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Complex vector fitting (CVF) is a robust method to efficiently and accu-
rately model general linear and passive baseband systems. Such models
are important for the analysis and design of modern electronic and op-
tical communication systems. This letter introduces an efficient toolbox
implementation of the CVF algorithm. The effectiveness of the code is
illustrated on a suitable application example.

Introduction: Due to the increasing demand for performance, the chan-
nel bandwidth of modern telecommunication systems is progressively
increasing. Examples include 5G networks operating at mmWave or
fibre-optic communication links designed in the terahertz bandwidth.
The baseband equivalent representation of signals and systems is
widely used to simplify the modulation, demodulation and filtering
processes typically adopted in communication systems [1]. As such, this
representation is well suited to model and simulate digital components,
such as finite or infinite impulse response filters. The complex vector
fitting (CVF) technique [2, 3] extends the application of the baseband
equivalent representation to radio frequency (RF) analog devices,
which are fundamental parts of modern communication systems (i.e.
microwave filters are typically adopted in front-end circuits), leading
to a comprehensive, accurate and efficient modelling framework for
baseband systems.

Goal: The aim of this letter is to introduce a CVF toolbox, implemented
in MATLAB (Mathworks, Inc., Natick), that facilitates the modelling
and simulation of general analog and passive baseband systems. It is
available in [4].

Problem formulation: The signals of interest in communication appli-
cations are often amplitude and/or phase-modulated signals:

y (t ) = A (t ) cos (2π f0t + ϕ (t )) (1)

where A(t) and φ(t) are the modulating signals over a carrier with fre-
quency f0. In particular, the bandwidth of such modulating signals is
often significantly smaller than f0. Signals in the form (1) are also called
bandpass signals, and their complex-valued baseband equivalent can be
defined as

yb (t ) = A (t ) e jϕ(t ) (2)

The baseband representation aims at removing the dependency from
the carrier frequency in Equation (1), resulting in a spectrum that is de-
fined at significantly lower frequency values, as shown in Figure 1.

A similar operation can be defined for the transfer function H( f ) of
a linear and passive system [5]: its baseband equivalent is

Hb ( f ) = H+ ( f − f0) (3)

where H+( f ) represents the spectrum of H( f ) defined at positive fre-
quencies, as shown in Figure 2. Note that, if Equation (1) represents a
signal at the input port of a bandpass system with transfer function H( f ),
then Equation (2) is the corresponding port signal of the baseband sys-

Fig. 1 Example of (a) bandpass signal spectrum, (b) corresponding base-
band equivalent. Note that the baseband spectrum has double magnitude with
respect to the corresponding bandpass one [5]

Fig. 2 Example of (a) magnitude of the transfer function of a bandpass sys-
tem, (b) corresponding baseband equivalent

tem defined by Hb( f ). Once a suitable model of Hb( f ) is computed,
time-domain simulations can be performed very efficiently [2, 3], since
the bandwidth of baseband signals and systems does not depend on the
value of the carrier frequency. Additionally, bandpass port signals can
be analytically recovered from their equivalent baseband representation,
as shown in Equations (1) and (2).

General, linear and passive baseband systems have an asymmetric
frequency response (w.r.t. positive and negative frequencies), leading to
a complex-valued impulse response [5]. The CVF algorithm is able to
compute an accurate frequency-domain rational model, starting from a
set of tabulated baseband scattering parameters Sb(fi) for i = 1, …, R

Sb (s) =
K∑

k=1

Rk

s − pk
+ D (4)

where s = j2π f is the Laplace variable; pk are the poles, which can
be either real or complex; Rk ∈ C

N×N are the corresponding residue
matrices, where N is the number of ports of the baseband system, while
D ∈ R

N×N . For time-domain simulations, models in the form (4) can be
suitably converted into a system of ordinary differential equations:

d

dt
xb (t ) = Axb (t ) + Bab (t )

bb (t ) = Cxb (t ) + Dab (t )
(5)

where ab(t ) ∈ C
N×1 and bb(t ) ∈ C

N×1 represent the baseband equiva-
lent of the incident and reflected waves, respectively. The state variables
are collected in the vector xb(t ) ∈ C

M×1, where M = NK is the order
of the model. The matrices A ∈ C

M×M , B ∈ R
M×N , C ∈ C

N×M and
D ∈ R

N×N are the baseband state-space matrices and can be computed
directly from the pole/residue model in Equation (4) [2, 3].

