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Abstract— We report on the performance of the quantum
confined Stark effect (QCSE) in ultra-thin (∼350 nm) Ge/SiGe
quantum well stacks grown on Si. We demonstrate an absorption
contrast �α/α of 2.1 at 1 Vpp swing in QCSE stacks grown on
ultra-thin (100 nm) strain relaxed GeSi buffer layers on 300 mm
Si wafers. Such ultra-thin QCSE stacks will enable future integra-
tion of highly efficient QCSE electro-absorption modulators with
low optical coupling loss to passive Si waveguides in a sub-micron
silicon photonics platform.

Index Terms— Germanium, stark effect, silicon photonics,
optical interconnects.

I. INTRODUCTION

S ILICON photonics (SiPh) exploits the CMOS infrastruc-
ture and the associated economies of scale to realize

active and passive devices and form complex photonics inte-
grated circuits for short-reach interconnect applications [1].
Within SiPh platforms, Germanium has been widely used
for photodetectors due to its direct band gap of 0.8 eV [2].
Electro-absorption modulators (EAM) exploiting the Franz-
Keldysh effect (FKE) in Ge and GeSi have also enabled
>50 Gbps NRZ-OOK and PAM4 modulation in the C and L
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band of fiber optic communication [2]–[4]. Combined with the
high-density routing unctionality of sub-micron Si waveguides,
GeSi EAM modulator arrays have shown great potential
for realizing ultra-dense Terabit-scale SiPh transceivers in a
fottprint of just a few mm2 [5].

However, these FKE EAM modulators typically have a
relatively high insertion loss (IL) for a targetted extinction
ratio (ER) and suffer from relatively low figure of merit
defined as FoM = ER/IL ∼ 1-1.2 as a result of indirect
bandgap of Ge(Si). To improve the modulator FoM, EAMs
using Ge/GeSi multiple-quantum wells (MQW) have been
considered as a promising alternative, by increasing the
dynamic ER due to strong excitonic absorption peaks [6].
Demonstrations with such MQW stack have shown record
absorption constrasts �α/α of 2.5 for 1 Vpp swing, operat-
ing at 1425-1575 nm wavelengths. Such MQW stacks can
also be designed to operate in the O-band, making them
an attractive option for intra-data center optical interconnect
applications [7], [8]. An additional interesting feature is that
the operation wavelength of these stacks can be tuned by the
applied bias, as demonstrated by Edwards et. al [7]. As a
result, the grown structures can potentially operate across a
wide range of wavelengths without requiring thermal control.

However, the integration of the such relatively complex
material stacks in a SiPh platform poses several – often
conflicting – challenges. These include: (1) growing strain
relaxed buffer (SRB) GeSi layers, (2) growing high-quality
strain balanced multi-quantum wells and barriers on top of the
SRB, (3) maximizing the electric field confinement in the wells
by doping the buffer and top contact layers and (4) low optical
coupling loss to the passive Si waveguides. Over the past years,
various options have been explored to pursue the optimum
trade-off. For example, several groups have reported on the
use of thick SiGe (8-13 μm) virtual substrates (VS) [8], [9],
to grow MQW stacks on buffer layers with relatively low
threading dislocation densities. However, such thick buffers
pose difficulties in coupling light to and from SOI waveguides
(WG). These limitations typically require the implementation
of a dedicated, specialty Ge-based photonic platform [9].
Alternatively, the growth of MQW stacks on 0.3 μm thick
buffer layers to fabricate devices with a total thickness of
∼0.65 μm has also been demonstrated [7]. This design allows
for an efficient evanescent coupling with the SOI WG through
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TABLE I

BUFFER DETAILS FOR THE FABRICATION OF THE
STACKS INVESTIGATED IN THIS WORK

an adiabatic 3D taper but increases the process complexity for
horizontal and/or vertical taper structures [10]. Thinning the
buffer layer further would enable butt-coupling schemes like
used in GeSi FKE EAMs with typical coupling loss of <1 dB
and would allow the integration of such complex stacks in
existing SiPh platforms [11]. With this motivation, we report
on the growth and performance of MQW stacks on ultra-thin
buffer layers with a thickness down to 100 nm (thinnest to
date). As will be shown, reducing the buffer layer thickness
introduces additional linewidth broadening to the excitonic
absorption spectrum, most likely due to increased defect den-
sity. The impact of this broadening on the absorption contrast
(�α/α) associated with Stark effect will be investigated in
this paper. The resulting total device thickness of ∼0.4 μm
is comparable to that of Ge based FKE EAMs and enables
the future integration of QCSE EAMs in a sub-micron SiPh
platform.

