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In this paper, a novel baseband macromodeling framework for linear passive photonic circuits is proposed, which
is able to build accurate and compact models while taking into account the nonidealities, such as higher order
dispersion and wavelength-dependent losses of the circuits. Compared to a previous modeling method based on
the vector fitting algorithm, the proposed modeling approach introduces a novel complex vector fitting technique.
It can generate a half-size state-space model for the same applications, thereby achieving a major improvement in
efficiency of the time-domain simulations. The proposed modeling framework requires only measured or simu-
lated scattering parameters as input, which are widely used to represent linear and passive systems. Three pho-
tonic circuits are studied to demonstrate the accuracy and efficiency of the proposed technique. © 2019 Chinese
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1. INTRODUCTION

Time-domain characterizations of photonic integrated circuits
(PICs), such as transient response, bit error rate, and eye dia-
gram, are direct performance metrics of PICs and a basic step
for circuit synthesis and signal integrity analysis. With years of
improvement of photonic simulation software tools, nowadays
such time-domain characterizations mainly depend on the
accuracy and efficiency of the circuit models of the PIC
components [1].

A range of models for active photonic components has been
presented in the literature (e.g., lasers [2–4], modulators [5–7],
photodetectors [8–10]). However, for passive components
[e.g., directional couplers (DCs), wavelength filters], which are
usually described in the frequency domain, few publications
discuss how to build accurate and efficient time-domain models
for circuit simulations [11–13]. Actually, if imperfections such
as higher order dispersion, wavelength-dependent losses, and
imperfections in coupling coefficients are ignored during the
modeling phase, it is not difficult to derive time-domain models
of passive components, as demonstrated in Refs. [14,15].
Nevertheless, these imperfections may considerably affect the
behaviors of PICs and can often not be overlooked, especially
for complex devices such as wavelength filters.

The passive components in PICs share a common feature:
their behavior can be fully represented in the frequency domain
by scattering parameters that are able to capture the aforemen-
tioned nonidealities. Therefore, it is convenient and accurate to

conduct time-domain simulations starting from these scattering
parameters. It is intuitive to directly apply inverse fast Fourier
transform to scattering parameters to obtain the corresponding
impulse response, and then time-domain simulations can be
performed by a convolution with inputs. But in practice,
the scattering parameters are band-limited or truncated, and
this method often leads to violations of physical properties [16],
such as causality and passivity. In Ref. [11], the finite impulse
response (FIR) modeling technique for time-domain simulation
takes advantage of scattering parameters and is adopted in the
photonic simulator Lumerical INTERCONNECT [17].
However, the accuracy provided by FIR filters substantially de-
pends on the design methodology employed, and it inherently
degrades near the edges of the simulated signal bands [11].
Another approach is to build a baseband state-space model
[12,13] from the scattering parameters via the robust vector
fitting (VF) technique [18–20], which is extensively used in
the electronic domain to model distributed microwave devices.
Such a model is inherently a system of first-order ordinary
differential equations (ODEs) and can be efficiently simulated
in ODE solvers [12,13].

In this work, a novel alternative approach is presented, called
complex vector fitting (CVF), which preserves all the advantages
of the previous methods in Refs. [12,13], but generates more
compact baseband state-space models that are only half the size
of the corresponding models obtained via Refs. [12,13]. Note
that this reduces the simulation time by, at least, a factor of 2
[21]. This is a significant advantage when considering complex
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systems with a large number of passive components. However,
the proposed models are complex-valued state-space systems
and can only be adopted in simulators supporting complex-val-
ued signals and matrices. Since many solver techniques are de-
veloped and optimized for real-valued systems, such as SPICE
and Verilog-A, it is demonstrated that such a stable and passive
complex-valued baseband model can be directly converted into
a corresponding real-valued state-space representation, whose
stability and passivity are preserved by construction. It is im-
portant to note that the proposed CVF-based modeling tech-
nique is significantly different from the previous works [12,13]
that are based on the VF technique. The differences are deeply
discussed in the paper, and their impact on simulation time is
also demonstrated.

