
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020 4009

Graph Representations for Programmable
Photonic Circuits

Xiangfeng Chen , Student Member, IEEE, Pieter Stroobant , Mario Pickavet ,
and Wim Bogaerts , Senior Member, IEEE, Member, OSA

Abstract—We propose graph representations for reconfigurable
photonic mesh circuits. Waveguide mesh circuits are abstracted
into a graph to highlight the connectivity and topology. We model
the optical ports as graph nodes. Performance metrics for each
connection are incorporated into the edge attributes in categories
such as propagation loss, crosstalk penalty, power consumption,
phase accumulation, and so on. We use three types of graph repre-
sentations for tunable couplers to model the flow of light and create
a circuit graph representation to an example hexagonal mesh. The
representation should respect the physics of waveguide circuits (e.g.
directional flow of light). Of the three types, the directed graph with
eight artificial nodes performs best for solving light distributions
with feedback paths. This graph representation is demonstrated in
four distribution cases: a single pair input-output, multi-pair inputs
and outputs without collisions, a single input to multiple outputs
(distribution), and multiple distributions without collisions. The
programming tolerance against malfunctioning tunable elements
is also demonstrated. With this circuit representation, we can
reduce all these distribution cases to different graph problems and
leverage a wealth of existing algorithms developed in graph theory
to program the photonic mesh. Thus we provide a systematical
strategy to design and program complex reconfigurable photonic
circuits, especially in photonic meshes with feedback paths.

Index Terms—Graph theory, optical routing, programmable
photonics, photonic integrated circuits, silicon photonics.

I. INTRODUCTION

IN THE past few years, the field of programmable photonics
has gained a lot of momentum, evolving from a blueprint to a

realistic platform for new research and applications, especially
in the domains of quantum optics and neuromorphic comput-
ing [1], [2]. Similar to an electronic integrated circuit, a photonic
integrated circuit (PIC) integrates many optical components on
a single chip. It is especially the silicon photonics technology

Manuscript received September 24, 2019; revised January 13, 2020 and
February 21, 2020; accepted March 29, 2020. Date of publication April 3,
2020; date of current version July 23, 2020. This work was supported in part
by the European Research Council through under Grant Agreement 725555
(PhotonicSWARM) and in part by the European Union’s H2020 program through
Grant 780283 (MORPHIC). The work of Pieter Stroobant was supported by a
Ph.D. grant of Ghent University, Special Research Fund (BOF). (Corresponding
author: Xiangfeng Chen.)

Xiangfeng Chen and Wim Bogaerts are with Photonics Research Group,
Department of Information Technology, Ghent University-IMEC, 9052 Ghent,
Belgium (e-mail: xiangfeng.chen@ugent.be; wim.bogaerts@ugent.be).

Pieter Stroobant and Mario Pickavet are with IDlab, Department of Infor-
mation Technology, Ghent University-IMEC, 9052 Ghent, Belgium (e-mail:
pieter.stroobant@ugent.be; mario.pickavet@ugent.be).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2020.2984990

Fig. 1. Programmable photonic circuits: (a) the circuit connects inputs, outputs
and functional blocks (modulators, detectors). (b) internally it has couplers that
can be put in different states. The topology can be forward-only (c) [12] or
use feedback rings such (a) square [9], (d) triangular [8] or (e) hexagonal ring
meshes [10], [11].

platform that is enabling the rapid scaling of PICs, allowing
the placement of hundreds or thousands of functional elements
on a single chip [3]. Today, most PICs are application-specific
PICs (ASPIC), and the light paths are mostly fixed during chip
design. Programmable photonic circuits is introducing a change
here: with reconfigurable optical pathways, a programmable
PIC can in principle realize the same functions as a large
variety of ASPICs. Programmable PICs consist of a mesh of
electrically tunable optical couplers where the coupling ratio
can be programmed at the time of operation [4]–[6]. This is
illustrated in Fig. 1(b): a tunable coupler can be in bar state
(no coupling), cross state (full coupling), or in a fractional
coupling state. The maturing PIC technology makes it possible
to integrate many such couplers in a large-scale connected mesh
of waveguides and thus distribute light through a multitude
of paths which are reconfigurable. We can generally identify
two large classes of such programmable PICs: Forward-only
meshes and meshes with optical feedback (recirculating loops).
Forward-only meshes, in which light flows in one direction, are
today the most commonly used [1], [5], [7]. They can implement
any transfer matrix between a set of input waveguides and a set
of output waveguides. While they are fairly easy to configure,
they are limited in functionality: optical path length differences

0733-8724 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2931-8269
https://orcid.org/0000-0003-0895-0476
https://orcid.org/0000-0001-5817-7886
https://orcid.org/0000-0003-1112-8950
mailto:xiangfeng.chen@ugent.be
mailto:wim.bogaerts@ugent.be
mailto:pieter.stroobant@ugent.be
mailto:mario.pickavet@ugent.be
http://ieeexplore.ieee.org

4010 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

are usually limited to a 0−2π phase shift, and therefore it is not
straightforward to implement wavelength filtering functions.

An alternative architecture uses tunable directional coupler
organized in loops of triangles [8], squares [9] or hexagons [10],
[11]. In such recirculating architectures, light thus folds onto
itself, creating optical resonances. In this scheme all the ports
are equivalent, and can serve as either input or output, and the
mesh makes it easy to define discrete delay lines, enabling the
implementation of wavelength filters. Inside this feedback mesh,
the transport and distribution of light is governed entirely by the
connectivity of the waveguides and the states of the tunable
couplers. The phase relations are governed by integrated phase
shifters. Fig. 1(a) shows a generic programmable PIC which
contains a core waveguide mesh, connecting together optical
inputs/outputs, as well as high-speed radio-frequency inputs
and outputs enabled by high-speed electro-optic modulators and
balanced photodetectors, respectively.

