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simulation and optimization of large photonic
circuits using the deep learning framework PyTorch
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Abstract—We propose a new framework for simulating and
optimizing large photonic circuits. The framework utilizes gpu-
acceleration to efficiently simulate the circuits in a highly parallel
manner, while optimization is achieved through backpropagation
by essentially viewing the network as a sparsely connected
recurrent neural network.
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programmable photonics, photonic integrated circuits

I. INTRODUCTION

As the field of photonic integrated circuits gradually ma-
tures, a trend emerges in which photonic circuits move away
from application-specific photonic integrated circuits to more
general circuits consisting of well-defined components such as
programmable photonic integrated circuits.

Simulating these kind of circuits, however, stays a hard
task and definitely has not yet reached the same maturity
as for example electronic circuit simulations. This is mostly
due to the complex-valued nature of light, where interference
effects make sure a large network of identical components acts
completely different than the sum of its parts. Additionally,
small component variations may propagate through the whole
device as interference effects, hampering the design of these
circuits even further.

To address these challenges, we present Photontorch [1], a
tool which efficiently simulates and optimizes large photonic
circuits in time and frequency domain, even with imperfect
subcomponents. Photontorch itself is loosely based on the S-
matrix approach used by Caphe [2] and is built on top of
PyTorch [3], a well-established machine learning library for
Python.

The advantages of building a simulation tool on top of such
a machine learning library are twofold. First of all, it enables
gpu-acceleration. Allowing to efficiently parallelize the simu-
lation. Secondly, PyTorch tracks all operations performed dur-
ing the simulation, enabling well-established machine learning
optimization techniques based on backpropagation.
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Fig. 1. Simulation times to simulate a CROW circuit in the frequency domain.
Left: A CROW with 10 rings was simulated, one can clearly observe a huge
benefit to simulating multiple wavelengths simultaneously versus in sequence.
Right: simulation times for a CROW with 850 rings. For such large circuits, it
is always faster to simulate such as circuit on the GPU, while that difference
increases even more if the response to more wavelengths need to be calculated.

II. PERFORMANCE

To illustrate the power of Photontorch, we choose to quan-
tise its performance by simulating large Coupled Resonator
Optical Waveguides (CROW) in the frequency domain. These
large circuits are good for benchmarking execution speed, as
more rings can easily be added to increase the simulation
difficulty. Additionally, A simulation in the frequency domain
is an ideal scenario to showcase the performance benefits one
can gain by using the parallelized execution of Photontorch.
Indeed, as can be seen in Fig. 3, it is clear that simulating
many wavelengths simultaneously in stead of in sequence
can yield enormous performance benefits, especially when the
response to many wavelengths is desired. All simulations were
performed on a normal desktop computer with an Intel i7-
4790K CPU with 16GB RAM. For the GPU simulations we
used an Nvidia GTX-1060 (6GB) GPU.

III. OPTIMIZATION

The advantages of using Photontorch are however not only
performance related. The framework has been written from the
ground up in terms of PyTorch tensors, which - as opposed
to the more commonly used Numpy ndarrays [4] - track
the gradients of each operation performed on them. This
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Fig. 2. A CROW can be optimized to act as a bandpass filter in a matter of
seconds.
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Fig. 3. A three layer mesh circuit with 128 MZIs per layer is folded onto
itself to act add feedback to the system. By adding this additional feedback,
a time varying input signal - such as for example an image fed through the
input pixel-by-pixel - can be recognized after optimizing the 768 parameters
of the mesh network.

creates a dynamic computation graph, which allows the use
of backpropagation to optimize the photonic circuits.

As a simple example, we optimize a CROW with 10 rings
to act as a bandpass filter between 1550 nm and 1560 nm, as
can be seen in Fig. 2. Each ring has a total length of 50 pm.
Both the couplings between the rings and the phases in the
ring were optimized in a matter of seconds.

Larger circuits can also easily be optimized. As an example,
we optimize a mesh-circuit consisting of 384 MZIs (three
cascaded layers of each 128 MZIs) to perform the pixel-by-
pixel MNIST digit recognition task [5], [6], which is a well-
known machine learning benchmark task [7]. Recognizing
this time-varying input is possible by connecting the output
of the mesh circuit back onto its input, creating a feedback
loop. Optimizing the 768 parameters of such a large circuit
using conventional circuit simulation tools for a would be
a complete nightmare, however it is quite easily done with
Photontorch. After a few hours of optimizing this network
through backpropagation, a final accuracy on the pixel-by-
pixel MNIST can be achieved of 92 %, as can be seen in Fig.
4. This is on par with current state-of-the-art recurrent neural
network accuracies; achieved by just optimizing a photonic
circuit.

Note that the choice of application for which to optimize
the mesh circuit (in this case the MNIST task) was rather
arbitrary and just served to show how Photontorch performed
in optimizing large networks with many parameters.

IV. CONCLUSION

We proposed a new framework for simulating large photonic
circuits, called Photontorch. The framework allows for very
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Fig. 4. After a few hours of training the parameters of the photonic circuit,
an accuracy on the pixel-by-pixel MNIST task of 92 % can be achieved.

fast and parallel simulations by allowing the computations to
be placed onto a GPU. This enables very fast multi-wavelength
simulations, which can be very useful to calculate the response
of a photonic circuit in the frequency domain.

However, the real power of Photontorch lies in its built-
in gradient based optimization capabilities that stem from
its PyTorch backend. This way, it is possible to view a
custom photonic circuit as essentially a sparsely connected
recurrent neural network and to use common machine learning
optimization techniques such as backpropagation to find the
optimal parameters for any circuit.

We showed the usefulness of this approach by providing
two examples. One in the frequency domain, where a CROW
was optimized in a few seconds to act as a band-pass filter,
and one in the time domain, where a large mesh-network was
optimized to act as a digit-recognition system.
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