II. MATERIAL GROWTH AND DEVICE FABRICATION

The MQW stacks investigated in this work rely on an epi-
taxial growth strategy that minimizes strain build-up through
the stack grown atop a buffer layer [7]. Ge QWs with a
thickness of 14 nm were sandwiched between 18 nm thick
Si0:19Ge0:81 barrier layers and grown on top of Si0:11Ge0:89
strain-relaxed buffers. Five different stacks with varying buffer
thickness are investigated in this paper. Details correspond-
ing to each of them are summarized in Table I. Si (001)
substrates (300 mm) were first ion-implanted with B (active
doping level of ∼3×1018 cm−3) to form a p-doped bottom
contact. The wafers were then cleaned and dipped in HF
prior to being loaded in a reduced pressure chemical vapor
deposition production cluster (ASM-Intrepid XPTM). After
a short pre-epi bake at 850 ◦C, buffer layers were grown
using conventional Ge and Si precursors, GeH4 and SiH2Cl2,
respectively. In stacks A and B, the buffer was first grown to a
target thickness of 1 μm, annealed at 850 ◦C for 3 minutes and
chemical mechanically polished down to the desired thickness
as listed in Table I. The buffers used in stacks C, D and
E were directly grown to the targeted thickness and then
annealed. The anneal is intended to reduce the density of
threading dislocations originating from strain relaxation at
the ∼3.7 % mismatched Si/SiGe interface [12]. For stacks
A and B, since the anneal was performed after the growth
of the 1 μm Si0:11Ge0:89 buffer layer and before the CMP
step, the threading dislocation density (TDD) was measured
to be 2.3×108 cm−2 [12]. This approach provides the lowest

Fig. 1. Schematic elaborating the stack design used for the Ge/SiGe quantum
wells targeted to be grown on Si [7]. The thickness and the epitaxy strategy
used for growing the buffer are described in Table I.

TDD amongst all stacks, but it increases process complexity
due to the additional CMP step. On the other hand, buffers
used for stacks C, D and E exploit the CMP-free approach
and were in-situ doped with B (using diborane, B2H6) during
epi with an active doping level of ∼3×1018 cm−3. Doping the
buffer helps in confining the applied electric bias to the MQW
located in the intrinsic region of the diode. However, due to
the reduced buffer thickness and the absence of the CMP step,
the defect density and surface roughness are expected to be
higher in Stack C to E. This will introduce additional linewidth
broadening to the excitonic absorption spectrum. The impact
of this broadening on device performance is investigated in
this paper.

The quantum well stacks, used for this study are schemat-
ically shown in Fig. 1. They were grown at low temperature
(350 ◦C) to limit the risk of SiGe interdiffusion between the
different layers. Growth rates of 5-6 nm/min with accurate
process control were possible at this reduced temperature due
to the combination of digermane (Ge2H6) and disilane (Si2H6)
as Ge and Si precursors, respectively. Following the deposition
of the MQW, a 20 nm thick undoped Si0:11Ge0:89 capping
layer and a 90 nm thick n-type in-situ doped Si0:11Ge0:89:As
top contact layer was deposited. Arsine (AsH3) was used for
the in-situ doping of the top layer to form the n-contact of
the diode. A chemical concentration of ∼1×1019 cm−3 was
obtained by SIMS.

X-ray diffraction (XRD), Atomic Force Microscopy (AFM)
and Electron Channeling Contrast Imaging (ECCI) were first
used to estimate strain in the buffer layers, to compare sam-
ples morphology and to estimate the resulting TDD for the
different stacks [13]. Some of these characteristics are sum-
marized in Table II. Secondary ion mass spectroscopy (SIMS,
not shown here), transmission electron microscopy (TEM),
energy-dispersive X-ray spectroscopy (EDS) and nano-beam
diffraction (NBD) were then combined to characterize the
compositions, strain levels and structural properties of the
different stacks. Figure 2 shows cross-sectional TEM image,
EDS and NBD data corresponding to stack E. Fig. 2(a)
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Fig. 2. (a) Cross-sectional transmission electron micrograph (TEM) image,
(b) energy-dispersive X-ray spectroscopy data, and (c) nano-beam diffraction
measurements performed across the MQW region in stack E. The presented
set of data confirms the presence of the 100% strain relaxed buffer and fully
strained MQW region with chemical composition.

