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We theoretically and experimentally investigate type II
second harmonic generation in III-V-on-insulator wire
waveguides. We show that the propagation direction plays
a crucial role and that longitudinal field components can
be leveraged for robust and efficient conversion. We predict
that the maximum theoretical conversion is larger than that
of type I second harmonic generation for similar waveguide
dimensions and reach an experimental conversion efficiency
of 12%/W, limited by the propagation loss. © 2021 Optical
Society of America

https://doi.org/10.1364/OL.418064

Second harmonic generation (SHG) was first demonstrated
almost 60 years ago [1] and still attracts a lot of attention. In
particular, many novel integrated platforms for integrated
SHG have recently emerged [2–4]. Conversions as high as
47,000%/(W · cm2) have been demonstrated in III-V semi-
conductors [5], and ultra-wide tuning was recently shown in
silicon waveguides [6]. The large intrinsic nonlinearity in addi-
tion to the high-index contrast of sub-wavelength structures
leads to very large effective nonlinearities. Different schemes
for phase matching have been proposed and implemented
[7–9]. Type I modal phase matching, consisting of engineering
the waveguide cross section such that a pump mode and a SH
higher-order mode propagate at the same phase velocity, is
attractive because standard waveguiding structures can be used.
It, however, leads to lower conversion efficiency as compared
to other schemes because of the sub-optimal overlap between
the pump and SH mode in the nonlinear core of the waveguide.
Record conversions in gallium arsenide wire waveguides were
recently reported by optimizing such overlap. But the efficiency
is still limited because very thin layers are used to ensure phase

matching between two fundamental modes [5]. Moreover, it
makes the conversion very sensitive to fabrication variations.

Here we show that type II SHG can help alleviate these limita-
tions. We theoretically analyze the nonlinear conversion with a
full-vectorial model to identify the most efficient configurations
and experimentally confirm our predictions in indium gallium
phosphide (InGaP) nanowires.

To the best of our knowledge, type II SHG has never been
demonstrated in the strong-guidance regime. It was previously
studied in AlGaAs photonic wires with low vertical confinement
[10], where the modes are well approximated by transverse
waves. As we recently demonstrated for the case of type I SHG,
more complex wave mixing involving the longitudinal compo-
nents can be expected in III-V-on-insulator wire waveguides
[11,12]. We hence apply the same vectorial analysis to the case of
type II phase matching to identify efficient nonlinear couplings
between a pump around 1550 nm and a higher-order mode
around 775 nm.

We write the electric field as a superposition of three forward
propagating bound modes, two oscillating atω0 and one at 2ω0,
in the waveguide frame (x y z), where x is the horizontal coordi-
nate, y the vertical coordinate, and z the propagation direction
(Fig. 2). The total electric field reads

E = a1(z)ea1(r⊥, ω0)e i(βa1 z−ω0t)
+ a2(z)ea2(r⊥, ω0)e i(βa2 z−ω0t)

+ b(z)eb(r⊥, 2ω0)e i(βb z−2ω0t)
+ c.c.,

(1)

where a1 and a2 represent the amplitudes of both pump modes
and b the amplitude of the SH mode (expressed in

√
W).

βa1 , βa2 are the propagation constants at carrier frequency
ω0, and βb is the propagation constant at carrier frequency
2ω0. ea1,a2(x , y , ω0) and eb(x , y , 2ω0) are the orthonormal
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vectorial electric profiles of the modes. They satisfy the usual
orthonormality condition [13].

The propagation equations can be found through perturba-
tion theory [14–16]. Here we retain only the nonlinear terms
involving three different modes and include the propagation
loss. We find

da1

dz
=−

αa1

2
a1 + iκ∗12ba∗2 exp(−i1βz),

da2

dz
=−

αa2

2
a2 + iκ∗12ba∗1 exp(−i1βz),

db
dz
=−

αb

2
b + 2iκ12a1a2 exp(i1βz), (2)

where αa1 , αa2 , and αb are the linear loss coefficients of the
respective modes, and 1β = βa1 + βa2 − βb is the wavenum-
ber mismatch. The effective nonlinearity κ12, expressed in
(
√

W ·m)−1, reads

κ12 =ω0ε0

∫∫
A

∑
j kl=x y z

χ
(2)
j kl e
∗ j
b e k

a1
e l

a2
dxdy , (3)

with ε0 the vacuum permittivity and A the nonlinear wave-
guide core. We recall that Eq. (2) is written in the waveguide
frame such that the nonlinear tensor elements are dependent
on the propagation direction. In the crystal frame of a III-V
semiconductor, only the j 6= k 6= l elements are nonzero. To
account for other directions, the nonlinear tensor must be
rotated (see, e.g., [10]). Most III-V wafers are grown along a
crystallographic axis. Here we consider the case of a wafer grown
along the [10] axis and use the [100] direction as the reference in
the propagation plane.