Programmable meshes are proving very useful in many do-
mains such as artificial intelligence [1], quantum optics [13]
and microwave photonics [14]. Rapid progress in driving elec-
tronics and packaging technologies makes it possible to build
programmable PICs of increasing sizes. However, as meshes
scale up, the degrees of freedom become overwhelmingly large.
Configuration algorithms have been proposed to define certain
functions in forward-only meshes with several complex demon-
strations of linear operations [1], [13], [15]–[17]. Whereas for
meshes with feedback loops, demonstrations have been mostly
limited to reconfigurable wavelength filters [2] and time delay
lines [4], which are manually programmed. This is neither sus-
tainable nor practical when the complexity of the meshes scales
up and multiple functions need to be defined. Recently, auto-
mated control algorithms have been proposed for beam-forming
application [18]. However, for each reconfigurable function,
the chip needs to be trained by these control algorithms. Also,
graph-based algorithms are reported for auto-routing. [19] The
systematical strategy is still lacking to address placement and
routing of different filters [11] simultaneously in the circuit,
especially when one wants eliminating using components to
use the full capacity of the mesh and to trade off among cir-
cuit performance metrics that an S-matrix [20] can not model
(e.g. power consumption). Thus todays programmable PICs
are mostly forward-only circuits [1], [5], [7], [13], [21], [22],
with demonstrations of recirculating meshes limited to a 7-cell
hexagonal mesh [2], [14].

We can separate mesh programming problems into two
classes: the distribution of light in the mesh (routing and dis-
tribution) and the definition of interferometric functions such
as wavelength filters, which are phase sensitive. We introduced
the basic idea to use graph representations for such large pro-
grammable circuits. [23] In this paper, we describe in more detail
several approaches for graph-based design and programming
of PIC meshes, and validate that the graph representation is
capable of solving light distribution problems in programmable
meshes with feedback loops. Thus we highlight the connections
and topology and translate the feedback-mesh into a graph.
This way, we make programming and design of the large-
scale photonic mesh agnostic of the technology platform of

the chip. For example, a tunable coupler can be based on the
thermo-optic effect or microelectromechanical systems(MEMS)
technology. The abstracted connectivity has intrinsic flexibility
for circuit malfunctions. It is reasonable to assume that a portion
of optical elements can be malfunctioning in large photonic
circuits due to various reasons such as fabrication defects or
fatigue which causes broken paths or even couplers stuck in
a cross or bar state (e.g. in MEMS devices). The connections
are then updated in our graph by removing nodes and edges
blocked by malfunctions after the hardware calibration. The
routing and distribution is similar to programming strategies for
field-programmable gate arrays (FPGA) in electronics [24], [25],
but with very different constraints, mainly due to the reciprocal
nature of light propagation. The objectives also differ, ranging
from optimizing the circuit performance to fabrication tolerance,
flexibility given certain malfunctions and to robustness against
parasitic interferences. The performance of the overall function
is a trade-off of metrics such as propagation losses, crosstalk, and
power consumption. We will demonstrate that many functions
in programmable photonic circuits can be related to a corre-
sponding routing or flow problem and we can leverage existing
powerful graph tools to solve it. We deliberately separate the
graph layer from the hardware layer. The solution from the
graph layer dictates which couplers and with what state to
employ for such a distribution problem. By mapping the identity
(e.g. unique name string) of each connection in this solution to
the individual components in the circuit, we can then assign
the actual coupling values of tunable 2× 2 couplers to the
hardware layer. For this, tunable elements on the chip need
to be pre-calibrated one time on the hardware level and then
leave the programming tasks to the graph layer. The application
of graph theory to this new field will help us create program-
ming paradigms for systematically controlled programmable
meshes.

II. GRAPH REPRESENTATION

For the discussion in this paper, we will use a hexagonal mesh
for our graph abstraction, as shown in the schematic drawing in
Fig. 1(e). The presented technique however is applicable to all
types of meshes of waveguides and tunable couplers, including
the forward-only meshes. The mapping onto a graph is guided
by preserving the connectivity and performance properties of the
photonic building blocks. There can be a wide variety of building
blocks in a photonic circuits, including phase shifters (PSs),
modulators, semiconductor optical amplifiers, photodetectors,
and waveguides (WGs), but from the point of view of a graph
these are similar, in the sense that they have only two optical
ports. Other components, such as the tunable couplers (CPs),
have four ports. For instance, a tunable coupler based on the
thermo-optic effect consists of a Mach-Zehnder interferometer
with a thermo-optic phase shifter in one or both arms. The
tunable coupler is capable of distributing light by electrically
tuning the phase shifter(s). In a programmable mesh circuit, the
tunable couplers are the elements that define the connectivity,
so their correct graph representation is crucial to the definition
of a full graph of the programmable circuit.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH REPRESENTATIONS FOR PROGRAMMABLE PHOTONIC CIRCUITS 4011

A graph consists of nodes, and edges which connect the
nodes. Light flows along the edges, following a path through
the graph. Since we are not just interested in which coupler to
address but also in its state (cross, bar, partial coupling), a logical
choice is to represent the optical ports of the building blocks as
nodes. Light flow is then physically represented from port to
port. For the two-ports building blocks, the graph connections
are straightforward: the component is represented as two nodes
which are internally connected. And each node can then be
externally connected to exactly one node of an adjacent circuit
block. For the four-port 2× 2 couplers, things become more
complicated, as the coupler can be configured to couple the
ports on one side (a, c) to different ports on the other side (b, d).
Internally, there can be more than one connection for each port.
More precisely, the coupler can be in ‘bar’ state, ‘cross’ state, or
in a ‘fractional coupling’ state as shown in Fig. 1(b). A simple
graph representation which captures this connectivity is shown
in Fig. 2(e), where the coupler consists of 4 nodes a, b, c, d
connected in a cross/bar configuration. When the coupler is in
‘bar’ state, light may travel from a to b or b to a with weight
Wab and from c to d or from d to c with weight Wcd. When the
coupler is in ‘cross’ state, light may travel from a to d or from
d to a with weight Wad and the other signal traverses from c
to b or from b to c with weight Wbc. When the coupler is in a
‘fractional coupling’ state, any port can distribute light forward
to the two opposing ports by a programmable ratio like from a
to both b and d or both from b and d to a.