The paper is organized as follows. Section 2 presents an
overview on baseband signals and systems. The novel compact
baseband modeling approach is presented in Section 3, while its
passivity assessment and enforcement are studied in Section 4.
Section 5 compares the proposed technique with the previous
ones in Refs. [12,13]. The real-valued baseband model is de-
rived in Section 6, and its properties are rigorously discussed.
Finally, Section 7 presents three photonic circuits examples,
and conclusions are drawn in Section 8.

2. PROBLEM STATEMENT

Photonic circuits are characterized in the optical frequency
range: for telecommunication applications, this is typically de-
fined as [187;200] THz, which corresponds to wavelengths in
the range of [1.5;1.6] μm. A direct time-domain simulation in
this overwhelmingly high frequency range is impractical in terms
of computational time and memory requirements [12,15],
especially for large and complex PICs. In particular, the trans-
mitted signals in photonic systems are usually defined as ampli-
tude and/or phase-modulated optical signals in the form

a�t� � A�t� cos �2πfc t � ϕ�t��, (1)

where f c is the optical carrier frequency, whileA�t� andϕ�t� are
the time-varying amplitude and phase, respectively, which are
radio frequency (RF) modulating signals. Hence, the spectrum
of a�t� is centered around the optical carrier frequency, and its
bandwidth is relatively small compared to f c . The signals in
form (1) are called bandpass signals [22]. Analogously, general
linear and passive photonic circuits that deal with signals in form
(1) can be considered as bandpass systems.

In this scenario, time-domain simulations of bandpass
photonic circuits have to be carried out with very small time
steps due to the large carrier frequency, whereas the baseband
modeling and simulation approach can adopt relatively large
time steps to significantly increase the efficiency without losing
accuracy [12,22]. The main idea is to “remove” the optical
carrier frequency from the bandpass signal a�t� by deriving a
corresponding baseband equivalent signal al �t� as [22]

al �t� � A�t�ejϕ�t�, (2)

which represents the complex envelope of the signal a�t�. The
relation between a�t� and al �t� in the frequency domain
is more intuitive and is illustrated in Fig. 1. The baseband
equivalents for bandpass systems can be defined in a similar

way, shown in Fig. 2, where S�f � is the frequency response
of the bandpass system, while Sl �f � is its baseband equivalent.
If a�t� is the port signal of the bandpass system S�f �, al �t� can
be considered as the port signal of the baseband equivalent sys-
tem Sl �f �. Interested readers are referred to Ref. [22] for more
details about the definition and derivation of baseband equiv-
alent signals and systems. One important property of the base-
band modeling and simulation approach is that the port signals
[in the form (1)] of the bandpass photonic circuits can be ana-
lytically recovered from their baseband equivalents [in the
form (2)] [12,22].

It is easy to observe that Sl �f � is simply equal to S�f � at the
positive frequencies shifted by −fc . As shown in Fig. 2, Sl �f � is
a mathematical representation of a physical system that has an
asymmetric frequency response with regard to the positive and
negative frequencies. Therefore, it also has a complex-valued
impulse response in the time domain. Directly computing a
model of Sl �f � that can be used for time-domain simulation
is a challenging problem. In the next two sections, a novel
methodology to compute stable and passive baseband models
of Sl �f � in state-space form is proposed.

3. POLE-RESIDUE MODELING VIA COMPLEX
VECTOR FITTING

As described in Section 1, the modeling process starts from the
scattering parameters in order to take into account nonideal
behaviors such as higher order dispersion and wavelength-
dependent losses. Hence, let us assume that the scattering
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Fig. 1. Spectrum of the modulated optical signal (top) and its base-
band equivalent signal (bottom).
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Fig. 2. Spectrum of bandpass systems (top) and the corresponding
baseband equivalent systems (bottom).
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parameters of the photonic circuit under study have been ob-
tained (via simulations or measurements) for a discrete set of
frequency values in the bandwidth of interest for the applica-
tion considered: S�fr� for r � 1,…,R.

