered to exploit the enhanced power and sensitivity of the ring
waveguide to improve energy efficiency and optical contrast of GST phase change. Moreover,
the models and simulations employed in the other works did not fully account for the dynamics
of silicon nonlinear effects. In fact, the enhanced power level in the silicon ring waveguide can
easily trigger competing nonlinear effects, due to an increase of free carrier density (with faster
timescale, around 5 ns) and temperature (with slower timescale, around 100 ns). These effects
can temporarily but significantly modify the RR resonance wavelength and thus the effective
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coupling strength with the input-output waveguides. Therefore, it is important to consider these
effects when simulating or designing plastic optical devices based on a silicon RR with GST.

Nonetheless, the aforementioned nonlinear effects can be exploited, in combination with the
non-volatile memory given by GST, to implement scalable neuromorphic computing systems
within a small footprint. In particular, these effects can provide the nonlinear activation function
required by neurons, together with short-term and long-term nonvolatile memory, which can
greatly expand the network’s effective temporal dimension without any footprint increase. In
addition, RRs present a spectrum with many quasi-periodic resonances that are all linked together
by silicon nonlinear effects and the GST crystalline fraction, providing an additional dimension
for effective network expansion, i.e. through wavelength division multiplexing approaches.
Finally, considering several silicon RRs with GST connected in series and with aligned resonance
wavelengths, a pulse used to modify the memory state of the first RR might also have the effect of
temporarily shifting its resonance away from the laser wavelength, freeing the way for a second
laser pulse, which can reach the second device undisturbed, and so on. Such a mechanism has
the potential to make these plastic devices very cascadable in practice, if design parameters are
suitably chosen.

In this article, we first derive a computationally efficient numerical model that accounts for
both the GST unit cell dynamical behavior (by integrating the compact behavioural model
proposed in [26]) and the main silicon nonlinear effects in the RR, for the first time. In contrast
to previous models, we accurately model the asymmetry introduced by the GST cell and we
write optical equations based on the time-dependent couple mode theory (CMT) without the
usual high finesse approximations. To motivate and validate these modifications, we show that
they significantly improve the accuracy of the RR steady-state response for different example
cases. Then we mathematically restructure the model so that it can be efficiently employed in a
modular way for system-level simulations, within a commercial circuit simulator for photonic
integrated circuit design (Luceda Caphe). In the second part, we employ the derived model to
show that a silicon RR with a short GST cell is a particularly promising neuromorphic element in
terms of speed and efficiency of memory operations. Moreover, we show that the GST crystalline
fraction can have a strong impact (high contrast both in terms of output optical power and phase)
on the nonlinear dynamics arising in a small silicon RR network. These results show that the
proposed devices are promising candidates as all-optical plastic nodes with high cascadability for
dynamical neuromorphic systems, such as photonic recurrent NNs.

2. Model development

In this section we describe the development of a numerical model for integrated silicon RRs
with a PCM cell (namely a GST layer on top of part of the ring waveguide), which can be used
to efficiently simulate this component both in time and frequency domain, as a building block
of photonic integrated circuits. The model is implemented and evaluated using a commercial
photonic integrated circuit (PIC) simulator (Luceda Caphe).

2.1. Time-dependent coupled mode theory (TCMT) model of a silicon RR

2.1.1. Mathematical structure of a Caphe TCMT model

In this work we build on an existing node-based simulator for large-scale photonic circuits that
works both in frequency and time domain [27]. It allows for fast circuit analysis through a
high-level simplified description of the optical signal propagation, similarly as in coupled mode
theory [28] (CMT). In particular, time-domain simulations are sped up by virtually splitting
a circuit in memory-containing (MC) components and memoryless (ML) components, the
latter not requiring costly time-dependent simulations. In practice, we employ a commercial
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implementation of such simulator, which is called Caphe and is part of Luceda’s environment for
PIC design.

In this work, we are interested in time-domain simulations of microring resonators excited with
monochromatic infrared light (wavelengths around 1550 nm), where the relevant nonlinear effects
of silicon and of the GST layer can be accounted for. Caphe employs a specific mathematical
structure for these kinds of nonlinear optical cavities, called TCMT models, which is based on the
time-dependent CMT formalism (see [29] or section 3.9 of [30]). A TCMT model is shaped so
that it builds a circuit node with an arbitrary number of input ports, output ports and internal
variables whose time evolution is described through coupled 1st order ordinary differential
equations (ODEs).

