
Research Article Vol. 28, No. 21 / 12 October 2020 / Optics Express 31584

Influence of longitudinal mode components on
second harmonic generation in III-V-on-insulator
nanowires
CHARLES CIRET,1,* KOEN ALEXANDER,2,3 NICOLAS
POULVELLARIE,2,3,4 MAXIMILIEN BILLET,2,3,4 CARLOS MAS ARABI,4

BART KUYKEN,2,3 SIMON-PIERRE GORZA,4 AND FRANÇOIS LEO4

1Laboratoire de Photonique d’Angers EA 4464, Université d’Angers, Angers, France
2Photonics Research Group, Ghent University-IMEC, Ghent, Belgium
3Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent, Belgium
4OPERA-Photonique, Université libre de Bruxelles, Brussels, Belgium
*charles.ciret@univ-angers.fr

Abstract: The large index contrast and the subwalength tranverse dimensions of nanowires
induce strong longitudinal electric field components. We show that these components play an
important role for second harmonic generation in III-Vwire waveguides. To illustrate this behavior,
an efficiency map of nonlinear conversion is determined based on full-vectorial calculations.
It reveals that many different waveguide dimensions and directions are suitable for efficient
conversion of a fundamental quasi-TE pump mode around the 1550 nm telecommunication
wavelength to a higher-order second harmonic mode.
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1. Introduction

The first demonstration of second harmonic generation (SHG) in 1961 paved the way for decades
of research on nonlinear optics [1]. The quest for efficient conversion is still relevant today as key
regions of the electromagnetic spectrum lack suitable laser sources. Other applications such as
squeezed light generation [2], entangled photon generation [3] or frequency comb stabilization
[4] would also benefit from efficient frequency converters.

The advent of integrated photonic platforms the last decade revolutionized frequency conversion.
The large nonlinear coefficients as well as the high index contrast inherent to integrated photonics
allows for strong nonlinear interaction at low power. Many instances of integrated second
harmonics generation have been reported, with novel, low-loss, LiNbO3 on insulator and III-V-on
insulator platforms currently holding the record normalized conversion efficiency in nanowires
[5–7]. In most theoretical analysis, the light is approximated by a purely transverse mode
such that a single incoming polarization state and spatial profile is considered. In practice
however, more complex nonlinear wave mixing can be expected because the optical modes in high
index contrast waveguides display large longitudinal components. We recently experimentally
demonstrated SHG enabled by longitudinal components in III-V wire waveguides [8]. Here we
further investigate the impact of strong longitudinal components on SHG. We derive the ordinary
differential equations describing the nonlinear coupling of a fundamental wave at ω0 to its second
harmonic (SH) at 2ω0 in a III-V waveguide using full-vectorial calculations [9–15]. We identify
ultra-efficient conversion for a wide range of waveguide dimensions and highlight the major role
played by the propagation direction.

While we focus on III-V semiconductor wire waveguides [6,7,16], we stress that our analysis
can be easily adapted to other platforms. We consider indium gallium phosphide (InGaP) around
1550 nm as the guiding material [8,17]. InGaP displays a 4̄ symmetry and exhibits very low
nonlinear losses at telecom wavelengths in the C-band. The χ(2)xyz coefficient, which is the only
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nonzero tensor element, was measured to be as high as 220 pm/V around 1550 nm [18]. Because
of the lack of birefringence in III-V semiconductors, several different approaches have been
implemented to achieve phase matching, including form birefringence [19], quasi-phase-matching
[20–24] and modal phase matching [6,25]. Our theoretical study is focused on the latter.
The paper is organized as follows. In Section 2, we recall the general formalism used for

describing bound modes and the derivation of the first order differential equation modeling
their nonlinear coupling. Specifically, we resort to a perturbative method to include second
order nonlinearities. In Section 3, we apply the formalism to SHG. In Section 4, we discuss the
influence of the propagation direction on the conversion efficiency and present the efficiency map
for the specific case of InGaP-on insulator waveguides. Concluding remarks are given in Section
5.

