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Simulating self‑learning 
in photorefractive optical reservoir 
computers
Floris Laporte1*, Joni Dambre2 & Peter Bienstman1

Photorefractive materials exhibit an interesting plasticity under the influence of an optical field. 
By extending the finite‑difference time‑domain method to include the photorefractive effect, 
we explore how this property can be exploited in the context of neuromorphic computing for 
telecom applications. By first priming the photorefractive material with a random bit stream, the 
material reorganizes itself to better recognize simple patterns in the stream. We demonstrate this 
by simulating a typical reservoir computing setup, which gets a significant performance boost on 
performing the XOR on two consecutive bits in the stream after this initial priming step.

The photorefractive effect can be described as an interesting response of some materials to an applied optical 
field. When illuminated with light, these materials develop a permanent change in refractive index. The effect, 
first observed in the  1960s1,2, relies on a careful interplay between the photons and the charges in the material 
which can best be described as follows: photons excite charges in the illuminated regions of the material. These 
charges are now free to move through the bulk of the material, where they are captured again in the dark (not 
illuminated) regions of the material. This gives rise to a inhomogeneous charge distribution, which in turn gives 
rise to a so-called space-charge electric field throughout the crystal. Finally, due to the Pockels effect, the vary-
ing space charge field has an influence on the refractive index of the material, which in turn will influence the 
propagation of the light through the crystal.

This interplay between the charge carries in the material and the light propagating through the material 
make such photorefractive crystals ideal candidates for applications involving  holography3,4 and, as soon as these 
holographic properties were well understood, these crystals have been used for a variety of applications.

One of these applications, explored in the late 80s and 90s, is neuromorphic  computing5–8, where the weights 
of a neural network were written into such a photorefractive crystal in the form of a hologram, yielding a neural 
network with ultra-fast inference. Moreover, it turns out that optical training algorithms akin to  backpropagation9 
can be derived for such  systems5. However, the inherently slow photorefractive process inside the crystal results 
in quite long training times for such iterative algorithms.

A more viable option for these crystals might however be to integrate them into optical reservoir computing 
setups. Reservoir Computing (RC) is a two-decade old machine learning  paradigm10,11 used to process time-
dependent signals. In RC, a highly dynamical system, the reservoir, is used as a randomized preprocessor to a 
time-dependent input signal. Preprocessing the input signal this way produces a high-dimensional reservoir 
state which is subsequently interpreted by a simple linear classifier, called the readout. The beauty of RC lies in 
its simplicity: the same reservoir is often used for a large number of different applications, while each time only 
a different readout must be found.

Due to its architectural simplicity, the reservoir computer has found its way into many different optical 
hardware implementations. Many of which follow the single-node reservoir  architecture12–17, while others follow 
the passive photonic reservoir computing  approach18–21, which is best characterized by the following equations:

These two equations describe how the classification of the readout �y(t) at each time t is related to the internal 
reservoir state �x(t) through a nonlinear detection operation f (which can simply be the quadratic response of a 
photodiode) and a set of readout weights Wout . Moreover, the internal reservoir states �x(t) at the current timestep 

(1)�x(t) = Win�u(t)+Wres�x(t − dt)

(2)�y(t) = Woutf (�x(t)).
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are related to the input �u(t) and reservoir states at the previous timestep �x(t − dt) through completely passive 
mixing (without any nonlinearities), characterized by Wres.

Traditionally, all the weights are explicitly encoded in software or dedicated hardware. However, the beauty 
of RC in physical hardware is that Win and Wres can be completely encoded by a physical system, which allows 
us to only find a suitable readout Wout . In this case Win and Wres are usually unknown parameters of the physical 
system.

In this work, we will explore how the photorefractive effect can be used to potentially improve such a simple 
passive optical reservoir computing setup by influencing the internal (unknown) reservoir state Wres.

