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ABSTRACT
Photonic neuromorphic computing is attracting tremendous research interest now, catalyzed in no small part by the rise of deep learning in
many applications. In this paper, we will review some of the exciting work that has been going in this area and then focus on one particular
technology, namely, photonic reservoir computing.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
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I. INTRODUCTION

There are ever more signs that the scaling of transistors, as
dictated by Moore’s law, is starting to falter. This has prompted
the research community to investigate alternative forms of compu-
tation, in which neuromorphic and bio-inspired architectures are
prime contenders. Indeed, the human brain often still outperforms
digital computers in flexibility and performance on various pattern
recognition tasks. More importantly, it is able to achieve this at very
modest power consumption levels, typically the power equivalent to
a light bulb, whereas (super)computers require orders of magnitude
more power for similar tasks.

Therefore, there is a clear need for novel techniques to per-
form information processing at levels that are well beyond the limit
of today’s conventional computing processing power, like in really
high-throughput massively parallel classification problems. This is
especially true in the context of the growing prevalence of big data,
which leads to more and more applications that generate massive
temporal data streams, like the data aggregated from large sensor
networks.

One important class of these brain-inspired (or “neuromor-
phic”) techniques are the so-called artificial neural networks (ANNs)
that consist of a number of interconnected computational units,
dubbed “artificial neurons.” The layout and operation of the ANN

are inspired by the structure and information processing mecha-
nism of the human brain. The so-called spiking neural networks aim
to include details about the timing of individual spikes in the com-
munication between the neurons. Typically however, these spiking
dynamics are abstracted into a single number, namely, the firing rate
of the neuron. The most prominent class of neural networks today
is the so-called “deep learning” feedforward architecture, which is
characterized by a large number of hierarchical layers of neurons,
where information only flows in the forward direction. The perfor-
mance of this approach has been such that it has been dominating
the fields of machine learning and artificial intelligence over the last
couple of years.1,2

Spurred by the promise of energy-efficient high-performance
neuromorphic computing and the success of deep learning, a lot of
effort has been put into designing special-purpose hardware to either
fully implement these principles, or to accelerate a time-sensitive
subset of these algorithms.3

Photonics has been identified as a very interesting platform
for such a hardware implementation, since light-based technolo-
gies boast tremendous bandwidths, multiplexing capabilities in
terms of wavelength, and come with other practical advantages
such as immunity to electromagnetic interference and the possibil-
ity of co-integration with micro-electronics. Moreover, in quite a
few of the high-throughput applications that could benefit from a
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neuromorphic approach, the input is in the optical domain. This
is the case for, e.g., signals coming out of an optical fiber net-
work, or image data generated by some biomedical applications.
For reasons of speed, power efficiency, and latency, it makes a
lot of sense to try and process these data directly in the optical
domain, without first converting it to the electronic domain. Addi-
tionally, if one makes use of brain-inspired approaches, one can
benefit from the speed and power efficiency that these bring as
well.

The attractiveness of optics has been realized early on, e.g., in
the pioneering work of Wagner and Psaltis4 and Psaltis et al.,5 who
used holographic materials to implement neural networks. Although
this work is rather old at this stage, it makes a lot of sense to try
and revisit some of its concepts, especially in the light of the recent
progress in the fields of optical materials and integrated photon-
ics. In additon, the emerging field of programmable photonics6,7

promises to provide vital technology to support the field of photonic
neuromorphic computing.

II. PHOTONIC NEUROMORPHIC INFORMATION
PROCESSING

In this section, we will review a number of recent approaches
in the field of photonic neuromorphic information processing. This
overview is neither intended to be exhaustive nor in-depth, but
should serve to illustrate the variety within the field, as well as some
of its recent successes. It is also worth noting that there are other
interesting non-neuromorphic technologies that leverage the unique
properties of photonics for information processing, like coherent
Ising machines8–10 and optical quantum computing.11

A. Optical spiking neurons
In the field of spiking neural networks, one strives to stay closer

to the properties of biological neurons. More specifically, the fact
that neurons communicate using a sequence of spikes (analog in
their timing, but binary in their absence or presence) is explic-
itly taken into account.12 These neurons are of the so-called leaky-
integrate-and-fire (LIF) variety, and only show a response if the
time-integrated input they receive exceeds a certain threshold. In
that case, they send out a spike with a well-defined waveform, inde-
pendent of the exact energy of the input above the threshold. In
dynamical systems theory, this phenomenon is known as excitabil-
ity.13 Spiking neural networks are still actively researched and show
promise in fields like temporal pattern detection,14 where an inter-
esting feature is their power efficiency because of the discrete nature
of the spikes. They are also being explored in the context of deep
learning.15

There have been numerous attempts to implement spiking neu-
rons in photonics. We will now review some of these, as well as point
to some relevant aspects when integrating single neurons in a larger
system.