confirms the presence of very sharp MQW interfaces (interface
abruptness < 0.3 nm/%) and a good thickness control for the
different layers constituting the stack. Si concentration of 14%
and 18% were measured in the buffer and barrier layers,
respectively, by SIMS and EDS as can be seen in Fig. 2(b),
while the nominal Si composition we targeted were 11% and
19%. XRD and NBD (Fig. 2(c)) confirmed the presence of
fully strained-balanced layers grown on top of fully relaxed
buffers. In addition, SIMS and EDS data indicated very limited

Fig. 3. (a) Cross-sectional schematic and (b) top-view micrograph image of
a fabricated diode used for photocurrent measurements.

TABLE II

CHARACTERIZATION DETAILS FOR STACKS A TO E

Ge-Si interdiffusion between the different layers across the
entire stack.

To quantify the quantum confined Stark effect-based electro
absorption, the absorption spectrum of these stacks was mea-
sured under the influence of an external bias. This was accom-
plished by monitoring the photocurrent spectrum generated
in the diode as function of applied electric field [6]–[9].
To facilitate these measurements, test p-i-n diodes were fab-
ricated with the MQW region located in the intrinsic region
of the diode [11]. Ge/SiGe MQW stacks were first vertically
dry etched down to the Si substrate to form circular mesa
structures and then covered with SiO2 to provide electrical
isolation. Ti/Pt/Au contacts with circular openings at the center
of the device were defined using electron beam evaporation
and a subsequent lift-off process. The resulting diodes were
subsequently illuminated using a tunable laser equipped with
a cleaved SMF-28 fiber. A top-view microscope image and
the cross-sectional schematic of the fabricated devices can be
found in Fig. 3 [11], [14].
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Fig. 4. Photocurrent spectra and the corresponding absorption contrast (�α/α) for 1 V swing of the surface illuminated diodes fabricated with stack A and
E as described in Table I. The photocurrent measurements were performed at 75 ◦C.

III. DEVICE MEASUREMENT AND ANALYSIS

The absorption spectrum of each stack was first measured
using a free-space spectrometer. Sharp absorption features
corresponding to excitonic resonance around 1425 nm were
observed at room temperature, in agreement with previous
demonstration in literature [7], [14]. However, the tunable laser
used for the photocurrent measurement only supports a wave-
length range of 1440 – 1640 nm. For this reason, the devices
were heated up to 75 ◦C to shift the absorption spectrum of
the stack by ∼ 40 nm, due to the temperature dependent
bandgap narrowing effect [3]. The measured photocurrent
responses from devices using stack A and E are shown
in Fig. 4. They were normalized by subtracting the measured
dark current from the measured light current, even though
the dark currents were at least two order of magnitude lower
than the light current. Using TCAD simulations, the photo-
excited carrier extraction quantum efficiency was estimated to
be unity, confirming that the measured photocurrents provides
a direct translation of optical absorption [6], [15]. Sharp
absorption peaks at 0 V near 1460 nm wavelength corre-
spond to the excitonic absorption associated with the lowest
quantized transition energy in the quantum wells at 75 ◦C.
With the application of an external bias, this transition energy
is modulated resulting in a shift of the excitonic resonance
wavelength in the photocurrent spectra as can be seen in Fig. 4.
The peak photocurrent associated with this excitonic resonance
drops with applied electric field due to the reduction of overlap
integral between the electron and hole wavefunctions in the
quantum well [6], [15], [16]. Absorption contrasts (�α/α)
for a voltage swing of 1 V swing and applied external bias
were extracted from these photocurrent responses. Fig. 4 and
Fig. 5 also show the result of the extracted absorption contrast
(�α/α). The peak �α/α extracted in stacks A and B for 1 V
swing were lower than those of stacks C, D and E. This is

explained by the presence of thick undoped buffer layers in
the intrinsic region of the diode. As a result, the applied DC
bias swing of 1 V does not effectively translate to a potential
drop across the MQW region.