For the connections between building blocks, light can tra-
verse from or to a port of a building block, so we represent these
two light flows in the graph. For example, in Fig. 2(e), arrow a1
stands for light travelling towards to port awhile arrow a2 stands
for the direction away from the port a. Analogous definitions
apply to port b, c, and d. As the edges between nodes represent
connections, either between building blocks, or a port-to-port
coupling within a building block, each connection can have a
different influence on the circuit performance. Measurements or
simulated component performance metrics can be incorporated
into the graph by assigning specific attributes to the edges,
such as insertion loss (Il), power consumption (Pc), crosstalk
and phase accumulation which can be represented by optical
path length (Lo). The desired circuit performance metrics is
expressed in edge weights for graph tool to optimize. One
possible weight assignment to the edges (We) is linear weighted
(w) contribution from these attributes:

We = w1 · Il + w2 · Pc + w3 · Lo + · · · (1)

This edge weight is used as a cost in the algorithms for routing
and flow problems. The result of those algorithms will then
be a feasible solution which minimizes the total cost. From
such distribution solution, we can recalculate the impact on
circuit performance for each category of these attributes. For
demonstration purposes, in our mapping, we choose w1 as
100% and all other w are 0%, and assign different propagation
loss weights to different connections (e.g. 10 for all coupler
‘cross’ connections, 5 for all coupler ‘bar’ connections, 4 for
all phase shifters and 1 for all waveguide connections). For

Fig. 2. (a) Schematic drawing of our example hexagonal mesh with high-
lighted repeatable cell in gray. In this repeatable cells, three couplers are
interconnected with phaseshifters which are marked in green. These cells are
mapped to three subgraphs using three different coupler representations: (b)
original undirected subgraph using the coupler representation (e); (c) undirected
subgraph with four auxiliary internal nodes introducing negative weights using
the coupler representation (f); (d) directed subgraph using coupler representation
(g) with eight artificial nodes.

phase sensitive programming such as path-balancing distribu-
tions and optical filter synthesis, the optical path length is a key
attribute. However, in the scope of this work we mainly focus on
graph representations and the verification of phase-independent
problems (routing and distribution), so we do not take Lo into
account (w3 = 0%) in our demonstration. Nonlinear weight
assignment is also possible. For example, addressing crosstalk
or signal congestion problems requires the consideration of edge
interactions. This can be realized through weight updating which
we will discuss in Section III-B for multi pair signals routing.

While a graph can be multi-dimensional, for visualization
purposes we project our photonic graph network on a plane and

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

4012 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

assign coordinates to each node which correspond to the real
hexagonal mesh. We used the python package NetworkX for
graph visualization and algorithm customization [26].

Graphs can be characterized as either undirected graphs or
directed graphs. Due to the reciprocal nature of waveguides, we
originally chose an undirected graph as presented in Fig. 2(e),
where light can flow through the edges in both directions.
However, this choice allows unphysical paths inside the tunable
coupler. For instance, in an undirected graph, light is allowed to
travel from a to c by means of node b and/or d, with a weight of
Wab +Wbc or Wad +Wdc. In a real tunable coupler, this path
is not allowed: it would require that the light abruptly reverses
direction in a nonreciprocal way, and it would use a ‘bar’ and
‘cross’ connection at the same time, which is not possible. We
will explain this in details in Section III-A and in Fig. 4.

One way to address this problem is to use weights to make
unphysical paths prohibitively expensive. Scheme (f) in Fig. 2
illustrates an approach which applies arbitrary weights to favor
certain possible connections. Four more auxiliary nodes (a′, b′,
c′ and d′) are added next to the original port nodes. All possible
coupling connections used to connect to original nodes (a, b,
c, and d) are connected to these auxiliary nodes instead. The
weight between the port nodes and auxiliary internal nodes has
a negative value of −M , where M ∈ R+ is an arbitrary number
chosen to be larger than the sum of all weights in the original
graph representation. The weights of the edges between the four
auxiliary internal nodes are changed to the original weights
of the port-to-port connections with addition of 2×M . The
introduction of the negative weights now favors the connections
that do not mix the two coupling states in one coupler. For
example, the nonphysical path from a′ to c′ taking edges a′-b′

and b′-c′ becomes prohibitively expensive because of the high
additional costs 2 M . In the section below, we will explain in
detail how the arbitrary weights together with a minimum weight
path algorithm achieves selectivity of nonphysical paths. Also,
we will discuss further in the next section that undirected graphs
generate problems, especially for meshes with feedback loops.

Because of these issues, the scheme in Fig. 2(g) is proposed
to fully represent the possible light traversal directions between
the four ports of a coupler. Instead of four nodes, eight nodes
are utilized in this coupler representation, two for each port
representing the inbound and outbound light. The arrows rep-
resenting incoming or outgoing light in the original scheme
are replaced by eight corresponding nodes which represent the
direction of light towards to or away from the port of the coupler
respectively. For instance, the arrow a1 is replaced by node a1
for external connections. Node a1 only has directional edges
pointing towards node b2 and node d2 for connections within
the coupler, and likewise, node a2 only receives connections
from nodes b1 and d1. Note that this last graph representation
also requires that we change the representation of two-port
devices such as waveguides and phase shifters. These two-port
devices need to be represented by 4 graph nodes, two for each
propagation direction.

To assess the effectiveness of these graph implementations in
real circuit problems, we performed several tests on a hexag-
onal programmable circuit with feedback loops. A possible

Fig. 3. Three graph representations are compared for single input-output pair
case, which is reduced to a constrained single pair shortest path routing problem.
The blue dots in (a) are nodes that can be reached by the algorithm. The red dots
in (a) show nodes that cannot be reached by the customized Dijkstra’s algorithm,
and red dots in (b) are marked as unreachable as well because the blue path by
the standard Dijkstra’s algorithm is unphysical and is then discarded. The blue
route is the solution that these algorithms provide. The yellow paths in (b) and
(c) are valid alternatives of the blue paths as explained in the text. The alternative
path starts at node m. Node n is the key node where the directed and undirected
graph representations make a difference, which is further illustrated in 7(a–c).
(d) is the same graph as (c) except that nodes representing the same port are
projected to the same location. And green dots are valid destination as opposed
to red counterparts in (a) and (b). [27].

implementation of the hexagonal mesh consists of repeatable
unit cells which have 3 programmable 2× 2 couplers with 3
phase shifters to interconnect them. [4] This repeatable unit cell
is highlighted in gray in the mesh in Fig. 2(a). For this unit cell,
we apply the different graph implementations of the tunable
coupler. Fig. 2(b) uses the coupler representation in Fig. 2(e);
Fig. 2(c) is abstracted using the scheme in Fig. 2(f); and Fig. 2(d)
uses the representation in Fig. 2(g). Thus, the three couplers in
dotted rectangles in Fig. 2(e–g) are interconnected with phase-
shifters, forming an unit cell as in Fig. 2(b–d), respectively. The
interconnect components are two-port components such as phase
shifters and waveguides. In our case, phaseshifter connections
are chosen and marked in green. With repeatable unit cells, we
construct three graph networks based on these coupler imple-
mentations. The mapping of the unit cells in Fig. 2(b–d) to the
graph representations in Fig. 3(a–c) is visualised by applying
the same color to the unit cell. Fig. 3(d) is the same graph as (c)
except it projects nodes that represent the incoming and outgoing
direction of the same port to the same location, which simplifies
the visualization but hides some of the complexity.