Typical photonic implementations of spiking neurons have
mostly been in active photonic components like graphene
excitable lasers,16 distributed feedback (DFB) lasers17 vertical-cavity
surface-emitting lasers,18–20 or micropillars.21 Non-linear com-
ponents like ring resonators have also been employed for this
purpose.22

Another avenue of research consists in using phase change
materials like GST to facilitate spike processing, either as a non-
volatile weight in a synapse23 or as a non-linear element in combi-
nation with other photonic circuitry to emulate an entire neuron.24

An aspect that has received somewhat less interest experimen-
tally is the challenge of coupling these spiking elements together,25,26

in order to create larger networks. For this, one needs to make sure
the output spike has sufficient energy to trigger the next neuron.
This is an area where more research is needed, if one wants to move
further in the direction of applications.

Also important are learning mechanisms, i.e., the best way to
adapt the synaptic weights between neurons in order to achieve
a certain desired functionality. A mechanism to realize this has
been identified in biological neurons as spike-timing dependent-
plasticity (STDP),27 where the time difference between the pre-
and the post-synaptic spikes determines the strength of the weight
change. To date, there have been several attempts to implement a
similar functionality in photonics.28–30

B. Deep-learning accelerators
Given the importance of deep learning, people have been look-

ing into ways to accelerate these architectures. Since a large part of
the computation is spent doing matrix multiplication, this computa-
tional primitive is an important candidate for a hardware speedup.
This field has a long history, see, e.g., Ref. 31, but has recently
been revived in the context of integrated nanophotonics,32 where
the weights were set using thermal phase shifters in a network of
Mach-Zehnder interferometers.

The scalability of systems like these is limited due to the foot-
print, but alternative free-space schemes have been put forward
based on the multiplication that is happening when two coherent
signals beat on a photodetector.33 Their system combines time-
division multiplexing and electrical integration, and allows us to
calculate matrix multiplication.

Another proposed approach is to use tunable transmission
through a GST-based modulator,34 where the multiplicand is the
input to the modulator, and the multiplier is the tuning signal of
the modulator.

A conceptually similar approach is presented in Ref. 35, but
here, the input is constant and the multiplicand and multiplier are
the control inputs to two cascaded acousto-optical modulators. The
setup is used to perform convolutions on an input image.

Experiments on a system combining both time and wavelength
multiplexing to perform matrix operations are presented in Ref. 36.
A dispersive medium is employed to temporally align the elements
that need to be summed.

Lin et al.37 demonstrated a deep learning network based on a
series of diffraction gratings fabricated by 3D printing, where the
structures are designed such that a useful function-like handwritten
digit recognition is performed. This network can have a large num-
ber of parameters, but cannot be changed anymore after fabrication.
A recurrent network version of this concept can be found in Ref. 38.
The idea that the shaping of wavefront when propagating through
a structure can perform a computation is somewhat related to the
concept of computational metamaterials.39

Most of the techniques described above are essentially linear
in nature. Efforts are also underway to implement the required
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non-linear activation between layers in an optical or electro-optical
fashion, e.g., based on modulators,40 amplifiers,41,42 or by hav-
ing electro-optical interactions.43 Zuo et al.44 employ laser-cooled
atoms to implement the non-linearity. In Ref. 45, a diffractive neu-
ral network is theoretically proposed that works in the Fourier
domain and contains a photorefractive material to provide the
non-linearity.

III. PHOTONIC RESERVOIR COMPUTING
A. Reservoir computing

Reservoir computing (RC)46–48 was initially proposed as a
methodology to ease the training of recurrent neural networks,
which traditionally had been rather challenging. More recently,
however, it has gained popularity as a neuromorphic computational
paradigm to solve a variety of complex problems. Reservoir com-
puting initially emerged as a software-only technique and merely
presented another algorithmic way of processing temporal data on
digital computers. However, it has evolved into much more over
the past decade, as people have realized its suitability for hard-
ware implementations, especially its robustness against fabrication
tolerances.

The RC system consists of three basic parts: the input layer
which couples the input signal into a non-linear dynamical sys-
tem, the “reservoir” (i.e., the recurrent neural network, which is kept
untrained), and finally the output layer that typically linearly com-
bines the states of the reservoir to provide the time-dependent out-
put signal. An illustration of this reservoir computing architecture is
given in Fig. 1.

Another way of looking at reservoir computing is to consider
the reservoir as a non-linear dynamical system that acts as pre-filter
on the input data stream, transforming these data into a higher
dimensional space. In this space, it will be easier to separate differ-
ent classes using a hyperplane boundary, as provided by the linear
readout. The use of linear boundaries has a positive influence on the
capabilities of the system to generalize in a robust fashion to unseen
input. (These advantages of linear classifiers are also used in, e.g.,
support vector machines.50)

In discretized time, the reservoir state update equation is given
in a general form by

FIG. 1. Schematic representation of a reservoir computing system. The input sig-
nal u(t) is fed into the reservoir, and the resulting reservoir states x(t) together with
the input are used to learn a linear readout that is then used to generate the out-
put signal y(t) [Reprinted with permission from Katumba et al., IEEE J. Sel. Top.
Quantum Electron. 24, 1–10 (2018). Copyright 2018 IEEE.].

x⃗[k + 1] = f (Wresx⃗[k] + w⃗in(u⃗[k + 1] + u⃗bias)), (1)

where f is a nonlinear function, u⃗ is the input to the reservoir, and
u⃗bias is a fixed scalar bias applied to the inputs of the reservoir. For an
N-node reservoir,Wres is anN ×N matrix representing the intercon-
nections between reservoir components. w⃗in is an N-dimensional
column vector whose elements are nonzero for each active input
node.