Next, shifting S�fr� towards 0 Hz by the carrier frequency
f c leads to the baseband scattering parameters S l �f i�, as shown
in Fig. 3, where f i � fr − f c . Then, the CVF algorithm is
developed to calculate a pole-residue model of S l �f i� as

S l �s� �
XK
k�1

Rk

s − pk
�D, (3)

where s � j2πf is the Laplace variable, pk are the (common)
poles, which can be either real or complex, and Rk are the cor-
responding residues, while D is a real matrix. This form is very
similar to pole-residue models that can be computed by the
well-known VF algorithm [18,19], which was proposed two
decades ago and is widely used in the electronic field to build
pole-residue models for linear passive-distributed devices and
systems represented by scattering parameters. There are several
versions of the VF algorithm that adopt different modeling
strategies [18,23,24] and passivity enforcement methods
[20,25–28]. In this work, the CVF is a variant of the VF algo-
rithm available in Ref. [29], which implements the techniques
in Refs. [18–20,30]. Since VF has been extensively studied in
the past two decades, and the proposed CVF shares several
similarities with it, only the differences between them that
are relevant for our application will be discussed. Interested
readers are referred to Refs. [18–20,30] for a thorough under-
standing of the VF modeling approach.

In particular, both CVF and VF adopt pole-residue models
formed by real and complex poles having a negative real part, in
order to guarantee the stability of the model [31]. However, the
complex poles and the corresponding residues computed via
VF must always occur in complex conjugate pairs, for example,

pVFk � −α� jβ, pVFk�1 � −α − jβ, (4)

RVF
k � η� jγ, RVF

k�1 � η − jγ, (5)

where k is the pole and residue index in Model (3), α is a real
positive scalar forcing all the poles in left-hand side of the com-
plex plane (for stability), and β is a (positive or negative) real
scalar, while η and γ are real matrices.

The frequency response of physical linear systems is always
symmetric about zero (even amplitude and odd phase). The
complex conjugate constraint on poles (and residues) imple-
mented in VF allows to preserve this property, such that the
corresponding impulse response in the time domain is guaran-
teed to be real-valued. However, baseband systems are non-
physical and have an asymmetric frequency response with
respect to 0 Hz by construction. Therefore, VF cannot be
applied to modeling such a system directly [12,13], as described
in Section 5.

In order to overcome this problem, the complex conjugacy
constraint on poles (and residues) is removed in the CVF algo-
rithm. Besides this difference, the methodology employed to
compute a pole-residue model is the same: the pole flipping
scheme [18], relaxed formulation [30], and fast implementa-
tion based on QR decomposition [19] used in VF can be di-
rectly adopted for CVF.

The idea of removing the complex conjugacy constraint in
the VF algorithm was first proposed in Refs. [32,33] in order to
design complex infinite impulse response (IIR) filters having
asymmetric frequency response. There are two important
differences with regard to this work. (1) The D matrix in
Ref. [32] is assumed to be a complex matrix, whereas it must
be real in this work. This physics-based restriction is relevant
for our applications, as discussed in Section 6.B. (2) The mod-
els built in Ref. [32] are not used for time-domain simulations:
the passivity definition, assessment, and enforcement of the
complex-valued models are not investigated in Ref. [32], while
here they are rigorously studied in Section 4.

Once a Model (3) has been obtained via the CVF algorithm,
it can be easily converted into a corresponding state-space
form [34] as �

dxl �t�
dt � Ax l �t� � Bal �t�,

bl �t� � Cx l �t� �Dal �t�,
(6)

where al �t� ∈ Cn×1 and bl �t� ∈ Cn×1 are the input and output
signals of the n-port baseband system, respectively, which are
the baseband equivalents of the modulated port signals of the
original photonic circuit, while x l �t� ∈ Cm×1 with m � nK
collects the state variables. The matrices A, B, C , D can be
analytically derived from Model (3): A ∈ Cm×m is a diagonal
matrix with all the poles pk as diagonal entries, B ∈ Rm×n is
a matrix containing only ones and zeros, C ∈ Cn×m contains
all the residues Rk, and D ∈ Rn×n is the same as in Model (3)
[34]. Model (6) offers two main advantages:

• fundamental properties for time-domain simulations,
such as causality, stability, and passivity, are well defined for
state-space models;

• state-space models are systems of first-order ODEs: time-
domain simulations can be performed by solving the state-space
models in a variety of robust ODE solvers with great accuracy
and efficiency, for example, the MATLAB linear state-space sys-
tem solver lsim.