In particular, let us consider a time-dependent vector v¹tº, whose elements are the internal
variables of a TCMT model, and a vector sin¹tº, whose elements are given input signals. The
time evolution of v¹tº is governed by the following 1st order ODE in its general form:

d
dt

v¹tº = Mv¹tº + KTsin¹tº + N¹v¹tº, tº (1)

where M and KT are complex-valued constant matrices, and N is a complex-valued vector
function that can be time-dependent. Specifically, the linear contribution of v to its own time
derivative is expressed by M , while the nonlinear contributions are expressed by the function N.
Note that d

dt v depends only linearly on the input signals in sin. The output signals, collected in the
vector sout¹tº, are given in general by a linear combination of the inputs and the internal variables:

sout¹tº = Ssin¹tº + Dv¹tº (2)

where S and D are suitable complex-valued constant matrices. The restrictions imposed by this
mathematical structure allow for faster simulations of circuits comprising several TCMT nodes
both in time and frequency domain.

2.1.2. Dynamical model of a high finesse silicon RR

A TCMT model for time-domain simulations of a high finesse silicon RR is described in [31],
where an all-pass configuration (i.e. with one coupled waveguide, see Fig. 1) is excited by
infrared monochromatic light. In the next sections we will expand this model to take into account
the asymmetry introduced by the GST cell, but before doing that, we describe the original basic
model here in this subsection, going only into the details that are most important for our case.
The model accounts for the most relevant nonlinear dynamics in a silicon RR, which arise from
the coupling between optical power, temperature and free carrier concentration in the silicon ring
waveguide. In particular, the physics behind the considered nonlinear effects can be summarized
as follows.

The two photon absorption (TPA) effect, which is responsible for an increase in silicon optical
absorption proportional to the square of the optical power, generates free carriers. These populate
the ring waveguide for a certain time, before they recombine or diffuse away. The presence of free
carriers increases both light absorption, through the free carrier absorption (FCA) mechanism,
and the silicon refractive index, due to the free carrier dispersion (FCD) effect, resulting in a
blueshift of the RR resonance wavelength. The total absorbed electromagnetic power heats up
the waveguide, so that the silicon refractive index is increased through the thermo-optic effect
(TOE) and the RR resonance is redshifted.

Interestingly, FCD and TOE are responsible for opposite shifts in resonance wavelength.
Moreover, the first effect is typically weaker but significantly faster than the second one (example
characteristic times are 5.3 ns and 65 ns respectively). Under these conditions, a silicon RR
excited with a strong enough and constant optical signal can exhibit a periodic oscillation of
its resonance wavelength, emitting a pulsed optical signal at its output [31,32]. The dynamic
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Fig. 1. A schematic of a RR in all-pass configuration (i.e. with one coupled waveguide):
sin and sout represent the input and the output optical signals respectively; a is the mode
amplitude of the optical signal travelling inside the ring; a straight waveguide is coupled to the
ring waveguide through a directional coupler whose transmission and coupling coefficients
are represented by � and � respectively; o is the complex factor accounting for the attenuation
and the phase shift applied to a¹tº when travelling one ring round trip, not including the
coupling transmission � . For high enough input powers, o significantly depends on the
excess ring temperature � T and on the amount of free carriers N.

CMT description under consideration is mainly built to account for this phenomenon, called
self-pulsing.

Now, let us see how Eq. (1) is applied to the all-pass RR case we just described, considering a
single-mode ring waveguide, input light with wavelength � that is close to a given resonance
wavelength � r and neglecting backscattering. The internal variables contained in the vector v¹tº
are:

1. a¹tº, the complex amplitude of the RR optical mode, in the context of the slowly varying
envelope approximation, normalized so that its squared modulus equals the electromagnetic
energy in the ring at time t.

2. � T¹tº, the mode-averaged temperature difference w.r.t. the environment.