The output is given by a simple linear combination of the states

y⃗[k] = W⃗out ⋅ x⃗[k]. (2)

To use the reservoir to solve a particular task, a machine
learning algorithm is used to train a set of weights (the read-
out) using a set of known labeled example data, such that a linear
combination of the optical signals recorded at each node approx-
imates a desired output as closely as possible. This algorithm typ-
ically takes the form of a least-square minimization, where the
weighs are calculated through a Moore-Penrose pseudo-inverse.
These weights are then used to generate the output signal for any
unseen subsequently injected input signal sequences. RC systems
are fast to train and find the global optimum without the need
for an iterative method, as opposed to their traditional neural net-
work counterparts. Reservoirs have shown state-of-the-art perfor-
mance on a range of complex tasks on time-dependent data (such
as speech recognition, non-linear channel equalization, robot con-
trol, time series prediction, financial forecasting, and handwriting
recognition.51,52).

A key discovery was that the reservoir computing platform
provides a natural framework for implementing learning systems
on hardware platforms where the possibility to set all the internal
parameters of the network is limited, and for which using a ran-
dom, fixed network is, therefore, a great advantage. Examples of
RC implementations in mechanical systems, memristive systems,
atomic switch networksand Boolean logic elements systems can be
found in Refs. 53–57.

Also in the field of photonics, several hardware implementa-
tions of the RC paradigm exist; see, e.g., the overviews in Refs. 49,
58, and 59. Broadly speaking, photonic reservoirs can be divided
into systems with a single node coupled to a feedback loop (where
the nodes are time-multiplexed and travel along the delay line) and
spatial systems (where the nodes are explicitly localized at certain
locations in a free-space setup or on a chip). We will now discuss
some examples of these classes in more detail.

B. Systems with a single non-linear node
with feedback

Historically, this was one of the earliest implementations of
photonic reservoir computing, given the ease of implementation due
to the low hardware complexity.60–64 In these systems, there is only
a single non-linear element, but it is coupled to a feedback loop
with delay time τ (Fig. 2). The neurons (nodes) are virtual in nature
and travel through the feedback loop. This means the nodes are
time-multiplexed inside the system. This is done as follows: Every
τ seconds, the input x(t) is subject to a sample-and-hold operation.
The resulting signal is then multiplied by a so-called masking sig-
nal, which typically has as period the round trip time τ as well. The
mask period is subdivided into N different constant values, resulting
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FIG. 2. In a delay-based reservoir, the input xin(t) is multiplied by masking signal
m(t). Virtual nodes (green) travel along the delay line and are processed in a non-
linear element. The states of the nodes are linearly combined with weights w i to
generate the output signal yout (t). [Reprinted with permission from Van Der Sande
et al., Nanophotonics 6, 561–576 (2017). Copyright 2017 De Gruyter Author(s),
licensed under a Creative Commons Attribution 3.0 Unported License.].

in N virtual nodes inside the delay line with duration τ/N. The dura-
tion of the node should be such that the central non-linear element
is always in a useful transient dynamic state. In addition, the node
duration is typically short compared to the memory time scale of the
non-linear element such that different (mostly neighboring) virtual
nodes can interact.

To date, experimental demonstrations of these types of pho-
tonic reservoirs routinely achieve state-of-the-art performance on
various information processing tasks, showing that photonic RC is
competitive for analog information processing.65–73

Typically, these systems are rather bulky, since they rely on
either a fiber loop or a free-space propagation path to implement
the feedback loop. However, they have been efforts to integrate sys-
tems like these on-chip.10,74 This has the advantage of increasing
the stability and speed, and adds the option to more easily exploit
coherence.

C. Free-space reservoir systems
The time-multiplexed systems described above have the funda-

mental drawback that the throughput is limited, simply because each
node is processed sequentially. Other types of reservoirs employ spa-
tial multiplexing, i.e., each node has an explicitly identifiable separate
location and all the nodes can be processed in parallel.

In Ref. 75, an 8 × 8 array of VCSELs acts as the nodes of the
reservoir, and they are diffractively coupled among them, with a
spatial modulator setting the weights. Systems like these achieved
excellent performance on 5-bit header recognition tasks. An differ-
ent free-space implementation is described in Ref. 76, presenting a 9
× 9 2D array of nodes defined on a spatial light modulator.

A large-scale system was introduced in Ref. 77, consisting of
a network of 2025 nodes. The non-linearity is performed in the
electronic domain, which limits the update rate to 5 Hz. The read-
out weights are implemented all-optically, using an array of digi-
tal micromirrors. The results in a set of binary weights, which are
trained using reinforcement learning.

Another experimental demonstration of this concept is pre-
sented in Ref. 78, running at 640 Hz, used to predict the Mackey-
Glass time series.79 presents another free-space system, this time to
perform image classification, capable of implementing networks of
16.384 nodes.

As an alternative to free-space systems, reservoirs have been
proposed where the nodes consist of individual modes in a large-area
waveguide like a plastic optical fiber.80 A combination of scatterers
and a cavity is responsible for creating rich dynamics.