2. General framework

2.1. Linear waveguides

We start by discussing the properties of bound modes in a lossless linear waveguide [26]. We
consider a III-V-on-insulator wire waveguide as shown in the inset of Fig. 1. An electromagnetic
wave oscillating at a frequency ω propagating in the waveguide must satisfy the source-free linear
Maxwell equations which read in the Fourier domain:

∇ × Ẽ0(r,ω) = iωµ0H̃0(r,ω), (1a)

∇ × H̃0(r,ω) = −iωε0[n(r⊥)]2Ẽ0(r,ω), (1b)

∇ · [[n(r⊥)]2Ẽ0(r,ω)] = 0, (1c)

∇ · H̃0(r,ω) = 0. (1d)

Ẽ0(r,ω) and H̃0(r,ω) are called the unperturbed fields. They represent the electromagnetic fields
of a continuous wave or a narrowband pulse for which the dispersion, loss and nonlinearity terms
are zero. n(r⊥) is the local refractive index of the unperturbed waveguide cross-section. Ẽ0, H̃0
are related to their time counterpart through the Fourier transformation :

G(r, t) = 1
2π

∫ +∞

−∞
G̃(r,ω)e−iωtdω, (2)

where, G = E0 or H0.
The translational invariance along the propagation axis allows to write the jth guided mode as

a spatial distribution depending on the transversal coordinates of the electric and magnetic fields
with a fixed propagation constant. They read:

Ẽ0,j(r,ω) = a0,j
ej(r⊥,ω)√

Nj
eiβjz, (3)

H̃0,j(r,ω) = a0,j
hj(r⊥,ω)√

Nj
eiβjz, (4)

where ej(r⊥,ω) and hj(r⊥,ω) are the vectorial electric and magnetic mode profiles. a0,j is
the complex amplitude of the mode and βj is the mode propagation constant. Nj is the mode
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Fig. 1. Top left: Effective indices of a fundamental quasi-TE00 pump mode and three
different SH higher-order modes of a 250 nm high, 800 nm wide InGaP waveguide. The
corresponding Poynting vector distributions are shown as inset. Bottom left: Theoretical
conversion efficiency as a function of the propagation angle in the (010) crystal plane for the
three phase matching points. Right: Spatial profiles of each component of the fundamental
and SH modes.

normalization, defined by:

Nj(ω) = 1
2

����∫ ej(r⊥,ω) × h∗j (r⊥,ω) · ẑdA
���� . (5)

The mode orthogonality condition reads:

1
2

∫
{ ej(r⊥,ω)√

Nj
× h∗i (r⊥,ω)√

Ni
} · ẑdA = δij, (6)

where the integration area is transverse to the propagation plane and ẑ is the unit vector in the
propagation direction z. The mode construction and normalization ensures that |a0,j |2 ≡ Pj,
where Pj is the total power propagating in the jth mode. We refer the reader to [26] for more
information on the mode field distributions and their relation to one another. In this paper,
the modes and the propagation constants are computed by use of a commercial mode solver
(Lumerical). Yet we recall a couple of points that will play a role in the analysis of the nonlinear
coupling: (i) The longitudinal electric field component of a mode has a phase difference of
π/2 with the corresponding transverse components and (ii), because of the symmetry of the
index profile in the horizontal direction (see the inset of Fig. 1), the longitudinal and vertical
electric field components display the opposite parity as the one of the horizontal component.
Here we consider airclad waveguides such that there is only one symmetry plane (yz-plane). A
few examples of the spatial distribution of the electric fields are shown in Fig. 1. Modes whose
main component, the one with the strongest local electric field, is horizontal (resp. vertical) are
labeled TElk (resp. TMlk), where l and k are the number of zeros of the Poynting vector in the
horizontal and vertical directions [27].

2.2. Nonlinear coupling

We next derive the expressions for the nonlinear coupling between different forward propagating
modes. In this derivation, the nonlinearity is treated as a perturbation to the ideal lossless linear
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waveguide [9–15]. The perturbed waveguide modes are written in the Fourier domain as:

Ẽj(r,ω) = aj(z)
ej(r⊥,ω)√

Nj
eiβjz, (7)

H̃j(r,ω) = aj(z)
hj(r⊥,ω)√

Nj
eiβjz. (8)

where aj(z) is the complex slowly varying amplitudes. In what follows, we consider the guided
wave to be a superposition of a finite number of single frequency bound modes. To simplify
the notations, we map the two sets of discrete values for the modes and the frequencies to the
subscript q. In the time domain, the fields read:

E(r, t) =
∑

q
<{aq(z)

eq(r⊥,ωq)√
Nq

ei(βqz−ωqt)}, (9)

H(r, t) =
∑

q
<{aq(z)

hq(r⊥,ωq)√
Nq

ei(βqz−ωqt)}. (10)