In the undepleted regime, the SH output power can be found
analytically. We neglect the parametric down conversion terms
and integrate Eq. (2) along the propagation direction. We find

Psh = 16|κ12|
2 P1 P2

|8|2

∣∣∣∣sinh

(
8

2
z
)∣∣∣∣2 exp

[
−

(αb

2
+ αa

)
z
]
, (4)

where αa1 = αa2 = αa , and 8= αb/2− αa + i1β.
P1,2 = |E1,2|

2 are the input powers at the pump wavelength.
To maximize the conversion, we set P1 = P2 = P0/2, with P0
the total input power. The maximum output power, found by
setting 1β = 0, can then be written as Psh(L)= |κ P0L eff|

2,
where

L eff = 2
exp (−αa L)− exp (−αb L/2)

αb − 2αa
, (5)

and L is the length of the waveguide. This is the same expression
as that of type I SHG [11]. In what follows, we use the effective
nonlinearity κ12 to compare different configurations as well as to
confront our experimental results with theoretical predictions.

We now look for specific cases of phase matching to evaluate
the theoretical conversion efficiency in standard waveguides. We
consider fully etched InGaP-on-insulator wire waveguides with
a 200 nm hydrogen silsesquioxane (HSQ) cladding layer. The
refractive index of HSQ is similar to that of silicon dioxide. The
layout corresponds to the waveguides used in the experiment
discussed below. InGaP possesses a single nonzero second-
order nonlinear coefficient that was measured to be as high as
χ (2)x y z = 220 pm/V [17]. In principle, any two pump modes can

be used for type II SHG, but wave mixing processes involving
the two fundamental modes (TE00 and TM00) are expected
to be the most efficient. Moreover, it is the easiest scheme to
implement experimentally in sub-wavelength waveguides
with free-space injection. We hence look for phase matching
between the two fundamental modes around 1550 nm and
a higher-order mode around 775 nm. We vary the width and
height of the waveguide in steps of 5 nm in each direction. When
a phase matching point is found in a 10 nm window around the
1550 nm wavelength, we compute the efficiency as a function of
the propagation direction (either 0◦ or 45◦) and place a marker
in the efficiency map shown in Fig. 1.

The marker color codes the relative strength of the coupling,
and its shape indicates the propagation direction for which it
is maximized: squares correspond to 0◦ waveguides, while dia-
monds represent 45◦ waveguides. To limit the computational
time, we restrict the simulations to widths between 600 and
1000 nm and heights between 100 and 400 nm. We connect
the markers corresponding to the same SH higher-order mode
with a line. Interestingly, and in contrast to type I SHG [12], the
most efficient conversion occurs for relatively thick waveguides
(605 nm wide, 295 nm high) aligned with a main crystallo-
graphic axis [κmax = i3500 (W1/2

·m)−1]. For comparison,
the maximum found for type I SHG in the same range of wave-
guide dimensions is κ1 = 2816 (W1/2

·m)−1 [12]. The higher
efficiency for type II SHG can be understood by analyzing the
expression of the effective nonlinearity for waves propagating
along a crystallographic axis of a III-V material. It reads

κ12 =ω0ε0

∫∫
A
χ (2)x y z[e

∗x
b (e

y
a1

e z
a2
+ e z

a1
e y

a2
)

+ e ∗yb (e
z
a1

e x
a2
+ e x

a1
e z

a2
)+ e ∗zb (e

x
a1

e y
a2
+ e y

a1
e x

a2
)]dxdy ,

(6)

where χ (2)x y z is the single nonzero tensor element of InGaP. In the
specific case of predominant TM00 and TE00 pump modes and a
TM higher-order mode at the SH, Eq. (6) can be approximated
by the simpler expression