D. Waveguide-based on-chip reservoir computing
Another option is to implement the different nodes on a

photonic chip and connect them using waveguides. The perfor-
mance of integrated photonic reservoirs has been studied numer-
ically and/or experimentally for different types of nodes, starting
with networks of optical amplifiers in Refs. 81 and 82. Later, net-
works of resonators were studied as well,83–87 with applications rang-
ing from speech recognition of isolated spoken digits, over binary
tasks like header recognition, to image recognition. Integrated
photonic reservoirs are particularly compelling, especially when
implemented in a CMOS-compatible platform, as they can take
advantage of its associated benefits for technology reuse and mass
production.

A later development in the design of RC systems is the real-
ization that for certain tasks that are not strongly non-linear, it is
possible to achieve state-of-the-art performance using a completely
passive linear network, i.e., one without amplification or non-linear
elements. The required non-linearity is introduced at the readout
point, typically with a photodetector.88 Aside from the integrated
implementation introduced in Ref. 88, the passive architecture has
been adapted to the single-node-with-delayed-feedback architecture
in the form of a coherently driven passive cavity.65

Apart from simplicity from a fabrication point-of-view, a fur-
ther advantage of such a passive architecture is the reduced power
consumption, since the computation itself does not require external
energy.

The integrated photonic reservoirs typically studied in the past
have been limited to planar architectures in a bid to minimize
crossings that manifest as a source of signal cross-talk and extra
losses. This constrains the design space from which reservoir con-
figurations can be chosen. We introduced the original swirl reser-
voir architecture in Ref. 89 as a way to satisfy planarity constraints
while allowing for a reasonable mixing of the input signals. The
input to the integrated photonics reservoir chip could be to a sin-
gle input node as is in Ref. 88 or to multiple inputs, which has some
advantages over the former strategy, as is discussed extensively in
Ref. 90.

Our work in Ref. 88 experimentally verified that a passive inte-
grated photonic reservoir can yield error-free performance on the
header recognition task for headers up to 3 bit in length with simu-
lations indicating that it should be possible to go up to 8 bit headers
(see Fig. 3).

The architecture used in Ref. 88, the so-called swirl architecture
[Fig. 4(a)], has the disadvantage of containing nodes that are non-
symmetrical. Therefore, these nodes suffer from modal radiation at
each 2 × 1 combiner [for example, node 7 in Fig. 4(a)]. These radi-
ation losses cannot be avoided in these single-mode combiners, and
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FIG. 3. Performance of a 6 × 6 swirl passive integrated photonics reservoir on the
3, 5, and 8 bit header recognition task. Good qualitative correspondence between
theory and experiment is observed [Reprinted with permission from Katumba
et al., IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018). Copyright 2018 IEEE.].

averaged over the different input phases, 50% of the power radiates
away there.

Additionally, when focusing on the mixing behavior of the swirl
architecture, there are some nodes that do not contribute signifi-
cantly to the dynamics. For example, the nodes in the corners only
play a very limited role in the reservoir dynamics, as they basically
are only delay lines that do not redistribute the power to other nodes.
Similarly, the other nodes at the edge of the reservoir, having fewer
neighbors, contribute less to the dynamics than the nodes in the
center.

Therefore, to address these two issues of losses and mixing, we
presented a new architecture, the so-called the four-port architec-
ture91 [Fig. 4(b)]. In that architecture, the lossy 2 × 1 combiners
are avoided and only 2 × 2 devices are used instead, and additional
waveguides are added to increase the mixing.

Simulations of this four-port architecture for a 64-node net-
work show that its losses can be an order of magnitude lower than
those of the swirl architecture, as, apart from residual scattering and
propagation loss, all the input power is redistributed to one of the

FIG. 5. Light enters an on-chip photonic crystal cavity through a single waveguide,
mixes inside the cavity and leaves the cavity from all connected waveguides. As
such, this structure can provide all the required functionality for a passive reser-
voir. [Reprinted with permission from Laporte et al., Opt. Express 26, 7955 (2018).
Copyright 2018 The Optical Society].

output channels in the four-port architecture. These simulations also
show that the power is more evenly distributed through the reser-
voir than in the swirl-architecture and thus easier to measure in an
experiment.

E. Cavity-based on-chip passive reservoir computing
An alternative architecture is based on a quasi-chaotic cavity,

which can be orders of magnitude smaller than the waveguide-
based approaches. (By quasi-chaotic we mean that the properties
of the cavity are sensitive to the initial conditions set by fabrica-
tion intolerances, but that they are reproducible for a given device.)
As can be seen in Fig. 5, by choosing the shape of the cavity care-
fully,92–95 we can achieve complicated wave patterns and can there-
fore expect mixing between different delayed versions of the input
signal, similar as in the waveguide-based approach. In addition, by
tuning the Q-factor of the cavity, we can impact the memory of the
reservoir.