III. LIGHT DISTRIBUTION PROBLEMS

A key function of programmable photonic circuits is light
distribution, i.e. guiding light from one port to another, or route

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH REPRESENTATIONS FOR PROGRAMMABLE PHOTONIC CIRCUITS 4013

it between functional blocks within the mesh. Being able to
solve a variety of light distribution cases using graph algo-
rithms demonstrates the usefulness of graph-based strategies
for programmable photonic meshes. Four elementary cases are
investigated in the subsections below.

A. Single Input-Output Pair

This problem relates to the single pair source-target shortest
path problem, for which many well-established pathfinding al-
gorithms exist, such as Dijkstra’s algorithm [28]. This algorithm
is able to find a shortest distance path (if such a path exists)
for a given single source-target pair. Here, ‘shortest distance’
indicates that the sum of the weights of all edges in the path is
minimal among all possible paths between the specified source-
destination pair. Edge weights are linear user defined costs which
may be chosen to represent trade-offs among various parameters
of circuit performance. For instance, if we choose propagation
loss as the edge weight, the solution of this algorithm will
provide us a path with minimal total propagation loss.

There is a complication, however: in the context of single
input-output problems, the 2× 2 coupler can only be pro-
grammed in either ‘cross’ state or ‘bar’ state at any given time.
Therefore, we will need to eliminate (during the execution of
the algorithm) the edges of the states that are no longer possible.
Once a ‘cross’ edge of a coupler is used, the only other available
edge remaining is the other ‘cross’ edge, and the ‘bar’ edges
are no longer accessible. Without this condition, the standard
Dijkstra routing algorithms may yield nonphysical paths as
highlighted in red in Fig. 4(b) and (c). The same undirected graph
representation is used as in Fig. 3(a) but 12 couplers at the outside
of the mesh were removed: In the resulting mesh configuration
unphysical routing cases appear more frequently. With this in
mind, one solution is to customize the Dijkstra algorithm while
still using the original graph representation. This can be achieved
by eliminating cases where three sequential nodes from one
coupler are put into the priority queue of the algorithm. Note
that it is impossible for a shortest path to pass through a certain
coupler, subsequently pass by some other edges, and then pass
through the same coupler again but in incompatible state, due
to the fact that such a path would need to visit the same node
twice (meaning that it cannot be a shortest path). Thus, our
customized Dijkstra-based heuristic guarantees valid physical
paths and coupler states, as highlighted in green in Fig. 4 (d)
and (e). The ability to find optimal solutions in the presence of
broken couplers is also illustrated in Fig. 4 and demonstrates the
intrinsic flexibility of the graph-based approach.

Instead of customizing the algorithm, we investigate whether
we can introduce a weighting scheme that would penalize those
nonphysical internal paths that mix both coupling states. We
introduce a graph model where each coupler is represented as
illustrated in Fig. 2(f). Clearly, a path which contains a ‘cross’
edge immediately followed by a ‘bar’ edge through the same
coupler (or vice versa) will have a cost of at least 2 M . For
example, port a has possible connection a-a′-b′-b (the total
weight for this connection is equal toWab), a-a′-d′-d (the weight
is Wad), a-a′-b′-c′-c (the weight would be arbitrarily large,

Fig. 4. Outer couplers were removed from Fig. 3(a) to make unphysical routing
solutions more likely. (a) and (b) are routes with same start and end points,
allowing to compare routes found by Dijkstra’s algorithm with and without
malfunctioning nodes. Nonphysical connections in the light paths of the couplers
are highlighted in (b) and (c). The valid minimum cost solutions for feed-forward
path are visualised in (d) and (e). These sequential routing results were found by
a customized Dijkstra algorithm for the same two source-target pairs but were
found by looking for the paths in a different order: the blue path is routed first,
and the yellow path is routed after removing any prohibited edges resulting from
the blue route.

which is 2M +Wab +Wbc), a-a′-d′-c′-c (the weight is equal to
2M +Wad +Wcd). Similarly as before, a shortest path which
passes twice through the same coupler in different states, with
some other edges in between is impossible, since such a path
would visit the same node twice (and hence is not a simple path,
i.e. a path in which no node is visited twice). Since the cost of
valid paths remains unaffected by M while the cost of an invalid
path is at least 2 M , choosing M large enough will ensure that
the shortest simple path between a given source-destination pair
will also be physically valid. Unfortunately, Dijkstra’s algorithm
does not guarantee an optimal path when negative weights are
present. And the graph contains negative weight cycles (e.g.
travelling from node a to a′ and immediately returning), which
excludes other well-known shortest path algorithms. However,
finding the shortest simple path in a graph with negative weight
cycles is NP-hard [29], [30]. Since Dijkstra’s algorithm guar-
antees that no node will be visited twice, we can technically
still apply the standard Dijkstra algorithm to a network where
each coupler is represented as in Fig. 2(f). Such compatibility
with negative weights is easily achieved by ensuring that only
distances corresponding to nodes to which the algorithm has not
found a path may be updated.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