Fig. 1. Efficiency map of the nonlinear coupling between TE00 and
TM00 pump modes and a higher order second harmonic mode of an
InGaP-on-insulator wire waveguide. Only phase-matched interactions
are shown. Squares (diamonds) correspond to a waveguide rotated
at 0◦ (45◦) from the [100] crystallographic axis. The conversion effi-
ciency is normalized to the maximum value [(|κ|/|κmax|)

2 (dB), with
κmax = i3500 (W1/2

·m)−1].
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κ12 ≈ω0ε0

∫∫
A
χ (2)x y ze

x
a1
(e ∗yb e z

a2
+ e ∗zb e y

a2
)dxdy . (7)

The effective nonlinearity is dominated by two terms, both
involving a longitudinal electric field component. A transverse
mode approximation would yield no conversion in this case.
The wave mixing process involving longitudinal components
does not preclude efficient conversion because, in high index
contrast platforms, the longitudinal components can be almost
as large as their transverse counterparts [18]. Importantly, lon-
gitudinal components have a spatial distribution that is distinct
from, but linked to, that of the principal transverse component
[13]. In the case of phase matching to a TM01 mode, both terms
of Eq. (7) are large because the involved spatial distributions are
very similar to each other. This is made possible by the very large
index contrast of the platform and highlights the strong poten-
tial of type II phase matching for SHG in III-V-on-insulator
wire waveguides.

Next we aim to experimentally confirm this large theoretical
conversion efficiency.

We fabricate InGaP-on-insulator waveguides through wafer
bonding [19]. The starting epitaxial stack is made of a 350 µm
substrate of AlGaAs, a 200 nm sacrificial layer of InGaP, another
200 nm sacrificial layer of AlGaAs, and then a 320 nm InGaP
layer. A thin layer of 15 nm silicon oxide is deposited on top of
the stack to improve adhesion. The stack is then bonded on an
oxidized silicon wafer (3 µm SiO2) using a BenzoCycloButene
(BCB) dilution as an adhesive layer. We remove the substrate
with a HNO3 :H2O2 :H2O solution in a 1:4:1 proportion and
pattern waveguides using electron-beam lithography. A negative
resist (HSQ) is deposited prior to illumination. The waveguides
are patterned using inductively coupled plasma etching. The
HSQ layer is not removed after etching, resulting in a 200 nm
cladding.

The width of the waveguides, characterized with scanning
electron microscopy, is 850 nm. In this structure, the effi-
cient conversion to a TM01 SH mode, as discussed above,
is predicted to occur for a pump wavelength of 1536 nm
(Fig. 2). The corresponding theoretical effective nonlinearity is
κ12 = i3200(

√
W ·m)−1. We design waveguides made of three

sections of different directions [Fig. 3(b)]. This is because the
cleave direction of both silicon and III-V semiconductors are
at 45◦ (i.e., along the [101] and [1̄01] axes). The main section,
located in the middle, is aligned with a crystallographic axis.
It is connected, on both ends, to sections normal to cleavage
planes to facilitate light injection and collection. A 5 µm wide
and 200 µm long taper is used at the input to optimize the injec-
tion. The middle section is 1.4 mm long, and the total length is
4.5 mm.

The experimental setup is depicted in Fig. 3(a). We inject the
light using a lensed fiber. The coupling loss is estimated at 6 dB.
A polarization controller allows us to tune the input polarization
state. The light is collected from the waveguide with a high NA
objective (0.9). The pump and SH wavelengths are separated
with a dichroic mirror and sent through a Glan–Taylor polar-
izer to a photodiode. To characterize the SH (pump) diffusion
pattern, we image the chip from the top with a silicon (InGaAs)
camera. In the first experiment, we inject 25 mW from a C-band
laser and tune both the input wavelength and polarization. As
predicted, the brightest pattern is found at 1536 nm when both
TE00 and a TM00 pump modes are simultaneously excited.
The output SH wave is predominantly vertically polarized, as

Fig. 2. Effective refractive indices of the pump and SH modes of a
850 nm wide and 320 nm high InGaP-on-insulator wire waveguide
with a 200 nm cladding layer as a function of the pump wavelength.
The corresponding Poynting vector distributions are also shown. The
average of the indices of the two pump fundamental modes is plotted
to highlight the phase matching point.