FIG. 4. Schematic view of two waveguide-based reser-
voir architectures. Compared to the swirl architecture, the
four-port architecture does not suffer from the inherent
3 dB combiner loss.(a) Swirl architecture and (b) Four-port
architecture [(a) Reprinted with permission from Katumba
et al., IEEE J. Sel. Top. Quantum Electron. 24, 1–10 (2018).
Copyright 2018 IEEE.].
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FIG. 6. BER and MSE for the XOR task for the 30 μm × 60 μm cavity for a wide
range of frequencies. A clear frequency region of good performance is observed.
(Reprinted with permission from Laporte et al., Opt. Express 26, 7955 (2018).
Copyright 2018 The Optical Society).

This approach of using a cavity as reservoir results in extremely
small on-chip footprints (<0.1 mm2) while retaining similar perfor-
mance on benchmarks.

We first illustrate this using simulations on the XOR task, where
the reservoir needs to compute an XOR between two subsequent bits
in the bit stream. This task is known in machine learning to be a non-
linear task due to the fact that the output cannot be found by just
performing a linear classification algorithm such as linear regression
on the inputs. By performing the XOR task at different bit rates, a
region of successful operation for the 30 μm × 60 μm cavity shown
in Fig. 5 can be found, as can be seen in Fig. 6. In this figure, we can
see by looking at the MSE (mean squared error) that the optimal bit

FIG. 7. Header recognition error rate for worst-performing header in the bit stream.
Longer headers result in a narrower window of operation. [Reprinted with permis-
sion from Laporte et al., Opt. Express 26, 7955 (2018). Copyright 2018 The Optical
Society].

rate is at 50 Gbps. However, looking at the BER (bit error rate), our
simulations find a full band of suitable frequencies between 25 Gbps
and 67 Gbps (Fig. 7).

However, for applications in telecom, recognizing headers in a
bit stream is often more useful than performing an XOR. The exact
same simple cavity design can perform this task as well. For each bit
in the bit stream, a class label was given corresponding to the header
of length Lmade by the current bit and the L− 1 previous bits. Again,
by sweeping over the bit rate, we find a successful operation range of
up to 100 Gbps for up to 6-bit headers.

IV. ARCHITECTURAL CONSIDERATIONS FOR
PHOTONIC RESERVOIR COMPUTING
A. Improving performance through multi-reservoir
architectures

The feasible size of a single integrated photonic reservoir cur-
rently remains relatively small, usually around 100 nodes or less.
While a number of factors contribute to this limitation, a main rea-
son is that the memory of the reservoir does not scale linearly with
its size, e.g., due to losses in the system. Therefore, alternative solu-
tions to improve the performance of integrated photonic reservoirs
have to be pursued. One possible path of exploration is to increase
the available computational power by combining multiple separate
reservoirs into a single computing device.

Neural network literature1 shows that performing subsequent
non-linear transformations on the input data are highly beneficial in
terms of performance on a wide variety of tasks. The space of possi-
ble architectures featuring multiple reservoirs is quite large, and we
conducted simulations to evaluate a limited number of promising
topologies in Ref. 96. Figure 8 shows two of these topologies which
we found to perform best, which we term ensembling and chaining.

In ensembling,97 several classifiers are trained for the same task
and joined by taking a combination of the individual classifier pre-
dictions. While classifiers can be combined in many different ways, a
simple approach is to average classifier predictions. A more sophisti-
cated approach could be to train an additional set of weights to learn
how to combine all obtained predictions. In general, ensembling
aims to combine the strengths of all trained classifiers and mitigate
their weaknesses. In order to build a simple ensemble of reservoirs,
we connect the nodes of several reservoirs to a single readout [see
Fig. 8(a)].

An important factor in order to improve performance of an
ensemble over single reservoirs is that the models of an ensemble
must differ from each other, i.e., their mistakes must be uncorrelated
where possible. All passive photonic reservoirs differ by construction
due to the silicon photonics manufacturing process. Since the effec-
tive index of the delay line waveguides cannot be entirely controlled,
strong variations in phase affect the state signals of any fabricated
reservoir. This makes these passive photonic reservoirs interesting
candidates for reservoir ensembling in hardware.

In our second investigated connection scheme, chaining, reser-
voirs are combined by feeding the predicted output of a given reser-
voir into the readout stage of the next reservoir [see Fig. 8(b)]. This
way, the prediction of earlier reservoirs is incrementally improved
upon by later reservoirs. This is again a technique that depends on
all used reservoirs differing from each other.
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FIG. 8. Ensembling and chaining inte-
grated photonic reservoirs with electrical
readout PD: photodiode, ADC: analog-
digital converter, LC: linear classifier,
OM: optical modulator, and OC: opti-
cal combiner. The same input is sent
to both reservoirs (a) ensemble and (b)
chaining [Reprinted with permission from
Freiberger et al., IEEE J. Sel. Top. Quan-
tum Electron. 26, 1–11 (2019). Copyright
2019 IEEE.].

Note that the chaining architecture remotely resembles the
DeepESN architecture as proposed in Ref. 98, but has some signifi-
cant differences. In Ref. 98, each reservoir module is driven with all
the states of its predecessor. The readout is trained on the states of all
reservoirs in the setup. While this architecture would likely exhibit
a high memory capacity and its performance in software appears
promising, it would have to be simplified for integrated photonics
technology. For instance, a random combination of each reservoir’s
states could be projected into the subsequent reservoir after which
the states of all reservoirs are readout. While our efforts so far have
focused on more straight-forward architectures, bringing integrated
photonic reservoirs closer to a DeepESN architecture appears to be
an attractive direction for future research.