Note that models in the forms (4) and (5) can be computed for band-
pass systems adopting the Vector Fitting (VF) algorithm [6–9]. However,
VF is not able to model directly baseband systems because it enforces
the model to be conjugate symmetric [3].

CVF toolbox: CVF adopts the Sanathanan–Koerner iteration to itera-
tively compute the model parameters in Equation (4) by successively
solving several linear approximations of the non-linear identification
problem. This method starts from an initial estimate of the poles in Equa-
tion (4), indicated as pin

k = αk + jβk . The imaginary part βk is usually
chosen as linearly or logarithmically spaced over the frequency range of
interest [2π fmin; 2π fmax], whereas the real part αk is set to αk = −
c|βk|, with c = 0.001. User-defined choices of the starting poles are
also supported. The order of the model K can be used to tune the model
complexity [10].
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The standard VF implementation [6, 7] enforces the model to be con-
jugate symmetric. This constraint is necessary to ensure that the time-
domain impulse response of the system under study is real-valued, which
is a fundamental property of physical bandpass systems [5]. However,
baseband systems have a complex-valued impulse response by defini-
tion. Therefore, the conjugacy constraints in the VF algorithm are re-
moved. Once this fundamental difference is taken into account, several
extensions can be integrated into CVF, such as the relaxed formulation
[11], which improves the convergence performance, and the fast QR step
[7], which speeds up the calculation for multiport systems.

It is important to remark that given the relation among bandpass and
baseband transfer functions in Equation (3), bandpass scattering param-
eters can be easily represented via a baseband CVF model for frequency-
domain analyses. In this case, CVF offers a significant advantage: it is
able to compute (indicatively) half-size models with respect to VF for the
same applications since complex poles and residues do not form conju-
gate pairs.

Stability and passivity of the model are also crucial for time-domain
simulations [5]. Stability can be ensured using a simple pole flipping
scheme [6], while passivity needs to be enforced in a post-processing
step. In particular, passivity requires that the maximum singular value of
the scattering parameters is bound by unity at all frequencies (a detailed
derivation of the passivity conditions of baseband systems is presented
in [5]). This condition can be verified by checking the eigenvalues of the
following Hamiltonian matrix [3]:

M =
[

A − BL−1DHC −BL−1BH

−CH Q−1C −AH + CH DL−1BH

]
(6)

where L = DH D − I, Q = DDH − I, I is the identity matrix, the
superscript H indicates the Hermitian operator, while A, B, C, D are
the state-space matrices in Equation (5). In particular, a complex-valued
and stable state-space model is passive if its Hamiltonian matrix has
no purely imaginary eigenvalues. Indeed, each imaginary eigenvalue in-
dicates a crossover frequency where a singular value of the scattering
matrix crosses the unity line [5, 12]. If necessary, the passivity can be
enforced by perturbing the residue matrix eigenvalues until the violating
singular values become smaller than unity.

The CVF toolbox adopts the technique [12] for the passivity assess-
ment and enforcement, suitably adapted to the unique characteristics of
baseband systems. Note, however, that half-size passivity tests [13] are
no longer applicable due to the presence of the Hermitian operator in
Equation (6). Furthermore, both positive and negative frequency values
must be considered to individuate the frequency bands where passivity
violations occur. Finally, the approach [12] assumes conjugate symme-
try, which is not the case for CVF. Hence, equations (22b) and (22c) in
[12] become

f (s) = 1

s − p

g (s) = j

s − p

where p represents a single complex pole in Equation (4).
The proposed CVF implementation is based on the Matrix Fitting

Toolbox version 1.0 (available in [14]), which offers a robust implemen-
tation of the VF algorithm.