These fields obey the Maxwell curl equations including the nonlinear polarization oscillating at
ω, P̃NL(ω),

∇ × Ẽ(r,ω) = iωµ0H̃(r,ω), (11)

∇ × H̃(r,ω) = −iωε0n2Ẽ(r,ω) − iωP̃NL(r,ω). (12)

To derive the coupled-wave equations, we make use of the conjugated form of the Lorentz
reciprocity theorem [26]: ∫

∇ · FdA =
∂

∂z

∫
F · ẑdA. (13)

The F-field can be constructed from the perturbed and unperturbed waveguide mode fields at ωq
as F ≡ Ẽ∗0,q(r,ωq) × H̃(r,ωq) + Ẽ(r,ωq) × H̃∗0,q(r,ωq). Substituting this in Eq. (13) yields:∫

{(∇ × Ẽ∗0,q(r,ωq)) · H̃(r,ωq) − Ẽ∗0,q(r,ωq) · (∇ × H̃(r,ωq))

+ (∇ × Ẽ(r,ωq)) · H̃∗0,q(r,ωq) − Ẽ(r,ωq) · (∇ × H̃∗0,q(r,ωq))}dA

=
∂

∂z

∫ a∗0,qaq(z)
Nq

{eq(r⊥,ωq) × h∗q(r⊥,ωq) + e∗q(r⊥,ωq) × hq(r⊥,ωq))} · ẑdA.

(14)

The left-hand side of Eq. (14) can be simplified by substituting Eqs. (1a–(1b) and Eqs. (11)–(12),
and the right-hand side by using the normalization condition [Eq. (5)]. This gives:

d
dz

aq = iωq
e−iβqz

4
√

Nq

∫
e∗q(r⊥,ωq) · P̃NL(r,ωq)dA, (15)

which describes the evolution of the amplitude of mode q along the waveguide.

3. Second-harmonic generation

We apply the formalism from the previous section to the specific case of SHG. For simplicity we
only consider type I phase matching. The fundamental wave, with a carrier frequency ω0, and
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the second harmonic, with a carrier frequency 2ω0, are each limited to a single spatial mode.
The total electric and magnetic fields are:

E(r, t) = <{a(z)ea(ω0, r⊥)√
Na

ei(βaz−ω0t) + b(z)eb(2ω0, r⊥)√
Nb

ei(βbz−2ω0t)}, (16)

H(r, t) = <{a(z)ha(ω0, r⊥)√
Na

ei(βaz−ω0t) + b(z)hb(2ω0, r⊥)√
Nb

ei(βbz−2ω0t)}, (17)

By injecting the fields in Eq. (13) and following the same development as before, one finds the
following coupled ordinary differential equation describing the nonlinear coupling between the
two modes:

da(z)
dz
= iω0

e−iβaz

4
√

Na

∫
e∗a · P̃NL(r,ω0)dA, (18a)

db(z)
dz
= i2ω0

e−iβbz

4
√

Nb

∫
e∗b · P̃NL(r, 2ω0)dA. (18b)

In the time domain, the nonlinear polarization reads:

PNL(r, t) = <{P̃NL(r,ω0)e−iω0t + P̃NL(r, 2ω0)e−i2ω0t + · · · } (19)

We here focus on a purely quadratic nonlinearity. By assuming a local response, we can write:

PNL(r, t) = ε0
∬

χ(2)(r, t1, t2) : E(r, t − t1)E(r, t − t2)dt1dt2. (20)

We now insert the electric field of Eq. (16) in Eq. (20) and find:

P̃NL(r,ω0) = b(z)a∗(z)√
NaNb

ε0 χ
(2)(r,ω0; 2ω0,−ω0) : ebe∗aei(βb−βa)z, (21a)

P̃NL(r, 2ω0) = 1
2

a2(z)
Na

ε0 χ
(2)(r, 2ω0;ω0,ω0) : eaeaei2βaz, (21b)

where we introduced the commonly used Fourier components of the nonlinear tensor. By
injecting these expressions in Eqs. (18a) and (18b), we find:

da(z)
dz
=

iω0ε0
4

b(z)a∗(z)ei(βb−2βa)z

Na
√

Nb

∫ ∑
jkl

χ
(2)
jkl e∗ja ek

be∗la dA, (22a)

db(z)
dz
=

iω0ε0
4

a2(z)ei(2βa−βb)z

Na
√

Nb

∫ ∑
jkl

χ
(2)
jkl e∗jb ek

ael
adA, (22b)

wherewe expanded the tensor product (j, k, l = x, y, z) and set χ(2)(r,ω0; 2ω0,−ω0)= χ(2)(r, 2ω0;ω0,ω0) =
χ(2).
We define the effective nonlinear coefficient as:

κ =
ω0ε0

4Na
√

Nb

∫ ∑
jkl

χ
(2)
jkl e∗jb ek

ael
adA, (23)

such that Eqs. (22a) and (22b) become
da(z)

dz
= iκ∗b(z)a∗(z)e−i∆βz, (24a)

db(z)
dz
= iκa2(z)ei∆βz. (24b)

where ∆β = 2βa − βb. In the literature, SHG is often characterized by the undepleted theoretical
conversion efficiency P2ω0 (L)/(Pω0 (0)L)2 expressed in %/(Wm2) where L is the length of the
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waveguide. By plugging the initial conditions a(0) = √
Pω0 (0), b(0) = 0 in Eq. (24b), integrating

over the length of the waveguide and neglecting pump depletion (as well as propagation loss), we
obtain:

P2ω0 (L) = |κ |2P2
ω0 (0)L2sinc2(∆βL/2). (25)

In the case of perfect phase matching (∆β = 0), Eq. (25) becomes P2ω0 (L)/(Pω0 (0)L)2 = |κ |2.
In what follows, we use the theoretical conversion efficiency |κ |2 to characterize SHG. Note
that, Eq. (25) can be easily generalized to include the impact of propagation loss on the second
harmonic generation efficiency [8].

4. Application to III-V-on-insulator wire waveguides

We now focus on the specific case of III-V-on insulator wire waveguides. Because the propagation
direction is not fixed in the crystal frame (xyz), we introduce the coordinates (x′y′z′) to describe
the optical wave in the waveguide frame. The propagation Eqs. (24a) and (24b), simply become:

da(z′)
dz′

= iκ∗b(z′)a∗(z′)e−i∆βz′ , (26a)

db(z′)
dz′

= iκa2(z′)ei∆βz′ . (26b)

Most III-V wafers are grown along a crystallographic axis. Consequently, we may consider that
the light propagates in the xz-plane (010) of the crystal. The two coordinate frames are linked
through the rotation matrix:

©«
x

y

z

ª®®®®¬
=

©«
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

ª®®®®¬
©«

x′

y′

z′

ª®®®®¬
, (27)

where θ is the angle between the propagation direction z’ and the z axis [8]. The zinc-blende
crystalline arrangement of III-V crystals leads to a single nonzero tensor element (χ(2)xyz = 2d14 , 0).
In that case the tensor product in Eq. (23) becomes:∑

jkl
χ
(2)
jkl e∗jb ek

ael
a = χ

(2)
xyze∗xb ey

aez
a + χ

(2)
xzye∗xb ez

aey
a

+ χ
(2)
yxze
∗y
b ex

aez
a + χ

(2)
yzxe
∗y
b ez

aex
a

+ χ
(2)
zxye∗zb ex

aey
a + χ

(2)
zyxe∗zb ey

aex
a

= 2χ(2)xyz

(
e∗xb ey

aez
a + e∗yb ex

aez
a + e∗zb ex

aey
a

)
,

(28)

where the second step is a consequence of the Kleinman symmetry condition [28]. The general
form of the effective nonlinearity in the crystal reference frame hence reads:

κ =
ω0ε0

2Na
√

Nb

∫
wg
χ
(2)
xyz

(
e∗xb ey

aez
a + e∗yb ex

aez
a + e∗zb ex

aey
a

)
dA, (29)

where the integration area is limited to the InGaP core waveguide. In the waveguide frame it
becomes:

κ =
ω0ε0

2Na
√

Nb

∫
χ
(2)
xyz

[(
e∗x
′

b cos θ − e∗z
′

b sin θ
) (

ey′
a

) (
ex′

a sin θ + ez′
a cos θ

)
+

(
e∗y
′

b

) (
ex′

a cos θ − ez′
a sin θ

) (
ex′

a sin θ + ez′
a cos θ

)
+

(
e∗x
′

b sin θ + e∗z
′

b cos θ
) (

ey′
a

) (
ex′

a cos θ − ez′
a sin θ

)]
dA.