To evaluate the performance of our architectures, we simu-
lated four 4 × 8 passive photonic reservoirs connected in both an
ensembling and chaining setup and train each to solve the Santa
Fe chaotic laser prediction task.99 In this task, we predict the next
sampling value for a time series recorded from a far IR laser driven
in a chaotic regime. Figure 9 shows the results of our systems
on this task. We compare our results with a 8 × 16 nodes base-
line, i.e., a single reservoir that has the same overall number of
nodes.

When taking a look at the results in Fig. 9, we can see that the
ensemble of reservoirs slightly outperforms the chained reservoirs
and the baseline. Both methods show improvement for all observed
symbol rates with every reservoir added to the architecture. It is

notable that two ensembled reservoirs for some symbol rates match
the larger baseline reservoir which makes use of twice the number
of nodes. A possible explanation for this effect is that several small
reservoirs introduce more richness and variation in the resulting
combined reservoir states than would be possible for a single larger
reservoir. Our chaining approach outperforms the baseline on a few
bit rates, but is slightly outperformed on most bit rates.

We compare our simulations results with the delayed feedback
approach in Ref. 68. Soriano et al.68 report an normalized mean
root squared error (NMSE) of 0.025 on the Santa Fe dataset for a
500-node system. They obtain lower error rates, but their system is
much larger than the 128 nodes reservoir setups that have been used
here.

B. Dealing with limited weight resolution
One of the significant advantages of photonic reservoir com-

puting is its potential to achieve ultra-low power consumption. To
realize this idea, one possibility is, instead of using traditional heater-
based weighting elements, to use weighting elements that incorpo-
rate a non-volatile material. Whereas heaters require constant power
to maintain the weights during operation, with non-volatile weights,
no further power consumption is required after it has been set.100,101

However, depending on the technology, a non-volatile weight-
ing element can come with a compromise on weighting accuracy.
With Barium Titanate (BTO), for example, the resolution of the

FIG. 9. Normalized mean root squared
error (NMSE) of simulated reservoir on
the Santa Fe time series prediction task
as a function of bit rate for 1, 2, and
4 reservoirs combined using ensembling
and chaining in the electrical domain. (a)
Ensemble and (b) chaining [Reprinted
with permission from Freiberger et al.,
IEEE J. Sel. Top. Quantum Electron. 26,
1–11 (2019). Copyright 2019 IEEE.].

APL Photon. 5, 020901 (2020); doi: 10.1063/1.5129762 5, 020901-7

© Author(s) 2020

https://scitation.org/journal/app


APL Photonics PERSPECTIVE scitation.org/journal/app

refractive index tuning is limited to around 10 to 30 levels.101 On top
of that, some inevitable drift causes further noise on the levels. For
a system with such low weighting resolution and severe weighting
noise, the performance could easily drop several orders of magnitude
in terms of bit error rate (BER).

To tackle this problem, we proposed102 a new training method
inspired by methods that have been used in deep learning quan-
tization. Typically, after a full-precision model has been trained
and quantized, a subset of weights is identified to be either
pruned103 or kept fixed.104 The other weights are then retrained
in full precision and requantized. If necessary, this step can be
repeated in an iterative fashion, retraining progressively smaller sub-
sets of the weights in order to find the most optimal and stable
solution.

A crucial part of these methods is selecting a subset of weights
to be left fixed or to be pruned. Random selection of weights
is not a good idea because there is a high probability of elimi-
nating “good” weights that convey important information. Other
authors103,104 tackle this problem by choosing the weights with the
smallest absolute value.

This is reasonable in deep learning models, since the millions
of weights can provide enough tolerance when it comes to acciden-
tally selecting the ’wrong’ weights. However, in the readout systems
for reservoir computing, we have much fewer weights and a much
more limited resolution with severe noise. In this case, the abso-
lute value will not provide enough information, as a combination
of many small weights could be important in fine-tuning the per-
formance of the network. This will lead to a risk of an accuracy
loss when specific ’wrong’ connections (that are more sensitive to
perturbations) are chosen to be retrained.

Instead, we adapt a different (albeit more time-consuming)
approach, where after quantization, we compare several different
random partitions between weights that will be kept fixed and
weights that will be retrained (in full precision) and requantized. By
comparing the task performance for these different partitions, we are
able to pick the best one.

Figure 10 illustrates the results based on our photonic reservoir
simulation framework.105 In this case, we chose the XOR task with 4-
bit delay, i.e., calculating the XOR of the current bit with the bit from
4 periods ago. The noise profile is based on a Gaussian distribution,
the value of the noise level represents the ratio between the standard
deviation of the Gaussian distribution σ and the interval between
two adjacent weighting levels Δw as

Noise level = σ/Δw.