It is important to remark that the computational time for
building a CVF model with K poles is comparable to the time
needed to build a VF model with 2K poles. The number of
unknowns is the same in both algorithms, considering that
the poles and residues in VF are complex conjugated [18].
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Fig. 3. The simulated or measured scattering parameters at a set of
discrete frequency samples (top) and the corresponding baseband scat-
tering parameters (bottom).
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4. PASSIVITY ASSESSMENT AND
ENFORCEMENT OF CVF MODELS

Since the baseband Model (6) will be used for simulations in
the time domain, the model passivity must be checked and,
eventually, enforced [31]. In Ref. [12], the passivity definition
and conditions for complex-valued linear baseband systems are
presented. In particular, there are two passivity constraints that
the baseband scattering parameters S l �s� must satisfy:

1. S l �s� is analytic in R�s� > 0;
2. I n − SH

l �s�S l �s� is a nonnegative-definite matrix for all s
such that R�s� > 0,

where R�s� represents the real part of the Laplace variable,
while I n is the identity matrix of size n × n. Note that such
conditions are the same as for physical systems, with the excep-
tion that the conjugacy relation S��s� � S�s�� no longer needs
to hold for complex-valued systems.

Now, the above passivity conditions require that the
maximum singular value of S l �s� is bounded by unity at all
frequencies. In this framework, it has been proven that the
Hamiltonian matrix M can be used to assess the model passiv-
ity with accuracy and efficiency [12], which is defined as

M �
�
M 11 M 12

M 21 M 22

�
, (7)

where

M 11 � A − BL−1DHC ,

M 12 � −BL−1BH ,

M 21 � CHQ−1C ,

M 22 � −AH � CHDL−1BH ,

L � DHD − I n, Q � DDH − I n: (8)

Note that M 11, M 21, M 22 are complex matrices, while M 12 is
real, since A and C are complex, while B and D are real. The
Hamiltonian matrix for complex-valued systems is very similar
to the corresponding one defined for real-valued ones, except
that the former employs the conjugate transpose operator H
[12], whereas the latter one can use the transpose operator
T [34], as shown in Section 6.B.

In particular, a (complex- or real-valued) stable state-space
model is passive if its Hamiltonian matrix has no purely imagi-
nary eigenvalues: any such eigenvalue indicates a crossover fre-
quency where a singular value of the scattering matrix changes
from being smaller to larger than unity, or vice versa [12,34].
Once the crossover frequency points are identified by checking
the eigenvalues of the Hamiltonian matrix (7), the local maxima
of violating singular values of the scattering matrix can be found
[20]. Passivity can be enforced by perturbing the residues such
that the violating singular values become smaller than unity [20].

From an algorithmic point of view, the CVF technique offers a
robust model building tool and can leverage on powerful passivity
assessment and enforcement techniques developed for the VF
algorithm, with one exception. Indeed, the half-size passivity test
matrix that is proposed in Ref. [34] for an efficient passivity assess-
ment of real-valued reciprocal systems is no longer applicable to
the complex-valued systems studied in this paper, due to the

presence of the conjugate transpose operator H in the
Hamiltonian matrix (7). Interested readers are referred to
Ref. [34] for details.

5. COMPARISON WITH PREVIOUS WORK

Recently, a baseband macromodeling strategy based on pole-
residue models has been presented in Refs. [12,13]. The main
differences with respect to the proposedmodeling framework are
outlined in Fig. 4. In particular, the approach in Ref. [12] is
based on the VF algorithm: first a state-space model SVF�f �
of S�fr� is computed via VF. Then, since SVF�f � operates in
the optical frequency range, it is converted into a baseband
model SVF

l �f �, whose time-domain state-space representation
is in the form�

dxl �t�
dt � �AVF − j2πfcI �x l �t� � BVFal �t�

bl �t� � CVFx l �t� �DVFal �t�,
(9)

where AVF,BVF,CVF,DVF are the state-space matrices of
SVF�f � computed via VF, starting from the bandpass scattering
parameters S�fr�. In particular,AVF is a diagonal matrix contain-
ing the real or complex conjugate poles identified byVF,CVF is a
matrix that contains residues, BVF is a matrix containing only
ones and zeros, and DVF is a real-valued matrix. Whereas the
CVF Model (6) and VF-based Model (9) are somewhat similar,
the different modeling strategies result in a major difference: the
novel proposed approach allows one to build a model that can
have half the size of the Model (9) in terms of number of poles
and state variables, thereby significantly decreasing the simula-
tion time. The reason is clearly identified by considering the
frequency-domain response SVF