Application example: As an example, the scattering parameters of the
coupled microstrips described in [15] and shown in Figure 3 are mod-
elled. The conductors have length l = 5 cm and width w = 120 μm.
The spacing between the microstrips is s1 = 200 μm and s2 = 100
μm. The substrate is a Roger RT/duroid 5880 with relative permittivity
ε = 2.2 and thickness h = 127 μm. The scattering parameters of the
microstrips are simulated in ADS Momentum (Advanced Design Sys-
tem, Keysight Technologies) in the frequency range [30; 90]GHz for 601
linearly spaced frequency samples. By selecting f0 = 57 GHz, the cor-
responding baseband scattering parameters are defined in the frequency
range [− 27; 33]GHz. This choice illustrates the ability of CVF to model
baseband transfer functions defined for different positive and negative

Fig. 3 Coupled microstrips: (a) top view, (b) cross-section

-27 -17 -7 133 23 33
Frequency (GHz)

-20

-15

-10

-5

|S
| (

dB
)

-27 -17 -7 133 23 33
Frequency (GHz)

-1

0

1

P
ha

se
 (

ra
d)

Fig. 4 Element S11 of the baseband scattering parameters. Top: magnitude.
Bottom: phase

Fig. 5 Singular values of the CVF model in the range [− 120; 120]GHz.
Blue line: before the passivity enforcement phase. Green dashed line: after
the passivity enforcement. The image at the top right corner focuses on the
frequencies where the passivity violation occurs before the enforcement step

frequency values, where fmin �= −fmax (see Figure 2). The problem un-
der study is quite challenging since the baseband scattering parameters
have a dynamic behaviour in the (large) frequency range considered, as
illustrated in Figure 4.

The frequency samples are first divided into two groups: modelling
points (401 samples) and validation points (201 samples). The first sam-
ple set is used to compute the model, while the second one is adopted
to verify the fitting accuracy. For this application, a maximum absolute
fitting error below − 50 dB is sufficient.

The CVF toolbox is able to compute an accurate and stable ratio-
nal model with 69 poles, providing also the corresponding state-state
representation in Equation (5) to the user. A passivity violation is de-
tected around − 27.5 GHz, which is then corrected using the passivity
enforcement process (see Figure 5). Note that the Hamiltonian matrix in
Equation (6) of the corrected CVF model does not have purely imagi-
nary eigenvalues, as shown in Figure 6, thus proving the passivity of the
corrected CVF model. After the passivity enforcement, the CVF model
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Fig. 6 Magnitude of the real part of the eigenvalues of the Hamiltonian ma-
trix. All the eigenvalues have real part different than zero
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Fig. 7 CVF modelling results. Top: Comparison of the magnitude of the ele-
ments S16 and S23 of the baseband scattering matrix. The red line indicates
the data, while the blue dashed line the CVF model response. Bottom: corre-
sponding absolute error (green for S16 and black for S23)
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Fig. 8 CVF modelling results. Top: phase of the element S16 of the baseband
scattering matrix (red line) and corresponding CVF modelling results (blue
dashed line). Bottom: the same comparison is shown for the element S23

still satisfies the chosen accuracy requirements. Figures 7 and 8 show
an example of the obtained results: The computed CVF model is able to
accurately represent both magnitude and phase of the elements S16 and
S23 of the baseband scattering matrix.

Starting from a set of 69 initial poles, with imaginary part linearly
spaced in the frequency range, the model computation required 3.18s
and the passivity assessment/enforcement process 5.84s on a computer
with an Intel(R) Core(TM) i7-6700HQ CPU and 16GB RAM.

Conclusion: A novel and robust Matlab implementation of the CVF
modelling technique is presented in this contribution, capable of
computing baseband models of general linear and passive systems.
The proposed toolbox allows one to define a comprehensive mod-
elling framework for communication systems, where both digital and
analog components can be represented and studied with the baseband
equivalent representation.
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