4014 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

The issue for graph representations which implement coupler
scheme (e) and (f) in Fig. 2 is illustrated in Fig. 3(a) and (b),
respectively. The simplified Dijkstra’s breadth-first searching is
provided in Fig. 7(a) and (b). The red dots in the figures mark
nodes to which no valid path can be found with the corresponding
algorithms, despite the fact that such a path does exist. The
algorithm eliminates these nodes from its consideration list
when the breadth-first searching tree traverses the node in one
direction, but this also eliminates the node from being traversed
in the other direction. Therefore, these unreachable nodes are
mainly an artifact arising from the use of an undirected graph
representation for an application in which directionality is criti-
cal. Light has two possible directions for one port of a coupler:
towards to or away from the coupler. In an undirected graph,
Dijkstra’s algorithm will however mark a node only once as
‘visited,’ when a minimum cost path is found to that node. The
problem is that if this node has been marked as ‘visited’ by a path
passing through the coupler in any one of these two directions,
the algorithm will not search for a path to this node in which the
light flow is coming from the other direction which connection
is marked under red crosses in the Fig. 7. The terminal nodes are
“unvisited” but the feedback architecture represented by undi-
rected graphs intrinsically hinders valid paths towards terminal
nodes(t) through “visited” nodes(n) which are prohibited in
Dijkstra’s algorithm. The through nodes(n) is just an arbitrary
node in feedback loops, it can be any node in the set of visited
nodes from breadth-first searching tree from arbitrary source
nodes(s). For some cases(e.g. terminals like “t” in Fig. 3(a)), it
requires a route through multiple “visited” nodes to yield a valid
path. This results in unreachable nodes in graph representation
of Fig. 3(a) and Fig. 3(b). The blue path is unphysical path
which is discarded due to the same reason, thus t is marked
red as unreachable in the representation. An detailed example is
visualised in Fig. 3(b) and abstracted in Fig. 7(b). When looking
from a path from node s to t, the subpath from node m to n in
blue costs less than the path in yellow, since we chose the weight
of ‘cross’ edges to be larger than that of ‘bar’ edges when we
assigned the propagation loss attribute to edge weights. Thus, in
an undirected graph model, the algorithm will store the blue path
and mark n as ‘visited’. Since travelling from node n directly
to node t after arriving in n along the blue path results in an
unphysical path, the option of travelling from s to t over node
n is discarded. The red highlighted box in Fig. 3(b) shows the
violation of the physical light propagation conditions in such a
case. Despite this violation, the correct minimum weight s− t
path does includes node n, but reaches the node along a different
direction, using the yellow path as green arrow indicates in 7.

The third graph model builds on this observation and in-
corporates the directionality of light by splitting a port into
two nodes, resulting in the tunable coupler model shown in
Fig. 2(g). Thus, all possible directions of light are represented
by a node and connected according to that direction. This graph
representation ensures that the standard Dijkstra algorithm stores
a route passing through each port corresponding to both light
directions, thus solving the issue of the undirected graph models.
Constraints are needed to avoid nonphysical edges in this case as
well. Since we arbitrarily use two nodes to present two directions

for only one port, we also need to eliminate those cases where
two nodes representing the same port are path of a shortest path.
We use an iterative heuristic, in which each iteration corresponds
to an execution of Dijkstra’s algorithm to find a specific path. If
an unphysical path is found, the conflicting edges are detected
and the edge weights are adapted to make it less likely that they
will be included in the shortest path of a subsequent iteration.
Edges are penalized by updating the edge costs (Wp), replacing
the cost by the sum of the original weight (We) and the product
of the number of times the specific edge caused a violation (he)
and a user-defined violation cost (pe) [24], [31]:

Wp = We + he × pe + · · · (2)

The history of violations is essential in this fast heuristic algo-
rithm, because it keeps track of how many times a specific edge
has been included in nonphysical paths. The violation cost is
user defined. The heuristic program keeps iterating the standard
Dijkstra algorithm with updated penalties until a solution path is
found without any violations or it reaches the iteration number
that a user sets.

Fig. 3(c) shows that the directed graph model finds the correct
result for the scenario which was problematic for the undirected
counterpart, which was introduced in Fig. 3(b). The breadth-first
searching tree schematic is provided in Fig. 7(c) and (b) for
comparison. The algorithm finds both the yellow and the blue
arrow path towards node n and is able to find an optimal path to
reach node t throughn. For a better visualisation of the mesh, we
map node pairs representing the same port to the same location,
resulting in Fig. 3(d). The green nodes mark all valid destinations
which used to be unreachable with the undirected graph models
when starting from node s. [27] A minimum length path is
now found towards all nodes for which such a path exists, thus
indicating that the directed graph model is well suited to solve
single-pair shortest path problems for meshes with feedback
loops.

B. Multiple Input-Output Pairs

In many cases, programmable circuits need to route multiple
paths at the same time. Since tunable couplers can function
as waveguide crossings and paths may cross, there are many
ways to route these paths. One possible approach is to solve
the single-pair shortest path algorithm sequentially for each of
the paths, while removing an edge from the graph as soon as
it is included in a specific path. However, the order in which
these single-pair shortest path problems are solved influences
the final routing results, as demonstrated in Fig. 4(d) and (e).
Finding a minimum cost solution for a given set of pairs of
input-output ports is essentially an integer multi-commodity
flow problem in a graph with extra restrictions due to the
constraints to avoid unphysical paths. In this problem, each
input-output pair corresponds to a separate commodity. Since the
integer multi-commodity problem is well known to be NP-hard,
even in the case of only two commodities, we propose a heuristic
that builds on top of our solution for the single-pair shortest path
problem.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH REPRESENTATIONS FOR PROGRAMMABLE PHOTONIC CIRCUITS 4015

Fig. 5. Different valid solutions are found for the same 6 input-output pairs.
Respectively, for (a) and (b), the arbitrary congestion cost is 1 and 2; Total cost
is 550 and 565; the iteration time is 92 and 18.

To optimize which edges are assigned to which path, we
can leverage the Lagrangian relaxation method in congestion
negotiation algorithms [25], [32]. Congestion occurs when paths
are competing for the same edges or nodes in the photonic graph.
We implement a heuristic algorithm aiming to reduce congestion
which is similar to the heuristic which avoids unphysical paths
in the single input-output pair case. The algorithm will keep
running until a solution is found in which no nodes are congested.
The algorithm keeps track of a history of congested edges,
similar to the history of path violations in the heuristic for the
single-pair shortest path problem. The algorithm keeps iterating
the single-pair shortest path algorithm while penalizing edges
according to their congestion. The added cost is calculated by
multiplying the number of times an edge was congested with a
user-defined congestion penalty. Since the single-pair shortest
path algorithm prefers paths with lower cost, increasing the
cost of congested edges gradually directs paths towards other
edges if these are available. Fig. 5 illustrates, for the same
user-chosen input-output pairs, that different valid solutions
are found. For this case, a larger congestion penalty decreases
the number of iterations before convergence, but also results
in less optimal solutions. Further improvements on congestion
penalties are possible. [32] A movie is uploaded on DataPort for
visualizing realtime algorithms on congestion negotiation with
6 input-output pairs.