Indeed, a potentially interesting aspect of these photorefractive crystals, is that photorefractive crystals might 
exhibit a form of self-learning, i.e. the ability to reconfigure themselves according to prolonged exposure to the 
signals the reservoir system is supposed to classify. It might be possible to exploit this in a way similar to Heb-
bian  learning22,23, which is best characterized by the catchphrase “neurons that fire together wire together”. In the 
case of photorefractive crystals in a RC setup, this would take the form of common patterns and correlations in 
the training input becoming more expressed in the crystal in such a way to make the final classification by the 
readout easier.

Results
A photorefractive crystal is placed inside a free-space cavity with 50/50 mirrors, as illustrated in Fig. 1. This 
combination of crystal and cavity will act as the reservoir. Light leaking out of the cavity will be detected by a 
camera with a limited number of pixels. On these detected camera pixels a readout can be trained for the appli-
cation at hand.

Within the proposed setup, the photorefractive crystal thus acts as a diffractive element inside the cavity, 
which introduces the random mixing necessary for a reservoir to function. However, even though this setup 
resembles typical diffractive optical  reservoirs24–27, it is important to note that the proposed setup does not 
contain any nonlinear elements and hence follows the passive photonic reservoir setup as introduced in Eq. (1). 
Indeed, the nonlinear photorefractive effect, which typically acts on a timescale of seconds is typically too slow 
to have any effect during inference and hence, any charge distribution (and resulting index contrast) within the 
crystal can be considered constant during inference.

However, whereas traditional reservoir computing setups do not allow any optimization of the reservoir 
itself, our simulation setup is designed in a way to exploit the self-reorganization of the photorefractive crystal 
by prolonged exposure to a random bitstream and a reference beam. We will call this initialization procedure the 
priming of the crystal. During priming, a reference beam is active to induce beam coupling28 inside the crystal 
between the signal beam and the reference beam, as illustrated in Fig. 2a. The technique of beam coupling in 
photorefractive crystals is a well-known concept in photorefractive  holography3,4 and will result in a refractive 
index distribution that will allow part of the light to be coupled out of the cavity, as illustrated in Fig. 2b during 
inference, after this initial priming step, when the reference beam is turned off.

Generally speaking, a bit entering the cavity will make at least one roundtrip before its amplitude drops below 
the noise due to power loss at the 50/50 mirrors, losses in the crystal and leakage out of the cavity. These round 
trips allow for the time-dependent signal to interfere with itself inside the crystal. Hence, when the reference 
beam is active, recurring patterns in the time-dependent input signal will start to couple with the reference beam, 
resulting in an emerging input signal-dependent index contrast in the crystal.

During inference, the actual bit stream is sent through. The aim is that the initial priming step will have 
improved the performance of the reservoir setup on the task at hand due to the more pronounced correlations 

Figure 1.  A photorefractive crystal placed in a cavity. Light entering the cavity will interact with the 
photorefractive crystal such that part of the light will be coupled out of the cavity. Moreover, frequently 
occurring recurring patterns in the time-dependent input signal will interfere similarly in the crystal resulting in 
a form of self-learning. This figure was created with Inkscape.
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between common bit patterns inside the photorefractive crystal. Indeed, even when a purely random bit stream 
is used for priming, each subsequence of bits (take for example the two-bit sequences 00, 01, 10, 11) will still 
interact differently with the photorefractive crystal by exciting it slightly differently. This means that those 
substrings of bits will interact differently with the crystal during inference in a predictable way, which can be 
classified by the readout.

In our simulations, a bit stream of 10,000 bits is sent through the cavity. When the signal leaks out of the cavity 
(either behind the mirrors or on the sides of the crystal), the signal will be detected by a camera, consisting of 
64 recorded pixel values sampled eight times per bit, which are obtained by spatial averaging of the FDTD grid 
at the camera location and by performing a lowpass filtering with a cutoff frequency equal to the bitrate for each 
of the pixels. The readout weights are then trained to follow a boolean target function. Two target functions are 
considered: a simple copy task, where the same output should be reproduced with a certain latency and the XOR 
task, where the XOR of two consecutive bits in a bitstream is performed by the system and which also must be 
reproduced with a certain latency. Training of the readout is, like usually in RC, simply done by linear regression: 
the chosen readout minimizes the mean squared error between target and prediction. Moreover, after performing 
a threshold on the predicted output, the Bit Error Rate (BER) can be calculated.

