Generating novel waveguides for stimulated Brillouin scattering with genetic algorithms

Jesper Håkansson¹, Dries Van Thourhout¹

Photonics Research Group, Ghent University & IMEC Center for Nano- and Biophotonics Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium

Over the last few years a rapid development has been going on in demonstrating stimulated Brillouin scattering (SBS) in chip-integrated optical waveguides. Most of the work has focused on finding good materials for achieving net gain however[1], rather than on exploring novel waveguide designs. To design a waveguide for high SBS gain is difficult because one needs to compromise between having a good optical waveguide, a good mechanical resonator, and a strong coupling between the two, all in the same physical structure. To approach this problem we used genetic algorithms (GA) and explored a wide range of possible waveguide shapes to achieve high gain in silicon and silicon oxide based integrated platforms. GAs have been shown to often provide counter intuitive but educational answers in domains ranging from the growth of plants and website design to Othello strategies[2,3].

By using COMSOL Multiphysics and MATLAB we were able to simulate several 10s of thousands of waveguides in the process of optimizing the SBS gain over a wide range of the mechanical frequency span. The accumulated results of the simulated waveguides are shown in fig. 1 (a). By focusing on the Pareto-optimal designs, i.e., those providing the highest gain for a given frequency, or simplified versions of these optimal designs, we find several distinct competitive waveguides. With such a large number of waveguides simulated it is possible to discuss the general trends and analyze the Pareto-frontier of the data generated. While the search space is not exhausted, the results obtained provide a way to benchmark a new waveguide in relation to the bulk of possible waveguides.

The result is a range of novel waveguide designs operating over a wide range of mechanical frequencies. Several of the waveguides found have a simulated gain in excess of $10^8 (Wm)^{-1}$, far above anything previously demonstrated. Initial tests also show it is possible to generate high gain waveguides for inter-modal SBS. However due to the increased non-linearity of the problem, convergence is slower.

This work was partly funded by the EU 2020 FET proactive programme under grant agreement No 732894, HOT.

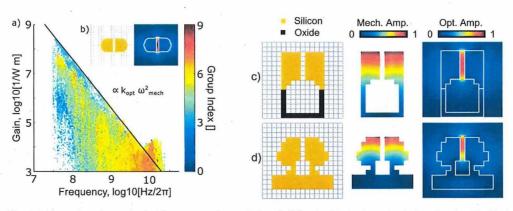


Fig. 1 a) Shows the gain, mechanical frequency and group index of all the simulated optomechanical mode pairs. The black line shows the frequency independent gain for (b) the locally optimized slot waveguide. c) and d) are examples of the waveguides that perform best at their respective frequencies. In order from left to right the material composition, mechanical and optical mode.

References

 M. Merklein, A. Casas-Bedoya, D. Marpaung, T. FS Büttner, M. Pagani, B. Morrison, I. V Kabakova and B. J Eggleton, "Stimulated Brillouin scattering in photonic integrated circuits: novel applications and devices,"IEEE J. Sel. Top. Quant 22, 336–346 (2016)
J. C. Quiroz, S. J. Sushil, A. Shankar, and S. M. Dascalu. "Interactive genetic algorithms for user interface design." In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp. 1366-1373. IEEE, 2007.

[3] L. Xu, M. Tao, and H. Ming. "A hybrid algorithm based on genetic algorithm and plant growth simulation algorithm." Measurement, Information and Control (MIC), 2012 International Conference on. Vol. 1. IEEE, 2012.

reproduces experimental data we investigate the formation of patterns in broadband and rapidly swept Fourier domain mode locked (FDML) lasers which are of great fundamental as well as practical relevance.

EF-P.6 TUE

Raman response induces moving cavity solitons in optical resonators

•M. Tlidi¹, S. Coulibaly², and M. Clerc³; ¹Université Libre de Bruxelles, Bruxelles, Belgium; ²Université de Lille, Lille, France; ³Universidad de Chile, Santiago, Chile We shown analytically and numerically that the noninstantaneous Raman response stabilizes traveling cavity solitons. We illustrate this mechanism on Kerr optical resonators and on a generic bistable model.