C. Single Input With Multiple Outputs (Distribution)

Both when solving the single pair shortest path problem and
when looking for a solution for the multi-pair problem, the
couplers function as switches and thus are considered to be in
either ‘bar’ or ‘cross’ state. In a real mesh however, there are
cases where they will need to function in a ‘fractional coupling’
state. For instance, a crucial application for a mesh is to transport
a single input light signal to multiple output ports. Therefore we
will demonstrate that the graph representation can also generate
valid solutions for such distribution problems.

Finding a distribution tree which minimizes a linear penalty,
such as linear propagation loss in photonic mesh network, trans-
lates to a minimum-cost flow problem (with unlimited edge
capacities). The cost of a specific edge is proportional to the
number of source-destination paths passing through that edge.
A heuristic approach for this problem is to apply Dijkstra’s

Fig. 6. Example solution for the one input to multiple outputs light distribution
problem, found using various integer program objectives: (a) edge costs are
proportional to the flow passing through the edge; (b) the same algorithm applied
to a graph representation with malfunctioning couplers; (c) edge cost count only
once for any flows using that edge; (d) multiple distributions without signal
collisions.

algorithm to create a shortest path tree starting from the source
node. A distribution tree is found by considering the union
of the paths to each of the destinations. Without physicality
constraints, the optimality of such a tree would be guaranteed.
However, this tree may be unphysical due to conflicting edges,
which may occur when nodes are used which correspond to the
same port, but with light travelling in opposite directions. The
corresponding edges are subsequently penalized, similar to the
heuristic for the single source-destination shortest path problem.
These steps are repeated until a valid solution is found.

An example distribution is shown in Fig. 6(a). The broken
coupler in Fig. 6(b) demonstrates the flexibility of graph based
methods when dealing with malfunctioning building blocks,
similar to the example routing problems in Fig. 4. This reduction
to minimum-cost flow problem in graph might be useful for a
circuit operating at a high power level which introduces non-
linear losses. In reality, at certain power level, nonlinear losses
can emerge, such as two-photon absorption (TPA). Note that
although the signal is distributing like a tree in this example,
this algorithm does not apply any heuristic to prefer splits as
early as possible to balance power level at each couplers.

However, in cases where light signals are being distributed
at low power level, we don’t need to worry about nonlinear
absorption or saturation effects. In such cases, an optimal so-
lution would employ as few couplers as possible. This way,
more couplers are available for programming other functional
blocks while being agnostic about any saturation or capacity
effects (e.g. when TPA would start to dominate the losses).
This case is similar to a directed Steiner Tree problem, with
extra constraints to guarantee physical solutions. We formulate
an integer program to solve this problem [33], where a binary

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

4016 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

decision variable is associated with each edge. These binary
variables are used to calculate the cost objective, so the cost of
each edge may be counted at most once, no matter how many
flows use that edge. The program was solved using the CP-SAT
solver of Google OR-Tools [34]. This results in the solution
shown in Fig. 6(c). This algorithm tends to save available
resources as much as possible and hence distributes the light
along a line-shape, gradually tapping off light to the different
outputs.

D. Multiple Distributions

The multiple distribution problem requires us to transport
multiple input signals each to their own set of output ports.
The result is a set of directed trees, each one corresponding
to a specific signal, with no two trees sharing any nodes which
correspond to the same port. This problem extends both the
single distribution problem (trivially), and multiple input-output
pairs problem, since a rooted Steiner tree with two nodes is
always a path. The NP-hardness of this most general routing
problem follows from the reduction to the latter case.

For most of distribution cases, we try to minimize the number
of components, and assign a fixed cost to any used edge. The
problem is similar to a directed Steiner Tree problem with
multiple roots [35] and extra physicality constraints. Based on
these similarities, we extend the integer program for single
distribution problem to the multiple distributions cases, whilst
avoiding shared nodes between different trees. An example
solution is shown in Fig. 6(d). The solution for multiple dis-
tributions uses the same distribution assignment for the blue
distribution in Fig. 6(c). It tackles the distribution dilemma with
extra signal distribution in yellow and two more single pair signal
assignments in red and green, generating a valid solution without
signal collisions.

IV. DISCUSSION

Translating a mesh of tunable couplers with feedback loops
into a graph representation is nontrivial. The flow of light in
a tunable coupler imposes additional constraints onto the graph
model, meaning that we cannot apply standard graph algorithms
without modification. In the sections above, we proposed 3
different implementations for a tunable coupler, resulting in 3
different corresponding photonic graph representations. Simple
one-pair source-target routing solutions were compared for these
different representations. There are two types of physical vio-
lations when we program single pair shortest path in the initial
graph representations:
� Type 1, light abruptly changes direction inside a coupler

(reflection into the other waveguide as marked with the red
boxes)

� Type 2, some nodes are not reachable by the algorithm
while they should be accessible in the actual mesh which
is represented by red terminal nodes.

Problems with undirected graph models have been explained
in detail, and an undirected graph representation on feedback
architectures has also been published [19]. In this work, extra
efforts are needed to address the nodes that cannot be reached

Fig. 7. Simplified breadth-first searching schematic shows the key issue
for programming undirected graphs in feedback architectures. (a–c) in this
figure corresponds to the Dijkstra’s tree searching in graph representations of
Fig. 3(a–c). (d) is an undirected graph representation if we consider couplers
as nodes [17]. Gray nodes are arbitrary nodes which can be user-defined input
and output for outer couplers of the mesh(e.g. grating couplers). violation type
1 is demonstrated. We remove one of the possible coupler connections(red dash
edge) to show that violation type 2 causes type 1 violation as summarized in
discussion session: type 1 violation is marked in red box and type 2 violation
is given by red terminal coupler t. The valid connection is indicated by green
arrows in dash line.

by the algorithms, such as the t node in red in Fig. 3(a). These
are artifacts caused by applying a breadth-first searching based
algorithm to an undirected graph representation of feedback
architectures.