The figure compares the performance of three sets of weights: our
exploratively retrained weights, naively quantized weights, and the
ideal full-precision weights. The naive weights are just a direct quan-
tization of the full precision weights taking into account resolution
and noise levels. The figure is clearly showing that the 4-bit delayed
XOR task is not easy because even the system with full-precision
weights performs significantly worse when even a little amount of
noise is introduced. Naive quantization performs much worse: it
can hardly provide convincing performance across the whole noise
spectrum. However, the explorative retraining method provides up
to 2 orders of magnitude better performance when the resolution is
limited to only 8 levels. For a resolution of 16 levels, the retraining

FIG. 10. Performance comparison of three different training methods for two
weighting resolutions, 8 levels(top), and 16 levels(bottom) for XOR with 4-bit delay
task vs different noise levels. The purple curve represents our explorative retrain-
ing method, the olive curve represents the naive quantization weights and the
orange curve represents the full precision ideal weighting system. The error bars
represent different random instantiations of the input weights and internal reservoir
weights.

method can provide a steady performance that is very close to the
full-precision system.

C. Multiwavelength reservoirs
One way to improve the scaling of photonic reservoirs is to

exploit the wavelength dimension, as wavelength multiplexing is one
of the key strengths of photonics that is already widely exploited in
the fiber-optic telecommunications industry. It is therefore a natural
solution when trying to decrease the footprint of reservoirs.

Indeed, wavelength multiplexing could enable the processing
of (identical) tasks in parallel, such as equalizing several different
wavelength channels. Of course, in order to still benefit from the
improvement in footprint, we should be able to use the same set of
weights for different wavelengths. Otherwise, we would need optical
filters and a different optical readout for each wavelength.

One way to overcome this is to specifically train the reser-
voir for good performance on multiple wavelengths simultaneously.
Figure 11 shows that, when training a reservoir on an XOR task at
1552.3 nm and 1552.4 nm, a single set of weights can be used to get
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FIG. 11. Error rate for the XOR task. A single set of readout weights was trained
for operation at 1552.3 nm and 1552.4 nm, resulting in a system that can work
without change for these two adjacent WDM channels.

good performance over this wavelength range containing 2 WDM
channels.

V. APPLICATIONS OF PHOTONIC RESERVOIR
COMPUTING

In this section, we review two applications we have been focus-
ing on recently, which share the property that the input is in the
optical domain so that a photonic information processing scheme is
well suited.

A. Non-linear dispersion compensation in telecom
links

Reservoir computing can be used to perform equalization of
telecom signals in the optical domain, without the need for exten-
sive and power-hungry electronic DSP.106–108 Here, we compare the
performance of a PhRC equalizer to a traditional linear feedforward
equalization (FFE) filter trained on the same amount of data. The
link parameters can be found in Ref. 109. An adaptive FFE filter with

FIG. 12. BER of the PhRC equalizer as compared to that of an FIR Feed Forward
Equalizer (FFE) trained on the same amount of data for different fiber lengths. The
launch power is set to 15 mW. NL ON- nonlinear propagation. NL OFF—nonlinear
propagation is deactivated. “After fiber”: the uncorrected signal at the output of the
fiber [Reprinted with permission from Katumba et al., J. Lightwave Technol. 37,
2232–2239 (2019). Copyright 2019 IEEE.].

31 taps is used (the filter goes over the training data four times to
allow for convergence). The results are shown in Fig. 12. The PhRC
equalizer outperforms the FFE equalizer with BERs over 5 orders of
magnitude lower for 150 km transmission length and an order or
two of magnitude lower for 200 km. The difference in performance
originates in the fact that the PhRC equalizer is a nonlinear com-
pensation device; it takes advantage of the nonlinear transformation
in the reservoir to better model the distortion and outstrip the per-
formance of the FFE filter. In Fig. 12, we also plot the cases with
and without the fiber nonlinearity. We observe that at the distances
under consideration, the fiber nonlinearities are not yet deleteri-
ous. We do however observe that the reservoir is able to make use
of its nonlinear nature to outperform the FFE equalizer for these
links.

FIG. 13. Schematic of the classification process. A
monochromatic plane wave impinges on a microfluidic
channel containing a randomized cell model in water
(nH2O ∼ 1.34, ncytoplasm = 1.37, nnucleus = 1.39); the forward
scattered light passes through a collection of silica scat-
terers (nSiO2 ∼ 1.461) embedded in silicon nitride (nSi3N4

∼ 2.027) and organized in layers; the radiation intensity is
then collected by a far-field monitor, which is divided into
bins (pixels); each pixel value is fed into a trained linear
classifier (logistic regression) that consists of a weighted
sum of the pixel values.
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B. Biological cell sorting

In flow cytometry, a large number of suspended microparti-
cles, e.g., biological cells, can be detected and analyzed one by one
while flowing at high speed through a measuring device.110 On top
of this, cell sorting can be straightforwardly implemented by per-
forming the cell classification on the fly and employing its outcome
to trigger a subsequent particle sorter. Even though flow cytometry
has been developing for decades, a lot of effort is still being spent
to reduce instrumentation cost, size and complexity.111 In addition,
a high throughput is often needed to sort a statistically meaning-
ful number of cells. These requirements can be met in label-free
imaging cytometers,112 where the light scattered by microparticles is
imaged and automatically analyzed, e.g., through a machine learn-
ing algorithm. Still, the computation time needed by conventional
and state-of-the-art classification algorithms, including deep neural
networks,113 significantly limits the throughput of cell sorting appli-
cations.114–116 However, the same operating principle of RC, i.e.,
training a linear readout applied to a fixed high-dimensional non-
linear transformation of the input signals, can be applied in this case
to classify cells by only computing a weighted sum of the pixel inten-
sities acquired by an image sensor. This in principle allows extremely
fast classifications and is particularly suitable for low-cost hardware
implementations.