(30)
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We next evaluate the theoretical converison efficiency in specific waveguides. We start by
investigating a 800 nm wide, 250 nm thick InGaP-on-insulator wire waveguide. We use the
material dispersion reported in [29] to compute the effective index and spatial distributions of
the optical modes. We limit ourselves to SHG of a fundamental quasi-transverse electric mode
(TE00) and start with the dimensions of waveguides recently used for supercontinuum generation
[30]. Figure 1 displays the indices of the fundamental TE mode around the pump wavelength and
of several higher-order modes around the SH wavelength. The corresponding spatial distributions
of the electric fields are also shown. Note that the vectorial nature of the fields stands out in
the figure as the longitudinal and transverse components of the SH modes have comparable
magnitudes. Several phase matching points, indicated by a crossing between the pump mode and
a SH mode, are found. The effective nonlinearity associated with each phase matching can be
evaluated through Eq. (30). The dependence of the conversion efficiency |κ |2 with θ (also shown
in Fig. 1) reflects the 4̄ symmetry of the material. As we here focus on straight waveguides,
we simply look for the angle that maximizes conversion between two modally phase matched
waves. Interestingly, it depends on the symmetry of the spatial distributions of the modes. The
conversion to the TE30 mode is maximum when θ = 45◦ while the conversion to the TM30 and
and TE01 modes, is optimized when θ = 0◦. More generally, we only find maxima at 0◦ and 45◦
and hence focus on those two angles.
The 45◦ effective nonlinearity reads:

κ(45◦) = ω0ε0

2Na
√

Nb

∫
χ
(2)
xyz

[
ey′

a

(
ex′

b ex′
a − ez′i

b ez′i
a

)
+

ey′
b
2

(
ex′

a
2
+ ez′i

a
2
)]

dA, (31)

where we introduced the spatial distribution ez′i
a,b = −iez′

a,b corresponding to the imaginary
part of the longitudinal component. Most previous results of SHG in III-V nanowaveguides
were performed in this configuration. This is likely because the cleave directions for III-V
semiconductors grown on (100) substrate are [110] and [11̄0]. Waveguides whose cleaved facets
are perpendicular to the propagation direction are hence oriented 45◦ with respect to the crystal
axis. For example, ultra efficient conversion was recently demonstrated in that direction in
gallium arsenide wire waveguides [6], where a quasi-TE pump is coupled to a quasi-TM SH
mode. In that case, it is the ey′

b ex′
a
2 term that dominates such that a scalar approximation suffices

to predict the nonlinear coupling. Here however, we find conversion to a TE30 mode whose
vertical component is weak such that no single term in Eq. (31) dominates. This highlights the
importance of a full-vectorial approach, which takes into account transverse and longitudinal
components of the modes, to accurately model the nonlinear frequency conversion, even in a 45◦
waveguide.

The 0◦ effective nonlinearity, on the other hand, reads:

κ(0◦) = iω0ε0

2Na
√

Nb

∫
χ
(2)
xyz

(
ex′

b ey′
a ez′i

a + ey′
b ex′

a ez′i
a − ez′i

b ex′
a ey′

a

)
dA. (32)

Nonlinear coupling in this case always involves a longitudinal mode component [8]. In both
nonlinear coefficients involving the TM30 and TE01 modes shown in Fig. 1, it is the (ey′

b ex′
a ez′i

a )
term that dominates, as can be expected from using a quasi-TE pump. Interestingly the y′
component of these SH modes are similar despite the modes having very different Poynting
vector distributions. The more efficient conversion is logically found when most of the energy is
carried by the vertical electric field component.
The main difference between 0◦ and 45◦ oriented waveguides stems from the profiles of the

excited modes. As a reminder there is a single, vertical, symmetry plane. Consequently, only
the parity of the profiles along the x′ direction matters. In a 45◦ waveguide, the y′ component
of the SH mode must be symmetric as the fundamental components are squared [see Eq. (31)].
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Conversely, in 0◦ waveguides, only SH modes with an antisymmetric vertical component will be
excited because the product of the transverse and longitudinal components of the pump is always
antisymmetric. We stress that these considerations are valid for type I SHG, irrespective of the
pump mode.
Importantly, we find that III-V nanowaveguides are suitable for efficient conversion in both

propagation orientations.
Next we study the impact of the waveguide dimensions on the SHG efficiency when considering