As an alternative, one may consider modelling the coupler
components themselves as nodes (instead of the ports are we
present it here). In Fig. 7 we represented the circuit using nodes to
represent the tunable couplers. We can see the routing still suffers
from the same issue if the undirected graph is representing
the mesh with optical feedback loops. For example, the blue
arrow path in Fig. 7(d) from s to n is the shortest path in the
breadth-first searching tree. Thus n is marked “visited” and the
yellow path can not get to node t through it. This violation of
type 2 causes another violation of type 1: the blue arrow path
through coupler “n” towards terminal coupler “t” is invalid since
the light abruptly changes direction within the coupler “n”. The
acyclic directed graph modelling coupler as nodes is presented
in [17] for forward-only meshes, which propagate light in only
one direction between a set of input ports and a set of output
ports. However, this representation is not directly applicable to
meshes with feedback loops as we explore here. In our case, a
4-port 2× 2 tunable coupler has 2 valid connections coexisting
for signal routing (2 bar edges, 2 cross edges available) and we
prefer not to lose the capability to use coexisting connections at
the graph layer.

The proposed directed graph representation using ports solves
the both types of violation and the representation is trans-
formed: The node representing the same port of the directed
graph overlap with each other for better user visualization. The
resulting directed graph representation was further validated

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPH REPRESENTATIONS FOR PROGRAMMABLE PHOTONIC CIRCUITS 4017

by solving shortest path problems with multiple input-output
pairs, where the paths are routed simultaneously as opposed
to sequentially [19], and by looking at the single distribution
problem, where one input has to be transported to multiple out-
puts, and multiple distributions problem, where multiple input
signals each have to be transported to their own set of output
ports. Further improvement on the calculation time of different
graph algorithms is possible for the individual graph problem in
which each distribution case is reduced to. We provided here as a
reference run time for the algorithms that we used on 2018 model
laptop with 4 core CPU at 2.80 GHz: 100 calculations for single
pair shortest path routing as example in Fig. 3(d) cost 0.031 s. For
multiple input-output pairs in the mesh with 6-pair congestion
negotiation built on top of the single pair, 100 runs in Fig. 5(a)
cost 78.846 s while Fig. 5(b) cost 13.931s [27]. 100 calculations
for single-rooted Steiner tree in Fig. 6(c) cost 46.921 s. And 100
calculations for multi-rooted Steiner tree problem in Fig. 6(d)
cost 515.006 s.

The single input-output pair and single distribution problems
are fundamental for the programming of switching and filtering
functions. As constraints increase, exact solutions might not
be feasible, but heuristic algorithms may provide near-optimal
solutions for light distributions inside the mesh circuit. This
was demonstrated through congestion negotiation heuristics for
multiple input-output pairs and distributions without collisions,
which were able to solve cases whenever couplers are in switch-
ing or fractional coupling states. The term, input and output,
means any node selected as source and terminal for routing
and flow problems in graph. We are able to program any light
distribution assignment, if applicable, of given port/ports to the
other/others. Thus the validation of the four distribution cases
using this graph representation forms a backbone for complex
programming of more sophisticated functions such as filter
placement and routing. Furthermore, optical phase accumula-
tion is already one of the edge attributes in our graph. Light
distributions from any port to another also shows the potential
to program filters on the graph layer. Our programming scheme
could employ extra phase information in the edge weight: This
could form the basis for filter synthesis using a combination
of the single routing steps [19] and distribution algorithms we
discussed above, and with congestion negotiation for coexisting
multiple filters. Graph-based strategies will help us to take
the next step towards systematically controlled programmable
optical cores with complex functionalities.

REFERENCES

[1] N. C. Harris et al., “Linear programmable nanophotonic processors,”
Optica, vol. 5, no. 12, 2018, Art. no. 1623.

[2] D. Pérez, I. Gasulla, and J. Capmany, “Programmable multifunctional
integrated nanophotonics,” Nanophotonics, vol. 7, no. 8, pp. 1351–1371,
2018.

[3] X. Chen et al., “The emergence of silicon photonics as a flexible technology
platform,” Proc. IEEE, vol. 106, no. 12, pp. 2101–2116, 2018.

[4] D. Perez-Lopez, E. Sanchez, and J. Capmany, “Programmable true time
delay lines using integrated waveguide meshes,” J. Lightw. Technol.,
vol. 36, no. 19, pp. 4591–4601, Oct. 2018.

[5] D. A. B. Miller, “Self-configuring universal linear optical component
[Invited],” Photon. Res., vol. 1, no. 1, pp. 1–15, 2013.

[6] W. Bogaerts and A. Rahim, “Programmable photonics: An opportunity for
an accessible large-volume PIC ecosystem,” IEEE J. Sel. Topics Quantum
Electron., to be published.

[7] A. Ribeiro, A. Ruocco, L. Vanacker, and W. Bogaerts, “Demonstration of
a 4× 4-port universal linear circuit,” Optica, vol. 3, no. 12, pp. 1348–1357,
2016.

[8] D. Pérez, I. Gasulla, J. Capmany, and R. A. Soref, “Reconfigurable
lattice mesh designs for programmable photonic processors,” Opt. Express,
vol. 24, no. 11, pp. 12 093–12 106, May 2016.

[9] L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K.-J. Boller, and A. J. Low-
ery, “Programmable photonic signal processor chip for radiofrequency
applications,” Optica, vol. 2, no. 10, pp. 854–859, Oct. 2015.

[10] D. Pérez et al., “Multipurpose silicon photonics signal processor core,”
Nature Commun., vol. 8, no. 1, 2017. Art. no. 636.

[11] D. Pérez, I. Gasulla, and J. Capmany, “Field-programmable photonic
arrays,” Opt. Express, vol. 26, no. 21, pp. 27 265–27 278, Oct. 2018.

[12] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
I. A. Walmsley, “Optimal design for universal multiport interferometers,”
Optica, vol. 3, no. 12, pp. 1460–1465, Dec. 2016.

[13] J. Carolan et al., “Universal linear optics,” Science, vol. 349, pp. 711–716,
2015.

[14] J. Capmany, I. Gasulla, and D. Pérez, “Microwave photonics: The pro-
grammable processor,” Nature Photon., vol. 10, no. 1, pp. 6–8, 2016.

[15] S. Pai, B. Bartlett, O. Solgaard, and D. A. Miller, “Matrix optimization
on universal unitary photonic devices,” Physical Rev. Appl., vol. 11, no. 6,
2019, Art. no. 064044.