EF-P.7 TUE

Generating novel waveguides for stimulated Brillouin scattering with genetic algorithms

•J. Håkansson^{1,2} and D. Van Thourhout^{1,2}; ¹Ghent University, Gent, Belgium; ²Center for Nano and Biophotonics, Gent, Belgium

Designing waveguides for stimulated Brillouin scattering is difficult because one must combine good mechanical and optical properties with a strong coupling between them. Using genetic algorithms we have found several novel and competitive waveguide designs.

EF-P.8 TUE

Spontaneous Symmetry Breaking and Nonlinear Population Inversion Grating in a Low-Q CW Laser

•V. Kocharovsky¹, I. Koryukin¹, E. Kocharovskaya¹, V. Kocharovsky^{1,2}, I. Ryabinin¹, and S. Tarasov¹; ¹Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod, Russia; ²Department of Physics and Astronomy, Texas A&M University, College Station, USA We find a new effect of superradiant lasing in a low-Q symmetric cavity, namely, the asymmetry of counterpropagating waves and the profiles of the field, polarization and population inversion owing to the nonlinear population inversion grating.

EF-P.9 TUE

Polarization properties of cavity solitons in Kerr resonators

E. Averland¹, K. Panajotov^{2,3}, and •M. Tlidi¹; ¹Université Libre de Bruxelles, Bruxelles, Belgium; ²Vrije Universiteit Brussel, Brussels, Belgium; ³Institute of Solid State Physics, Sofia, Bulgaria

We theoretically investigate a weakly birefringent allfiber cavity subject to linearly polarized optical injection. We show that vector cavity solitons exhibit multistability involving different polarization states with different energies.

EF-P.10 TUE

Random Mode Coupling Assists Kerr Beam

Self-Cleaning in a Graded-Index Multimode Optical Fiber

•O.S. Sidelnikov¹, E.V. Podivilov^{1,2}, M.P. Fedoruk^{1,3}, and S. Wabnitz^{1,4}; ¹Novosibirsk State University, Novosibirsk, Russia; ²Institute of Automation and Electrometry SB RAS, Novosibirsk, Russia; ³Institute of Computational Technologies SB RAS, Novosibirsk, Russia; ⁴Dipartimento di Ingegneria dell'Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma, Roma, Italy In this paper, we numerically investigate the process of beam self-cleaning in graded-index multimode optical fibers using the coupled-mode model. The results of numerical investigations are in complete agreement with our experimental data.

EF-P.11 TUE

Delay-induced dynamics of pinned cavity soliton in an inhomogeneous Kerr resonator

F. Tabbert¹, S. Gurevich¹, K. Panajotov^{2,3}, and •M. Tlidi⁴: ¹University of Munster, Munster, Germany; ²Vrije Universiteit Brussel, Brussels, Belgium; ³Institute of Solid State Physics, Sofia, Bulgaria; ⁴Université Libre de Bruxelles, Bruxelles, Belgium

The influence of inhomogeneity and time-delayed feedback on cavity solitons is investigated. Depending on the strength of the inhomogeneity, a single cavity soliton can undergo either an Andronov-Hopf bifurcation or escape from the defect.

EF-P.12 TUE

Spectral properties of cascaded second-order nonlinear processes induced by high-gain parametric down-conversion

•D.A. Kopylov¹, K.Y. Spasibko^{2,3}, A.V. Rasputnyi¹, T.V. Murzina¹, and M.V. Chekhova^{2,3,1}; ¹M.V. Lomonosov Moscow State University, Moscow, Russia; ²Max Planck Institute for the Science of Light, Erlangen, Germany; ³University of Erlangen-Nürnberg, Erlangen, Germany We study, experimentally and theoretically, the spectral properties of visible radiation generated through cascaded second-order nonlinear processes that are induced by bright squeezed vacuum.

EF-P.13 TUE

Generation of rogue-like pulses via stimulated

soliton collision in dispersion oscillating optical fiber •A. Koniukhov¹, A. Sysoliatin², and L. Melnikov³; ¹Saratov State University, Saratov, Russia; ²Prokhorov General Physics Institute, Moscow, Russia; ³Saratov State Technical University, Saratov, Russia

An approach for the generation of high-intensity pulses

via inelastic collision of solitons in dispersion variable fiber is proposed. The rogue-like pulse arises due to stimulated soliton collisions and non-adiabatic variation of the fiber dispersion.