l �f � of Model (9).
Indeed, the frequency response SVF

l �f � has also components
around −2f c , since it is computed by shifting the VF model
SVF�f � defined at bandpass frequency, as indicated in Fig. 5.
In particular, by looking at Model (9), the poles of the VF
model SVF�f � collected in the matrix AVF are shifted by the
quantity −j2πfc, as shown in the complex plane in Fig. 6.
Clearly, the poles around −j4πfc do not contribute to the re-
sults of time-domain simulations performed with baseband
signals al �t� defined around 0 Hz (see Fig. 1). Intuitively,
the frequency response around −2fc can be removed by simply
discarding the corresponding poles and residues from Model
(9), thereby achieving a half-size compact model. However, this
brute-force operation can cause two problems: 1) slightly de-
creasing the accuracy of the desired frequency response around
0 Hz and 2) accidentally turning Model (9) from passive to
nonpassive. So, calculation of the half-size Model (6) using
the CVF technique is advised.

( )l ifS

Shift by fc

CVF

Novel compact baseband model (6)

Baseband scattering parameters

Simulated or measured scattering parameters
( ) 1, 2,. . . ,

rf r R=S
VF

Baseband equivalent “shifted” model (9)

Bandpass state-space model

Shift by fc

( )VF fS

( )l fS ( )VF
l fS

Fig. 4. Flow chart of the CVF modeling approach (left branch) and
the one presented in Ref. [12] (right branch).
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For time-domain simulations, solving the half-size Model
(6) requires less than half of the computational complexity with
respect to Model (9). For example, the two main steps in the
MATLAB routine lsim to solve a linear system of ODEs have a
computational complexity of O�m3� and O�m2N t� [21], re-
spectively, where m � nK is the size of A and N t is the total
number of time samples. Hence, the proposed technique offers
a significant computational advantage, especially when the
model size is large.

6. REAL-VALUED BASEBAND STATE-SPACE
MODELS

Both the baseband CVF Model (6) and the VF-based
Model (9) are complex-valued systems and can be simulated
only in solvers that support complex-valued signals and matri-
ces. However, in Ref. [13], the VF-based Model (9) is analyti-
cally converted to a real-valued model that can be adopted in a
wider range of simulators, such as SPICE and Verilog-A. In this
section, we will demonstrate that a real-valued baseband state-
space model can also be derived, starting from the CVF mod-
eling framework described in Section 3. Additionally, its
stability and passivity properties are investigated.

A. Model Derivation
Complex signals can be represented as a sum of their real and
imaginary parts, such as for al �t�,

al �t� � alR�t� � jalI�t�: (10)

Note that for a quadrature amplitude modulation (QAM)
signal, alR�t� and alI�t� can be considered as in-phase and
quadrature parts, respectively [12,13]. Expressing all the com-
plex signals and matrices in Model (6), namely al �t�, bl �t�,

x l �t�, A, and C , in the form (10) and solving separately with
respect to the real and the imaginary parts leads to8>>>>>><>>>>>>:

dx lR�t�
dt

� ARx lR�t� − AIx lI�t� � BalR�t�,
dx lI�t�
dt

� ARx lI�t� � AIx lR�t� � BalI�t�,
blR�t� � CRx lR�t� − CIx lI�t� �DalR�t�,
blI�t� � CRx lI�t� � CIx lR�t� �DalI�t�,

(11)

where the indexes R and I indicate the real and imaginary
parts, respectively. Then, by defining