a fundamental mode wavelength around 1550 nm. Specifically, we vary the width and height
of the III-V section and look for phase matching between a fundamental quasi-TE mode and
a SH higher-order mode in a 10 nm window around 1550 nm. For each instance of phase
matching, we compute the effective nonlinearity for different propagation directions and store
only the maximum coefficient. Due to the symmetry of the crystal, we limit ourselves to the first
quadrant. We investigate waveguides with a width between 600 nm and 1000 nm and a height
between 50 nm and 350 nm. To limit the computational time, we use a resolution of 5 nm. Every
phase matching point is shown as a marker in Fig. 2. The marker color codes the strength of
the coupling and its shape indicates the angle between the waveguide and the crystal axis that
maximizes the interaction. Squares are used for the 0◦ waveguides while diamonds represent
45◦ waveguides. To highlight similar interactions, we evaluate the overlap between neighboring
markers via Eq. (5). We define a threshold at 70%, beyond which we infer it is the same mode
and connect the two markers with a line. We identify 8 independent modes. Their Poynting
vector distribution is shown in Fig. 2. The maximum effective nonlinearity [κ = 2816 (√Wm)−1]
is found for a waveguide with a width of 810 nm and a height of 110 nm, directed at 45◦. The
SH propagates in a TM00 mode and the corresponding conversion efficiency is as high as 79300
%/(Wcm2). This interaction is well-known as it is mostly due to the mixing of the transverse
components of the modes [6]. More interesting are the many square markers indicating coupling
enabled by longitudinal components. The maximum conversion efficiency [52350 %/(Wcm2)],
found for a TM10 mode, is predicted to be almost as efficient as the conversion to a TM00 mode.
Moreover, we find that the phase matching is more sensitive to width variations in the latter. In
waveguides with a thickness of 200 nm or more, it is the 0◦ configuration that is the most efficient.
These thicknesses are commonly used as they lead to lower propagation losses than in thinner
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Fig. 2. Left: Efficiency map of the nonlinear coupling between a TE00 pump mode
and a higher-order SH mode. Only phase-matched interactions are shown. Diamond
(resp. square) markers correspond to 45° (resp. 0°) waveguides. The lines connect
neighboring points corresponding to the same higher-order mode. Right: Poynting
vector distribution of the eight independent second harmonic modes found in the map.
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first quadrant. We investigate waveguides with a width between 600 nm and 1000 nm and a
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5 nm. Every phase matching point is shown as a marker in Fig. 2. The marker color codes the
strength of the coupling and its shape indicates the angle between the waveguide and the crystal
axis that maximizes the interaction. Squares are used for the 0° waveguides while diamonds
represent 45° waveguides. To highlight similar interactions, we evaluate the overlap between
neighboring markers via equation (5). We define a threshold at 70%, beyond which we infer it
is the same mode and connect the two markers with a line. We identify 8 independent modes.
Their Poynting vector distribution is shown in Fig. 2. The maximum effective nonlinearity
[κ = 2816 (√Wm)−1] is found for a waveguide with a width of 810 nm and a height of 110 nm,
directed at 45°. The SH propagates in a TM00 mode and the corresponding conversion efficiency
is as high as 79300 %/(Wcm2). This interaction is well-known as it is mostly due to the mixing

Fig. 2. Left: Efficiency map of the nonlinear coupling between a TE00 pump mode and a
higher-order SH mode. Only phase-matched interactions are shown. Diamond (resp. square)
markers correspond to 45◦ (resp. 0◦) waveguides. The lines connect neighboring points
corresponding to the same higher-order mode. Right: Poynting vector distribution of the
eight independent SH modes found in the map.
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layers [31,32]. Importantly, these highly efficient geometries could not be predicted using a
scalar approach.
We stress that not all possible couplings are shown in Fig. 2. We use a 5 nm resolution and

wave vectors are very sensitive to waveguide dimensions. Also, quasi-phase-matching can be
used to efficiently couple two modes with different effective indices [33]. Yet, many of the novel
nonlinear couplings we show here are predicted to be very efficient. We expect them to play a
significant role in future integrated wavelength converters.

5. Conclusion

We have theoretically investigated SHG in III-V semiconductor wire waveguides. By using a
full-vectorial model we found many instances of efficient conversion between a fundamental
pump mode and a higher-order SH mode. Our results highlight the crucial role played by the
longitudinal component of the electric field. When propagating along the crystal axis, only wave
mixing involving different components is permitted by the single nondiagonal χ(2)xyz element. Due
the high index contrast, the longitudinal electric field component can be almost as large as its
transverse counterpart [34] making this configuration very efficient.
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