As we are targeting boolean tasks, we would like two consecutive bits in a bit stream to be able to interfere 
inside the crystal. Hence we choose the width of the cavity such that the propagation time between the two mir-
rors equals the length of a single bit. However, using typical photorefractive parameters for LiNbO3

29–31 sum-
marized in Table 1 and a target bitrate of 100Gbps , this would result in a cavity width of about 700µ m. Doing 
an FDTD simulation for such cavity for a meaningful amount of bits at a wavelength of 1550 nm is however near 
impossible. Therefore, for computational reasons, the simulated cavity is made 100 times smaller to 7µ m. To 
compensate for this reduced size, the bitrate in simulation is increased by the same factor to 10 Tbps . Moreover, 
as the diffractive power of a grating is in general proportional to both the length of the grating and its refractive 
index contrast, the shorter length of the crystal is compensated by an equal and opposite increase of its Pockels 
coefficients.

Three different cases will be considered: the primed crystal as discussed earlier, an empty cavity and a cavity 
with a crystal with a random diffraction pattern within. The random diffraction pattern is obtained by performing 
a band-pass filter on white noise within the spatial frequency range of typical gratings inside a photorefractive 
crystal, i.e. spatial frequencies corresponding to gratings with pitch between �/2 (co- or counter propagating 
beams) and �/(2

√
2) (perpendicular beams) where allowed. Moreover, the standard deviation on this random 

index contrast was chosen to equal the standard deviation of the grating in the primed case. These two extra cav-
ity setups should offer a fair comparison between the self-learning priming approach and more typical random 
diffraction reservoirs.

Copy Task. The copy task consists of sending a bit stream through the reservoir and trying to retrieve the 
same bit stream with a certain delay. Even though no special calculations need to be performed to do this opera-
tion, the copy task still serves as the prime measure for the memory of the reservoir.

Figure 2.  (a) During priming, a random input signal is sent through the cavity containing a photorefractive 
crystal while a reference beam is active. The signal beam enters the cavity through a 50/50 mirror and will 
reflect at the other side of the cavity on another 50/50 mirror. Due to interference with the reference beam (and 
with reflections of the signal beam itself), induced gratings start to form inside the photorefractive crystal for 
common patterns in the signal beam. These gratings will in turn influence the propagation of the light through 
the crystal. When the induced gratings become strong enough, beam coupling occurs. (b) During inference, 
the signal beam will still interact with the gratings created during the priming step These interactions with the 
photorefractive crystal might give rise to beams that are coupled out of the photorefractive crystal and slower 
propagation times through the crystal. Overall, such a primed crystal will perform better as a reservoir on the 
benchmark tasks considered here than the non-primed crystal. This figure was created with Inkscape.
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We attempt to retrieve the original bit stream at different delays or latencies after which they were sent out. 
This is done for a randomly initialized non-primed crystal and a crystal primed by the previously described 
initialization procedure.

In Fig. 3, the latency is increased in steps of 0.125 bits. These steps correspond to the sampling rate of the sig-
nal (which is 8 times the bit rate). For each of these latencies, the BER is calculated. Note that latency 0 is defined 
as when the bit starts entering the cavity. As can clearly be seen on the figure, the performance on the copy task 
degrades after priming, from 0 bits in 10, 000 simulated bits in the non-primed and random case (which cor-
responds to a max BER of 10−2 for the amount of 10, 000 bits  used32) to about 200 in 10, 000 in the primed case.