3. N¹tº, the number of free carriers populating the RR.

The employed system of equations, written as an element-wise splitting of Eq. (1), is [31–33]:

d
dt

a =
�
i¹! r + �! r¹� T , Nº � ! º � L l � L nl¹jaj2, Nº

�
a +

i�
p

Tr
sin¹tº (3)

d
dt

� T = �
� T
� th

+ A th¹jaj2, Nº (4)

d
dt

N = �
N
� fc

+ A fc¹jaj2º (5)

In the first ODE (Eq. (3)), the term i¹! r + �! r¹� T , Nº � ! º represents the influence of the
detuning between the light source angular frequency ! and the resonance angular frequency
! r + �! r¹� T , Nº of the RR, where ! r is its unperturbed value and �! r a time-dependent
perturbation. The terms L l and L nl¹jaj2, Nº respectively provide the damping effect of the linear
(unperturbed) and the nonlinear cavity losses. The coupling factor i� •

p
Tr determines the ring

excitation by the input optical signal sin¹tº, which is a mode complex amplitude similarly as a¹tº,
but with the difference that it is normalized so that jsin¹tºj2 equals the input power at time t. In
particular, i� is the coupling coefficient of the directional coupler and Tr = L•vg, where L and
vg are respectively the length and the group velocity of the ring waveguide. Tr is called the
round trip time and approximately estimates the time needed by an optical signal to travel one
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round trip through the ring. Since approximately all the energy jaj2 stored in the ring has to pass
through a given ring cross section in a round trip time Tr, we set jsring j2 = jaj2•Tr, where jsring j2

is the optical power flowing in the ring and sring is the corresponding mode complex amplitude.
Therefore

p
Tr is in this case a factor that translates power mode amplitudes, such as sin and sout,

into energy mode amplitudes, such as a. In the last two ODEs , � th and � fc are the relaxation
times for respectively � T and N, while A th and A fc respectively represent their source, given by
the absorption of the signal a in the ring waveguide. A derivation of Eq. (3) is discussed in the
Supplement 1 (Section 1). Additionally, further details and the full derivation of these equations
can be found in [32] and in [30].

Finally, the equation for the output signal is:

sout¹tº = � sin¹tº +
i�

p
Tr

a¹tº (6)

This corresponds to the optical mixing performed by the directional coupler, where � =
p

1 � � 2

is its transmission coefficient and a¹tº•
p

Tr is the power amplitude in the ring waveguide. (Note
that strictly speaking, this equation is only valid for the exact model, and not for the approximate
model where � is taken to be small, in which case � should be 1 for consistency reasons.)

It should be stressed that the nonlinear perturbations in the ODEs, as well as � T and N, are
negligible for a low enough optical input power jsin¹tºj2, typically � 1 mW. Moreover, the first
ODE (Eq. (3)) is valid for high-finesse RRs, i.e. for small ring losses and coupling coefficient
(L l � 1•Tr and � � 1). Moreover, it should be noticed that a more accurate equation for
the ODE governing the temperature was recently reported [34], which might allow for a more
accurate fit of experimental data.

In the all-pass configuration that we considered until now, all the input optical power that is
not transmitted through the output is lost through absorption and radiation loss. In this work,
instead, we consider a RR coupled with two waveguides (add-drop configuration, see Fig. 2
(b)), since such a configuration is arguably more interesting for neuromorphic computing, where
network connectivity and energy efficiency are key aspects. Indeed, the add-drop configuration
allows for two input signals to interact in the ring and a single input can be split, depending on
the resonance, among two output ports. This allows us, for example, to connect a few add-drop
RRs to form optical networks that present very rich dynamics, such as chaotic behavior, and
non-localized resonances coming from the interaction of two or more resonators [33,35]. These
characteristics are especially interesting for hardware reservoir computing [36].

Fig. 2. (a): Cross section of the PCM cell, i.e. a rib silicon waveguide with PCM (GST)
layer, modelled by the considered GST model [26]. The GST layer and the ITO protective
layer are both 10 nm think. (b): Schematic of a silicon RR with GST cell, in the add-drop
configuration (i.e. with two couples waveguides).

In Section 2.4 we will discuss the first ODE (Eq. (3)) in more detail and we will propose
suitable modifications to account for the presence of a PCM layer on a segment of the ring
waveguide.
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