To compare the FoM from different stacks, the analysis
is restricted to voltage swings with comparable electric field
contrasts across the intrinsic region. To facilitate such a com-
parison, C-V measurements were first performed to estimate
the diode intrinsic region width, built-in voltage and hence the
effective electric field in each of the investigated stacks, similar
to [15]. For a voltage swing of 0 to 1 V, the E-field varies from
6.3 to 19.8 kV/cm in stack A, 18.2 to 53.4 kV/cm in stack B
and 31.2 to 89.2 kV/cm in stacks C, D and E. To compare the
absorption contrast between the samples, the voltage swing
has been rescaled such that the electric field experienced by
the quantum well region remains the same. As a result, for
an E-field contrast 58 kV/cm, a voltage swing from 0 V to
1 V for devices with stacks C, D and E corresponds to a
voltage swing of 1.8 to 6.1 V in stack A and 0.4 to 2.0 V
in stack B. The FoM spectra for stacks A (Fig. 5. a) and
stack B (Fig. 5. b) were thereafter recalculated with the voltage
scaling factor. The resulting peak of each FoM spectra and its
full width half maxima (FWHM) were extracted and plotted
against bias voltages as can be seen in Fig. 5 (c) to 5(h).
Devices with stacks C, D and E have a peak FoM of 2.8,
2.6 and 2.1 for an E-field contrast of 58 kV/cm (or 1 V swing),
whereas devices with stack A and B have a peak FoM 2.9 and
3.1 respectively. The reduction of FoM with decreasing buffer
thickness is shown in Fig. 5. This reduction can be attributed to
the broadening of the absorption spectrum as can be seen with
the increase of the FoM’s full width of half maxima (FWHM)
with reduced buffer thickness. We believe that this increase in
broadening is due to increased surface roughness and defect
density in thin strain-relaxed buffer layer.
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Fig. 5. The absorption contrast spectra with (a) 4.3 V swing for stack A and (b) 1.6 V swing for stack B, such that the E-field contrast in the multi-quantum
well region is like that experienced by devices with stack C to E for 1 V swing. As indicated in (a) and (b), the extracted peak FoM and full width half
maxima (FWHM) of each FoM spectrum for voltage swing against bias voltages have been plotted in (c) to (h).

IV. BENCHMARKING

The performance of the stacks presented in this work
is compared with other state of the art Ge based electro
absorption modulators in Table III. Even with the increased
broadening as seen in Fig. 4, the devices made with stack D
have similar absorption contrast as the previous start of the art
device demonstration from Edwards et. al [7], achieved using
a total stack thickness of ∼400 nm. Moreover, the low dark
current densities measured with stacks A to E, as compared to
other waveguide integrated devices presented by Pantouvaki

et. al and Srinivasan et. al, indicate that they originate from the
waveguide interfaces and not bulk defects [2], [3], [17], [18].
A final stack thickness of 350-400 nm makes stack D and
E comparable to coupling schemes used in Ge based FKE
electro-absorption modulators, integrated in imec’s silicon
photonics platform. While the results presented in this
work were obtained from the photocurrent measurements,
observation of modulation through transmission measurements
is essential for these stacks as it includes the coupling loss
between SOI waveguide and modulator, excess metal loss
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TABLE III

COMPARING THE DEVICE PERFORMANCE OF Ge/GeSi BASED QUANTUM CONFINED STARK EFFECT
ELECTRO-ABSORPTION STACKS PRESENTED IN THIS WORK AND IN LITERATURE

and the free-carrier absorption from the doped layers in
the stack. Nevertheless, these stacks pave the way to have
future waveguide integrated electro-absorption modulator
demonstrations.

V. CONCLUSION

To summarize, a record absorption contrast (�α/α)
of 2.1 for 1 V swing is demonstrated in Ge/GeSi multi
quantum wells grown on ∼100 nm thick buffer layers. Stacks
with varying buffer thicknesses and growth strategies were
investigated to identify the impact of defects and surface
roughness on the stack performance. By reducing the buffer
thickness from 0.6 μm to 0.1 μm, the device FoM dropped
from 3.1 to 2.1 due to linewidth broadening associated with
the increased surface roughness and material defect den-
sity. Nevertheless, study with a buffer thickness of 100 to
150 nm still have > 2× higher FoM as compared to the
current state-of-the-art Ge or GeSi based Franz-Keldysh effect
electro-absorption modulators, without compromising on the
total stack thickness. This result is promising for the future
integration of waveguide integrated devices in a sub-micron
silicon photonics platform.
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