XOR task. When performing the XOR task, the system is asked to produce the XOR of two consecutive 
bits in the bitstream. The XOR is a typical benchmark problem in machine learning, as the nonlinearity of the 
XOR operation makes solving this task non-trivial because the output cannot be found by just performing a 
linear classification algorithm on the inputs. However, if the mixing in the reservoir is sufficiently large, the 
non-linearity of the detector is often enough to perform this  task19. Hence, being able to perform the XOR task 
in an optical reservoir where a readout is trained on the detected reservoir output is often a good indication of 
sufficient mixing in the reservoir.

In Fig. 4, we compare again the performance of the primed reservoir with the non-primed and random 
reservoir for different latencies (in the case of the XOR, the latency is counted from the moment the last bit has 
started entering the cavity), and here we see a stark difference: whereas the primed reservoir is able to perform 
the XOR between two consecutive bits in the bitstream with 0 errors out of 10, 000 bits, the non-primed reservoir 
and the random reservoir are totally unable to do so. This might indicate that priming the reservoir increases 
the performance of the reservoir system by trading of some of the memory for computational performance.

Table 1.  Simulation parameters for the LiNbO3 crystal simulated with FDTD. Each of the actual  values29–31 is 
followed by the values used in simulation. The values used in simulation are chosen to partly compensate for 
the reduced cavity size that can be simulated with an FDTD simulator.

Parameter Actual Simulation Unit

L Cavity length 7 · 10−3 7 · 10−5 m

B Bitrate 100 10000 Gbps

s Photo-ionization cross section 0.0025 0.0025 m2/J

β Thermal excitation rate (300K) 1.0 1.0 s−1

γ Recombination rate 10−15 10−15 m3/s

µ Mobility 0.0015 0.0015 m2/Vs

ND Donor density 6.6 · 1024 6.6 · 1024 m−3

N
+
D

Initial excited donor density 3.3 · 1024 3.3 · 1024 m−3

n Initial free electron density 1 · 1017 1 · 1017 m−3

ǫ Static relative permittivity 32 32 1

ǫ Relative permittivity @ 1500 nm 4.9 - 4.6 4.9 - 4.6 1

r22 Pockels coefficient 7 700 pm/V

r13 Pockels coefficient 10 1000 pm/V

r33 Pockels coefficient 32 3200 pm/V

r42 Pockels coefficient 32 3200 pm/V

Figure 3.  Performance on the copy task before and after priming. Priming has a detrimental effect on the 
memory of the reservoir. The latency is increased in steps of 0.125 bits.
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Discussion
This study presents an initial attempt at using photorefractive materials for self-learning neuromorphic comput-
ing applications. We show that by exposing a photorefractive material to a long, repeated bit stream (priming), 
the induced gratings make it perform better on a nonlinear time-dependent telecom related benchmark task: 
the XOR task.

Indeed, performance on the XOR task can be improved from 50% BER (random guessing) in the non-primed 
and random case to 0 errors in 10, 000 simulated bits in the primed case. Moreover, comparing the random grat-
ing with similar properties (average index variation and grating pitch) as the primed grating shows much worse 
performance on that same task, showing that the primed crystal has indeed learned to perform the XOR by itself.

However, this gain in computational power comes at the cost of reducing the memory of the reservoir system: 
tasks requiring more memory (but less computational power) will perform worse. This is exemplified by the 
results on the copy task, where the primed crystal is unable to copy the bits without any errors.

To perform these self-learning reservoir simulations in a reasonable amount of time, some approximations 
were necessary. The most important limitation on the simulation was the size of the crystal, which was reduced 
by a factor 100. To compensate for this smaller crystal size, the bitrate was increased by the same factor, from 
100Gbps (which would be the target bitrate in an actual physical setup) to 10 Tbps in simulation. As - generally 
speaking - the refractive power of a grating is proportional through the index contrast and to its length, we 
increased the Pockels coefficients in the simulation as well, to compensate for the shorter propagation length 
through the crystal. All these approximations indicate that the results obtained yield a qualitative indication 
that the proposed system could work in principle on physical hardware. However, actual experimental results 
are necessary to confirm this claim.