[16] D. A. Miller, “Setting up meshes of interferometers-reversed local light
interference method,” Opt. Express, vol. 25, no. 23, 2017, Art. no. 29233.

[17] S. Pai et al., “Parallel fault-tolerant programming of an arbitrary feedfor-
ward photonic network,” 2019. [Online]. Available: https://arXiv.org/abs/
1909.06179.

[18] D. Pérez, “Programmable integrated silicon photonics waveguide meshes:
Optimized designs and control algorithms,” IEEE J. Sel. Topics Quantum
Electron., vol. 26, no. 2, Mar./Apr. 2020, Art. no. 8301312.

[19] A. López, D. Pérez, P. DasMahapatra, and J. Capmany, “Auto-routing
algorithm for field-programmable photonic gate arrays,” Opt. Express,
vol. 28, no. 1, pp. 737–752, Jan. 2020.

[20] D. Pérez and J. Capmany, “Scalable analysis for arbitrary photonic
integrated waveguide meshes,” Optica, vol. 6, no. 1, pp. 19–27,
Jan. 2019.

[21] D. A. Miller, “Self-aligning universal beam coupler,” Opt. Express, vol. 21,
no. 5, pp. 6360–6370, 2013.

[22] K. Choutagunta, I. Roberts, D. A. B. Miller, and J. M. Kahn, “Adapting
Mach–Zehnder Mesh equalizers in direct-detection mode-division multi-
plexing links,” J. Lightw. Techol., vol. 38, no. 4, pp. 723–735, 2020.

[23] X. Chen and W. Bogaerts, “A graph-based design and programming
strategy for reconfigurable photonic circuits,” in Proc. IEEE Photon. Soc.
Summer Topical Meeting Series (SUM), Jul. 2019, pp. 1–2.

[24] V. Betz and J. Rose, “Vpr: A new packing, placement and routing tool for
fpga research,” in Proc. Int. Workshop Field Programmable Logic Appl.,
1997, pp. 213–222.

[25] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Reconfigurable Computing.
Amsterdam, The Netherlands: Elsevier, 2008, pp. 365–381.

[26] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proc. 7th Python Sci. Conf.
(SciPy), 2008, pp. 11–15.

[27] X. Chen, “Supporting data of graph representations for programmable
photonic circuits,” Jan. 2020. [Online]. Available: http://dx.doi.org/10.
21227/t001-kr39

[28] D. E. Knuth, “A generalization of dijkstra’s algorithm,” Inf. Process. Lett.,
vol. 6, no. 1, pp. 1–5, 1977.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1990.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT, 2009.

[31] J. A. Roy and I. L. Markov, “High-performance routing at the nanometer
scale,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2007,
pp. 496–502.

[32] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “Nthu-route 2.0: A fast and stable
global router,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2008,
pp. 338–343.

[33] S. Bradley, A. Hax, and T. Magnanti, Network Models. Reading, MA,
USA: Addison-Wesley, 1977.

[34] L. Perron and V. Furnon, “Google’s OR-tools,” Google, Jul. 19, 2019.
[Online]. Avialable: https://developers.google.com/optimization/

[35] O. Suchỳ, “On directed steiner trees with multiple roots,” in Proc. Int.
Workshop Graph-Theoretic Concepts Comput. Sci., 2016, pp. 257–268.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

https://arXiv.org/abs/1909.06179
http://dx.doi.org/10.21227/t001-kr39
https://developers.google.com/optimization/

4018 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

Xiangfeng Chen (Student Member, IEEE) received the M.Sc. degree from the
Center for Optical Materials Science and Engineering Technologies, COMSET,
Clemson University, Clemson, SC, USA, in 2018 by carrying out research on
array waveguide gratings for III-V on silicon nitride hybrid integration. He is
currently working toward the Ph.D. degree with the Photonic Research Group,
Ghent University - IMEC, Ghent, Belgium. His research focus is on large
scale programmable photonic circuits at both circuit and component levels. He
enjoys the interdisciplinary nature of photonic engineering. He was originally
trained as a Material Scientist and completed a transition to an Optical Engineer
during his years with the Center for Optical Materials Science and Engineering
Technologies, COMSET, Clemson University, SC, USA.

Pieter Stroobant received the M.Sc. degree in computer science from Ghent
University, Ghent, Belgium, in 2016 where he is currently working toward the
Ph.D. degree with the Internet Technology and Data Science Lab (IDLab).
His current research interests focus on routing, optimisation, and nano-scale
networking and communications.

Mario Pickavet received the M.Sc. and Ph.D. degrees in electrical engineering
from Ghent University, Ghent, Belgium, in 1996 and 1999, respectively. Since
2000, he has been a Professor with Ghent University, where he is teaching courses
on discrete mathematics and network modeling. He is coleading the research
cluster on network modeling, design, and evaluation (NetMoDeL). His main
research interests are fixed internet architectures and optical networks, green
ICT, and design of network algorithms. In this context, he is currently involved
in several European and national projects. He has authored or coauthored about
500 international publications, both in journals and proceedings of conferences.

Wim Bogaerts (Senior Member, IEEE) received the Ph.D. degree in modeling,
design and fabrication of silicon nanophotonic components from Ghent Univer-
sity, Ghent, Belgium, in 2004. He is currently a Professor with the Photonics
Research Group, Ghent University - IMEC. During this work, he started the
first silicon photonics process on IMEC’s 200 mm pilot line, which formed the
basis of the multi-project-wafer service ePIXfab. His current research interests
focus on the challenges for large-scale silicon photonics: Design methodologies
and controllability of complex photonic circuits. In 2014, he cofounded Luceda
Photonics, a spin-off company of Ghent University, IMEC and the University
of Brussels (VUB). Luceda Photonics develops unique software solutions for
silicon photonics design, using the IPKISS design framework. Since 2016, he has
been a full-time Professor with Ghent University, looking into novel topologies
for large-scale programmable photonic circuits, supported by a consolidator
grant of the European Research Council (ERC). He has a strong interest in
telecommunications, information technology and applied sciences. He is a
member of Optical Society of America (OSA) and SPIE.

Authorized licensed use limited to: Wim Bogaerts. Downloaded on August 03,2020 at 11:58:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