â�t��
�
alR�t�
alI�t�

�
, b̂�t��

�
blR�t�
blI�t�

�
, x̂�t��

�
x lR�t�
x lI�t�

�
, (12)

and

bA �
�
AR −AI

AI AR

�
, bB �

�
B 0

0 B

�
,

bC �
�
CR −CI

CI CR

�
, bD �

�
D 0

0 D

�
,

(13)

where 0 represents the null matrix, Eq. (11) can be
written as 8<:

dx̂�t�
dt

� Â x̂�t� � B̂ â�t�
b̂�t� � Ĉ x̂�t� � D̂ â�t�,

(14)

which is defined as real-valued baseband state-space model.
It is important to remark the main difference of the real-

valued representation [Model (14)] with respect to the complex-
valued one [Model (6)]. Model (6) is a purely mathematical
representation of the system under study, as described in
Section 2. The novel Model (14) has a symmetrical frequency re-
sponse with respect to the positive and negative frequencies, and
its impulse response and input and output signals are real. Hence,
it represents a physical linear system, while it can still be simulated
at baseband. Furthermore, the novel Model (14) is also a system of
first-order real-valued ODEs. Hence, it can be solved in a wider
range of simulators than the complex-valued Model (6).

B. Stability and Passivity Analysis
Since Model (14) can be considered as a physical, linear, and
time-invariant system, the stability and passivity conditions
defined for physical linear systems [31] still hold for the
new Model (14).

The stability of a state-space model can be assessed from
the eigenvalue of the matrix Â: the model is stable if the real
part of all the eigenvalues is negative [31].

First, a similarity transformation is applied to Â,

Ã�T −1ÂT �
�
AR − jAI 0

0 AR� jAI

�
�
�
A� 0
0 A

�
, (15)

where T � �Im, Im; jIm, − jIm�. If all the eigenvalues of A are
in the vector λ, then Eq. (15) indicates that the eigenvalues of Ã
are λ and λ� combined. Since similarity transformations
do not change the eigenvalues, Ã and Â share the same set
of eigenvalues. Therefore, when the CVF Model (6) is stable
(all the elements in λ have negative real parts), the real-valued
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Fig. 5. Spectrum of the model SVF�f � (top) and the model SVF
l �f �

represented by Model (9) (bottom).
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Model (14) is stable as well (all the eigenvalues of Â have
negative real parts).

Then, as indicated in Section 4, the passivity of Model (14)
can be verified by means of the Hamiltonian matrix for real-
valued models [34],

M̂ �
�
M̂ 11 M̂ 12

M̂ 21 M̂ 22

�
, (16)

where

M̂ 11 � Â − B̂L̂−1D̂T Ĉ ,

M̂ 12 � −B̂L̂−1B̂T ,

M̂ 21 � ĈT Q̂−1Ĉ ,

M̂ 22 � −ÂT � ĈT D̂L̂−1B̂T ,

L̂ � D̂T D̂ − I 2n, Q̂ � D̂D̂T − I 2n: (17)

Starting from Eqs. (13), (8), and (17), after some block matrix
calculations described in Appendix A, the following relations
can be derived:

M̂ 11 �
�
MR

11 −M I
11

M I
11 MR

11

�
, M̂ 12 �

�
M 12 0

0 M 12

�
,

M̂ 21 �
�
MR

21 −M I
21

M I
21 MR

21

�
, M̂ 22 �

�
MR

22 −M I
22

M I
22 MR

22

�
, (18)

where MR
11 and M I

11 are the real and imaginary parts of M 11,
respectively, and the same notation is also adopted for M 12,
M 21, M 22. It is important to remark that Eq. (18) can only
be derived thanks to the restriction of computing D in
Model (3) as the real matrix, as indicated in Section 3.

By performing a similarity transformation on M̂ , a new
matrix M̄ can be obtained,

M̄ � P−1M̂P �
�
M � 0
0 M

�
, (19)

where

P �

2664
Im 0 Im 0
jIm 0 −jIm 0
0 Im 0 Im
0 jIm 0 −jIm

3775, (20)

and M is the Hamiltonian matrix of the CVF Model (6),
described in Eq. (7). Note that the similarity transformation
[Eq. (19)] can be derived by simple algebraic manipulations.
Since similarity transformations do not change the eigenvalues,
the eigenvalues of M̂ are the union set of the eigenvalues of M
and their complex conjugate according to Eq. (19). This proves
that, if the stable Model (6) is passive (M does not have any
purely imaginary eigenvalue), then the real-valued Model (14)
is passive by construction (M̂ has no purely imaginary
eigenvalue either).