Methods
The FDTD method. The Finite Difference Time Domain (FDTD)  method33,34 is one of the most-used ways 
to simulate electromagnetic phenomena.

By discretizing the electric field �E and the magnetic field �H on a Yee cell, as illustrated in Fig. 5, one can derive 
the following update equations:

with

Where q represents the time-index of the simulation and the indices m, n, p represent the index of the Yee-cell 
the field components belong to along the x, y and z axis respectively (half-integer offsets from the corner of the 
grid-cell as laid out in Fig. 5 are implicitly assumed). Moreover, sc is known as the Courant number of the simula-
tion, which—for a 3D simulation—must satisfy the following stability requirement.

(3)�H[m, n, p, q+ 1] = �H[m, n, p, q] − scµ
−1 ��E[m, n, p, q]

(4)�E[m, n, p, q+ 1] = �E[m, n, p, q] + scǫ
−1 ��H [m, n, p, q+ 1],

(5)��E[m, n, p] :=





�

Ez[m, n+ 1, p] − Ez[m, n, p]
�

−
�

Ey[m, n, p+ 1] − Ey[m, n, p]
�

�

Ex[m, n, p+ 1] − Ex[m, n, p]
�

−
�

Ez[m+ 1, n, p] − Ez[m, n, p]
�

�

Ey[m+ 1, n, p] − Ey[m, n, p]
�

−
�

Ex[m, n+ 1, p] − Ex[m, n, p]
�





(6)��H [m, n, p] :=





�

Hz[m, n, p] −Hz[m, n− 1, p]
�

−
�

Hy[m, n, p] −Hy[m, n, p− 1]
�

�

Hx[m, n, p] −Hx[m, n, p− 1]
�

−
�

Hz[m, n, p] −Hz[m− 1, n, p]
�

�

Hy[m, n, p] −Hy[m− 1, n, p]
�

−
�

Hx[m, n, p] −Hx[m, n− 1, p]
�





Figure 4.  Performance on the XOR task before and after priming. Priming has a beneficial effect on the 
computational performance of the reservoir. The latency is increased in steps of 0.125 bits.
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with dt the timestep of the simulation and du the grid spacing.

Kukhtarev equations. Numerically modeling the photorefractive effect comes down to integrating the 
Kukhtarev  equations35 into the FDTD method. These equations

describe respectively how the change in free electron density n in the photorefractive material (Eq. (8)) is related 
to two processes. The first process (Eq. (9)) describes the excitation of the free carriers n from neutral donors ND 
(related to the intensity I of the incident optical field, the photo-ionization constant s and the thermal excitation 
constant β ) and recombination with positively charged traps N+

D  (according to a recombination constant γ ). The 
second process (Eq. (10)) describes the diffusion of the free carriers through the material due to the non-uniform 
charge distribution ∇n and its resulting space-charge field �S , where µ represents the mobility of the free carriers, 
e represents the elementary charge and k is the Boltzmann constant.

The equations, as they are described here, assume no difference between traps and donors in the photorefrac-
tive material: each unfilled trap is positively charged and conversely each filled trap is a (neutral) donor. Second, 
it is implicitly assumed that each trap has the same excitation energy and the excitation energy needed to excite 
electrons from the valence band is too high to have any influence.

Generation and recombination. In Eq. (9), the change in excited donor density N+
D  can be split into a 

generative term and a recombination term. The generative term will be proportional (through a photo-ionization 
cross-section s) to the intensity of the light I, which in this case is defined in terms of the energy density I = cE . 
Assuming the only absorption in the photorefractive material is due to the photo-ionization, we can propose a 
relation between the photo-ionization s and the absorption coefficient in the material α:

Note that the assumption that the absorption is completely due to the photo-ionization is an approximation. It 
gives a lower bound for the absorption, given the photo-ionization cross-section s. Moreover, free carriers will 
also be uniformly generated due to a thermal excitation rate β . On the other hand, the recombination term will 