EF-P.14 TUE

Effect of Initial Chirp on Soliton Pulse Compression in the Ionization Regime

•Y. Wan and W. Chang; Nanyang Technological University, Singapore, Singapore

We investigate the effect of initial chirp on soliton pulse compression in the ionization regime in a gas-filled hollow-core fiber. A positively-chirped pump undergoes a stronger effect of the ionization caused by the enhanced compression.

EF-P.15 TUE

Swift-Hohenberg equation with third order dispersion for optical resonators

M. Tlidi¹, •B. Kostet¹, A. Hariz², L. Bahloul², L. Cherbi², M. Clerc³, M. Ferré³, and K. Panajotov^{1.5}; ¹Université Libre de Bruxelles, Bruxelles, Belgium; ²Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Algeria; ³Universidad de Chile, Santiago, Chile; ⁴ Vrije Universiteit Brussel, Brussels, Belgium; ⁵ Institute of Solid State Physics, Sofia, Bulgaria

A generalized Swift-Hohenberg equation with a third order dispersion is derived for the photonic crystal fiber resonators. Moving temporal localized structures often called cavity solitons and their speed are analyzed numerically and analytically.

EF-P.16 TUE

Controlling the temporal trajectory of solitons in silver nanoparticle doped fibre

•S. Bose^{1,2}, G. Steinmeyer³, U. Morgner^{1,2}, and A. Demircan^{1,2,4}; ¹Institute of Quantum Optics, Leibniz University, Hannover, Germany; ²Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovations Across Discipline), Hannover, Germany; ³Max-Born-Institute, Berlin, Germany; ⁴Hannover Centre for Optical Technologies, Hannover, Germany We investigate different regimes of soliton propagation dynamics in fibres containing a variable zerononlinearity point, allowing control of the soliton trajectories during supercontinuum generation process.

EF-P.17 TUE

167 _____

Nonlinear Fourier Transform for Analysis of **Coherent Structures in Dissipative Systems**

•I.S. Chekhovskoy^{1,2}, O.V. Shtyrina^{1,2}, M.P. Fedoruk^{1,2}, S.B. Medvedev^{1,2}, and S.K. Turitsyn^{1,3}; ¹Novosibirsk State University, Novosibirsk, Russia; ²Institute of Computational Technologies, SB RAS, Novosibirsk, Russia;

³Aston Institute of Photonic Technologies, Aston University, Birmingham, United Kingdom

Using the example of the cubic Ginzburg-Landau equation, we show how the nonlinear Fourier transform can be used to characterize coherent structures in dissipative nonlinear systems and reduce the number of effective degrees of freedom.

EF-P.18 TUE

Nonlinear Sculpturing of Optical Pulses in Fibre Systems

S. Boscolo¹, I. Gukov², •A. Tonello³, and C. Finot⁴; ¹Aston Institute of Photonic Technologies, School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom; ² Moscow Institute of Physics and Technology & Skolkovo Institute of Science and Technology, Moscow, Russia: ³Laboratoire XLIM, UMR 7252 CNRS -Universite' de Limoges, Limoges, France; ⁴Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS -Universite' Bourgogne Franche-Comte', Dijon, France We present a general method for the design of fibrebased nonlinear pulse shaping. By combining direct numerical simulations with machine-learning strategies, we efficiently identify the optimal working parameters for achieving a given pulse target.

EF-P.19 TUE

Tunable self-pulsations in a quantum-dot

external-cavity laser emitting across the excited state S. White^{1,2} and •M.A. Cataluna^{2,3}; ¹IOP Publishing, Bristol. United Kingdom; ²Previously also with the School of Science and Engineering, University of Dundee, Dundee, United Kingdom; ³Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom Self-sustained optical pulsations were observed from a tunable external-cavity quantum dot laser using a singlesection amplifier, emitting solely in the excited state. The pulsations were tunable both in wavelength (1160-1196 nm) and frequency (3.76-3.82 GHz).

EF-P.20 TUE

Phase evolution of Peregrine-like solitons in nonlinear fiber optics

•G. Xu¹, K. Hammani¹, A. Chabchoub², J. Dudley³, B. Kibler¹, and C. Finot¹; ¹Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France; ²The University of Sydney, Sydney, Australia; ³Institut FEMTO-ST, Besancon, France

We report the longitudinal evolution of the temporal phase profile of Peregrine-like solitons in optical fibers. The experimental results reveal the phase difference between the central part of the pulse and the continuous background.