7. EXAMPLES ON PHOTONIC CIRCUITS

This section presents three application examples of the proposed
modeling and simulation techniques. The scattering parameters
of the photonic circuits under study are evaluated via the
Caphe circuit simulator (Luceda Photonics) and electromagnetic

simulations in FDTD Solutions (Lumerical), while the time-
domain simulations are carried out in MATLAB on a personal
computer with Intel Core i3 processor and 8 GB RAM.

A. Five-Ring Resonator Filter
A five-ring resonator filter based on Ref. [35] is studied in this
section. The filter comprises four DCs and two multimode
interferometers (MMIs), as shown in Fig. 7. The geometric
parameters of the filter can be found in Ref. [35] and will
not be repeated here.

A direct finite-difference time-domain (FDTD) simulation
of the entire five-ring filter is very time consuming, as the struc-
ture is very large, and because of the resonances, a very long
simulation time is needed to reach the termination condition
where the residual fields have died out. Therefore, we only sim-
ulate the coupling structures, i.e., the MMI and two DCs (in-
dicated in Fig. 7) given that the filter is symmetric, and evaluate
the scattering parameters in the modeling frequency range
[187.37;199.86] THz (corresponding to a wavelength range
of [1.5;1.6] μm) while considering a carrier frequency
f c � 193.46 THz. In this example, 500 frequency samples
are used, and they are uniformly distributed over the frequency
range of interest. Adaptive sampling strategies can also be
adopted to choose the frequency samples efficiently: more sam-
ples are chosen where the frequency response is dynamic, such
as resonances, and less are chosen in smooth areas [31]. Then,
the scattering parameters of the whole filter are calculated in the
circuit simulator Caphe by connecting the MMI and DCs.

Following the CVF modeling procedure, the evaluated scat-
tering parameters over optical frequency range are first shifted
to the baseband �−6.09; 6.40� THz by f c � 193.46 THz.
Next, a stable and passive baseband Model (6) is built with
54 poles. A standard bottom-up approach is used to select
the required number of poles [31,36]: the initial number of
poles is iteratively increased until the desired accuracy is
reached. Then, a real-valued state-space Model (14) for the fil-
ter is directly derived from Model (6) according to Eq. (13).
Note that we deliberately considered a wide-modeling fre-
quency range in order to make the modeling process more chal-
lenging, even though RF signals with such large spectrum are
rarely used. As a comparison, Model (9) is also built via the VF
algorithm with 108 poles. The magnitude of the maximum ab-
solute error for both models is less than −52 dB, as shown in
Fig. 8. Note that the calculated models are already passive, so
no passivity enforcement is required in this example. The scat-
tering parameters of the filter are full matrices, since reflections
are captured by the FDTD simulator. Hence, even though only
S11 and S13 are shown in Fig. 8 for readability, the model is
bidirectional, includes reflections, and can be excited from

P1

P2

P3

P4

Symmetric

MMI DC1 DC2

Fig. 7. Example 7.A. The structure of the five-ring resonator filter.

776 Vol. 7, No. 7 / July 2019 / Photonics Research Research Article



any of the ports. The poles of Models (6) and (9) are illustrated
in Fig. 9. It is clear that half of the poles of Model (9) are
around −j4πfc , while the other half cluster around 0 Hz, as
explained in Section 5 (see Fig. 6). It is important to remark
that the poles of the CVF Model (6) and VF-based Model (9)
around 0 Hz are relatively close in the complex plane, but are
different: the CVF model is not the same as first computing the
VF-based model and then removing the poles around −j4πf c .

To perform time-domain simulations, we apply a 16 QAM
input signal at port P1. The corresponding in-phase I�t� and
quadrature component Q�t� are RF bit sequence signals, with
bit rate 80 Gbit/s and 1000 bits long. The first 25 bits of I�t�
and Q�t� are shown in Fig. 10. Note that I�t� and Q�t� can be
considered as the real and imaginary parts of the baseband sig-
nals in the form (2), and can be directly adopted for baseband
time-domain simulations with Models (6), (9), and (14) [12].
Relevant time-domain simulation results obtained by the three
models are shown in Fig. 11. Additionally, the transmission
signal at P3 (drop port of the filter) is plotted as a constellation

diagram to better observe the influence of the filter on the input
signal, as shown in Fig. 12. It is demonstrated by Figs. 8, 11,
and 12 that the proposed technique is accurate in both
frequency and time domains.