(7)sc =
cdt

du
≤ 1√

3

(8)
dn

dt
= dn

dt

∣

∣

∣

∣

ND

+ dn

dt

∣

∣

∣

∣

J

= dN+
D

dt
+∇ · �J

(9)dN+
D

dt
= (sI + β)(ND − N+

D )− γ nN+
D

(10)�J = µkT

e
∇n− µn�S

(11)α = s
hc

�
(ND − N+

D )

Figure 5.  The Yee cell is the grid unit for FDTD simulations. The electromagnetic fields are staggered with half-
integer offsets from the corner of the grid cell (marked as C). The E-fields are on the edges of the unit cell, the 
H-fields are on the faces of the unit cell. This figure was created with Inkscape.
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be proportional to the number of free electrons n and the number of excited donors N+
D  through a recombina-

tion rate γ.

Electron diffusion. The carrier density will also be influenced by diffusion, which is related to Eq. (10) in 
the following way:

Here, we defined the diffusion constant D = µkT/e and the electron flow �F = nµ�E . This diffusion equation 
can be discretized on the Yee-grid with symmetric differences (n is chosen to be on the corners of the Yee-cell):

However, by carefully fixing the time step for this update equation to be

the update equation gets considerably simplified:

This equation would reduce to the typical Lax–Friedrich scheme if the space-charge field were to be uniform.

Space charge electric field. The diffusion of the free carriers depends on the space-charge field S 
through Eq. (16). However, the space-charge field itself is related to the free carrier distribution n through the 
charge density ρ = e(N+

D − n):

Here, ǫs is the static permittivity of the photorefractive material, which usually is vastly different than the per-
mittivity at optical wavelengths. Moreover, it is also assumed that S varies slowly enough to allow the second 
equation to equal zero.

The space-charge field is an electric field and hence lives on the edges of the Yee cell. Moreover, n is located 
on the corners of the Yee-cell, hence Eq. (17) can be discretized as follows:

Moreover, the application of the curl (Eq. 18) needs to be solved on the faces of the grid cell:

Taking all the equations together for each grid point gives the overdetermined system

Where �x is the vector of 3MNP unknowns and �b the vector of 4MNP targets:

(12)
∂n

∂t

∣

∣

∣

∣

J

= ∇ · J = ∂n

∂t

∣

∣

∣

∣

diff

+ ∂n

∂t

∣

∣

∣

∣

drift

(13)= D∇2n−∇ · �F

(14)

n′[m, n, p] =n[m, n, p] + Ddt

du2

(

n[m+ 1, n, p] + n[m− 1, n, p] + n[m, n+ 1, p] + n[m, n− 1, p]

+ n[m, n, p+ 1] + n[m, n, p− 1] − 6n[m, n, p]
)

− dt

2du

(

Fx[m+ 1, n, p] − Fx[m− 1, n, p]

+ Fy[m, n+ 1, p] − Fy[m, n− 1, p] + Fy[m, n, p+ 1] − Fy[m, n, p− 1]
)

(15)dt = du2

6D
= edu2

6kTµ
,

(16)

n′[m, n, p] =1

6

(

n[m+ 1, n, p] + n[m− 1, n, p] + n[m, n+ 1, p] + n[m, n− 1, p]

+ n[m, n, p+ 1] + n[m, n, p− 1]
)

− edu

12kTµ

(

Fx[m+ 1, n, p] − Fx[m− 1, n, p]

+ Fy[m, n+ 1, p] − Fy[m, n− 1, p] + Fy[m, n, p+ 1] − Fy[m, n, p− 1]
)

(17)∇ · �S = ρ

ǫs

(18)∇ × �S = �0

(19)
Sx[m, n, p] − Sx[m− 1, n, p] + Sy[m, n, p] − Sy[m, n− 1, p]