Fig. 3. (a) Experimental setup. A continuous wave (CW) laser goes
through a polarization controller (PC) before being injected in the
waveguide (WG) due to a lensed fiber (LF). The light is collected with
a microscope objective (MO) before being split by a dichroic mirror
(DM). Each wave goes through an imaging lens (L) and a Glan–Taylor
polarizer (GTP). The power is finally measured by a dedicated photo-
diode (PD). (b) Top view of the waveguide as captured with a silicon
camera.

expected. The corresponding SH diffusion pattern is shown
in Fig. 3(b). We see that the SH appears at the beginning of the
middle section, the one aligned with a crystallographic axis.
The SH intensity increases until the second bend, after which it
decays, as expected from the lack of nonlinear coupling in wave-
guides rotated at 45◦ from a crystallographic axis. To extract the
experimental effective nonlinearity (κexp), we estimate the loss
at each wavelength by fitting diffusion patterns. For the pump
modes, we perform an experiment at low power, and for the SH
TM01 mode, we use the last section of the waveguide where no
SH conversion occurs. We find 1.2 dB/mm for the pump modes
and 6.4 dB/mm at the SH, corresponding to L eff = 700 µm.
An injected input power of 25 mW corresponds to 3.8 mW at
the beginning of the 0◦ section. Because it is difficult to exper-
imentally evaluate the outcoupling loss for the SH mode, we
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Fig. 4. Experimental SH power as a function of the pump wave-
length for a purely TE pump (green squares), a purely TM pump
(orange squares), and a hybrid pump (blue diamonds). The red dashed
line corresponds to the theoretical output SH power. The inset shows
the measured (blue crosses) and fit (red line) of the SH power as a
function of the input power.

consider that we collect all the output power and hence give a
lower bound of the experimental effective nonlinearity. We first
extract κexp from the output SH power at the phase matching
wavelength and next characterize the spectral transmittance of
the process.

The maximum output SH power (at λp = 1536 nm) as a
function of the input power is shown in the inset of Fig. 4. It
is fitted with the theoretical function Psh = |κexp P0L eff|

2 that
allows us to extract the conversion efficiency value. We find
|κexp|> 500(

√
W ·m)−1. The recorded output SH power as

a function of input wavelength for three different input polari-
zation states is shown in Fig. 4 and confirms that the process is
more efficient when both input modes are equally excited. Also
plotted is the theoretical transfer function Eq. (4) computed
for |κexp| = 500(

√
W ·m)−1. The agreement between the

theoretical spectral acceptance and our experimental results is
excellent.

The maximum conversion efficiency, defined as |κexp|
2, is

equal to 2500%/(W · cm2), which corresponds to 12%/W
in our waveguide. It is similar to recently reported values in
lithium niobate [2600%/(W · cm2)] [20], but it is an order
of magnitude lower than the record 47, 000%/(W · cm2)
efficiency recently obtained in GaAs nanowaveguides [5].
Yet, the theoretical limit in our case, corresponding to |κ12|

2, is
102, 400%/(W · cm2). It highlights the strong potential of type
II SHG for future integrated frequency converters. InGaP wire
waveguides with much lower propagation loss should hence
permit converting as little as 1 µm into 1 nW of SH power in a
1 cm long waveguide. Encouragingly, several demonstrations
of low loss III-V semiconductor waveguides have been recently
reported [21,22].

In conclusion, we demonstrated efficient type II SHG in
InGaP nanowires. We performed a full-vectorial theoretical
analysis and showed that the most efficient conversion occurs
in waveguides aligned with a crystallographic axis. In that con-
figuration, the nonlinear coupling is enabled by longitudinal
field components of both a pump mode and the SH mode. We
confirmed our prediction experimentally by demonstrating
very efficient conversion in an 850 nm wide, 320 nm thick wire
waveguide. As predicted, the conversion is maximized when the
two fundamental modes at the pump wavelength are equally

excited, and the conversion occurs in a waveguide aligned with
a main crystallographic axis. These results demonstrate the
potential of type II phase matching to maximize the conversion
in III-V semiconductor nanowaveguides, which we expect to
play a role in future quantum circuits [23] and frequency comb
stabilization devices [24,25].
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