We recently presented a proof-of-concept of such approach
employing the outcomes of thousands of 2D FDTD simulations of
cells illuminated by a laser (Fig. 13) as training samples for a linear
machine learning classifier.117 A collection of dielectric pillar scat-
terers (silica in silicon nitride cladding) is interposed between the
microfluidic channel containing the particles and an image sensor.
This is done to enrich the non-linear (sinusoidal) mapping con-
necting the light phase modulation due to the cell presence and the
corresponding interference pattern acquired by the image sensor. In
holographic microscopy, the sample image is usually reconstructed
from the acquired interference pattern by a computationally expen-
sive algorithm. Instead, we proposed to directly apply a linear clas-
sifier on the acquired pattern so that the classification time is only
given by the image acquisition and a weighted sum of pixel intensi-
ties. We showed that the use of pillar scatterers can halve the error
in both the classifications of cell models with 2 different nucleus
sizes and with 2 different nucleus shapes, using the same scatterer
configuration.

We recently performed similar classifications as in Ref. 117,
based on the nucleus size of cells, for 9 different pillar scatterer con-
figurations, simulating the interference pattern with and without a
far field projection (Fig. 14). To obtain better comparable classifica-
tion performance estimations, we increased the number of simulated
samples per scatterer configuration to 7200 and we optimized both
the L2 regularization strength (strength−1 value chosen among 1/10,
1/25, 1/50, 1/100, 1/500) and the image sensor resolution (No. pix-
els is chosen among equidistant rounded values in the range [300,
700]). This was done through 2 nested 5-fold cross-validations: the
inner one was used for hyperparameter optimization, the outer one
for providing error bars to the performance estimations (see Ref. 117
for more background).

We conclude by noting that for all the explored scatterer con-
figurations (top of Fig. 14, from B to I) the classification error using
near field and far field diffraction patterns is reduced respectively

FIG. 14. Top: pillar scatterer configurations employed in the 2D FDTD simulations,
as depicted in Fig. 13. Bottom: bar plots of the corresponding error in the classifi-
cation of cells with 2 different nucleus size (as in Ref. 117), using near field and far
field interference patterns respectively. The error bars (black thin bars) represent
2 standard deviations of the outer cross-validation results.

by a factor of ∼4 and of ∼2 with respect to the case without pillar
scatterers (configuration A in Fig. 14). Therefore, the fast label-free
cell classification performed by a simple linear classifier without
other image processing or lenses, can be significantly improved by
adding in the optical path a simple collection of diffractive elements.
Finally, this improvement is shown to be surprisingly robust against
imperfections of the diffracting layer, e.g., due to fabrication errors.

VI. CONCLUSIONS AND PERSPECTIVES
It is clear that the field of brain-inspired photonic comput-

ing has recently undergone an explosion in activity, where many
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players investigate different interesting options and research
avenues. An important factor contributing to this popularity is no
doubt related to the rise in prominence of deep learning. This
increased attention is an extremely positive evolution, given the
complexity of the issues and the formidable technical challenges to
overcome. Foremost among those is the issue of scalability. Com-
pared to, e.g., software-based deep learning approaches, with tens
of millions of free parameters, experimental realizations in pho-
tonics have been rather modest, and will probably remain so for a
while, in view of issues related to power consumption, footprint and
complexity of control.

Still, we should not limit ourselves to purely mimicking what
is happening in deep learning, as other approaches and applica-
tions could perhaps provide a more natural fit with the inherent
capabilities and strong points of photonics.

There are several aspects that need to be considered when
deciding whether an application would be better served by an
electronic or a photonic implementation.

In case the input is already in the optical domain, it makes
a lot of sense to do the processing optically too. If we are deal-
ing with electronic signals on the other hand, any cost related to
electro-optical conversion will need to be weighted carefully against
potential advantages.

A second aspect is the modulation speed of the input signal.
Wave propagation and interference happen at time scales far shorter
than anything that can be achieved with traditional electronics, and
this can be a crucial asset. Obviously, the speed of the entire system
is limited by the weakest link, which, depending on the implemen-
tation, could be either the modulation of the input source, the band-
width of the detector at the end of the system, or the speed of any
non-linear element inside the system. Therefore, the whole picture
needs to be carefully considered.

Finally, another natural advantage of photonics over electronics
is the extra degrees of freedom we can exploit, like wavelength and
polarization. This multiplexing results in a virtual system that can be
several times larger than the actual physical system that implements
it.

In summary, these are exciting times to perform research in the
field of analog information processing in photonics. Several recent
research results show tremendous promise. However, the next steps
and key challenges will be to translate these typically small-scale pro-
totypes to a concrete, industrially relevant application, in such a way
that it outperforms traditional electronic implementations.
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