+ Sz[m, n, p] − Sz[m, n, p− 1] = ρ[m, n, p]
ǫs

(20)Sz[m, n+ 1, p] − Sz[m, n, p] − Sy[m, n, p+ 1] + Sy[m, n, p] = 0

(21)Sx[m, n, p+ 1] − Sx[m, n, p] − Sz[m+ 1, n, p] + Sz[m, n, p] = 0

(22)Sy[m+ 1, n, p] − Sy[m, n, p] − Sx[m, n+ 1, p] + Sx[m, n, p] = 0

(23)A�x = �b.
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Moreover, A is a sparse matrix containing the coefficients of Eqs. (19) and (22). Although this system overde-
termined, it turns out a solution to this linear system of equations can still be found by using the left pseudo-
inverse of A:

We use the biconjugate gradient  method36 to solve this system every diffusion timestep. The biconjugate gradi-
ent method is efficient because it solves for ATA iteratively and hence no inversion of a sparse matrix (which 
is generally speaking not sparse itself) is necessary. Moreover, the biconjugate gradient method also allows to 
initialize the system with an estimate of x for which the value of x at the previous diffusion time step can be used.

The electro‑optic effect. Finally, a relation between this space charge electric field �S and the optical prop-
erties of the material still needs to be found. Generally speaking, the electro-optic effect is described as a depend-
ence of the impermeability tensor η = µrǫ

−1
r  of the material on a present electric field �E . When this electric field 

is small—as is the case for the space charge electric field �S —a first-order series expansion can be used:

This first-order dependency on the electric field is called the Pockels effect. In the case of non-magnetic materials 
( µr = 1 ), this equation can be rewritten as:

This equation mixes E-type field components, located on the edges of the Yee cell with H-type field components, 
located on the faces of the Yee-cell. This often causes numerical instabilities as it is not clear how to handle the 
non-diagonal components of ǫ−1

r  . To solve this problem, the method proposed in by Werner et al.37 can be used, 
which proposes a modified but stable update equation for the electric fields:

where (·){C} is defined as an interpolation of a field component to the corner of the grid cell and (·){Ei} is defined 
as an interpolation of a field component to the Ei-edge of the grid cell.

Towards a photorefractive FDTD simulation. How all these different photorefractive processes are 
merged into a modified FDTD simulation is visualized in Fig. 6, which also shows the different timescales each 
of these processes operate on.

The FDTD timescale is best characterized by its time step, which usually is around dtFDTD ≈ 0.1 fs . Depending 
on the size of the grid, the FDTD simulation is run for a few thousand time steps. As a general rule we assume 
it takes about 1000 FDTD time steps to simulate the propagation of a single pulse through the photorefractive 
material at hand, hence after the FDTD simulation, about 100 fs has passed.

However, the diffusion in the crystal happens at a much slower pace. Using (15) we can find that for a typi-
cal photorefractive material like LiNbO3 , with a mobility µ = 0.0015m2/Vs31, the diffusion time step is about 
dtdiff ≈ 15 ps—about 2 orders of magnitude larger than the full FDTD simulation. During this characteristic 
time of the diffusion, the refractive index of the material can be considered constant. To save simulation time, we 
multiply the absorption profile obtained through the FDTD simulation with a factor 100, which would physically 
be roughly equivalent to sending the same signal 100 times through the crystal.

The absorption profile can then be converted into free carriers through Eqs. (11) and (9). These are then free 
to diffuse through the crystal with the mentioned diffusion time step. Typically we will update the space charge 
field about every 100 diffusion steps and repeat this process 1000 times, which means that the refractive index 
is updated every 10−6 s before the whole simulation process is started over again.

Data availibility
Simulation files and results can be obtained from the corresponding author upon reasonable request.

(24)�x =
(

Sx[1, 1, 1], · · · , Sx[M,N , P], Sy[1, 1, 1], · · · , Sz[M,N , P]
)T

(25)�b = (ρ[0, 0, 0]/ǫs , · · · , ρ[M,N , P]/ǫs , 0, · · · , 0)T .

(26)�x = (ATA)−1AT �b
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