The model building times of the VF-based Model (9) and
the CVF Model (6), are 3.4 s and 3.3 s, respectively. The sim-
ulation of the VF-based Model (9), the CVFModel (6), and the
real-valued state-space Model (14) requires 132 s, 12 s, and
12 s, respectively: the half-size CVF Model (6) is superior to
the full-sized VF-based Model (9) in terms of computational
speed, while achieving a comparable accuracy. Note that
Models (6) and (14) are mathematically equivalent and can
be converted to each other, and they have same number of
real-valued unknown variables in the state vector to solve.
The computational time for these two models is comparable
when the MATLAB routine lsim is employed. However, this
is not generally guaranteed for all ODE solvers, which depends
on the algorithm implementations in the solver adopted.

B. Ring-Loaded Mach–Zehnder Filter
A ring-loaded Mach–Zehnder interferometer (MZI) filter is
designed according to the structure proposed in Ref. [37], as
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Fig. 8. Example 7.A. The accuracy of the VF-based Model (9) (top)
built via the technique in Ref. [12] with 108 poles and the CVFModel
(6) (bottom) built via the newly proposed technique with 54 poles; the
red solid lines represent the simulated scattering parameters, the blue
dashed lines represent the models, while the green lines are the mag-
nitude of the error between the two.

Fig. 9. Example 7.A. The poles of the CVF Model (6) from
the proposed technique (represented by circles) and the VF-based
Model (9) from the technique in Ref. [12] (represented by crosses).
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Fig. 10. Example 7.A. The in-phase part I�t� and quadrature part
Q�t� of the 16 QAM input signal.
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shown in Fig. 13. There are six DCs and four ring resonators
with a phase shifter (PS) in each ring. The power coupling co-
efficients and PS parameters are indicated in Fig. 13. Once the
PSs are tuned to the desired values, they are kept fixed, and the
filter can be considered as a linear time-invariant system. It is
important to remark that the filter is designed intentionally to
have an asymmetric passband feature, as shown in Fig. 14,
which can occur in practice due to the tolerances of the manu-
facturing process or variations in the tuning of the PSs. In this
example, we will demonstrate that the proposed modeling tech-
nique is robust with regard to this kind of imperfection as well.

The filter is simulated in the Caphe circuit simulator to
extract the scattering parameters at 700 equidistantly spread
frequency samples within the chosen frequency range
[190.34;192.05] THz, which covers a bandwidth of 1710 GHz.
The carrier frequency is set at the center of the passband of the
filter, f c � 191.19 THz. Note that reflections are not consid-
ered in the models of the waveguides and the couplers: the overall
circuit has no reflections as well. As a result, the scattering
matrices are sparse. The frequency range is chosen to be wide
in order to demonstrate the modeling power of the proposed

technique. In practice, however, it can be chosen according to
the spectrum of the input signals [12]. Then, a compact
state-space Model (6) is built via the CVF technique with 21
poles over the corresponding baseband frequency range
[−850;860] GHz. Finally, the real-valued state-space Model
(14) is analytically calculated, as described in Section 6. For com-
parison, the VF-based Model (9) of the filter is also built via the
VF algorithm with 42 poles. The magnitude of the maximum
absolute error for both Models (6) and (9) is less than −56 dB, as
shown in Fig. 14. The poles of the CVF Model (6) and the VF-
based Model (9) are illustrated in Fig. 15, which again demon-
strates the poles from both models around 0 Hz are slightly
different. The passivity assessment (see Section 4) reveals that all
the models are passive and suitable for time-domain simulations.

In particular, the same 16 QAM signal in Fig. 10 is adopted
as input for port P1, with one difference: the data rate is
decreased from 80 Gbit/s to 20 Gbit/s, since the (single-side)
passband of the filter in this example is approximately 50 GHz.

Fig. 12. Example 7.A. Constellation diagrams of the transmission
signal at P3 calculated from different models.

DC

DC DC

DC DC

0.5 0.5

0.14
DC

0.28

0.3 0.32

PS 173° PS 52°

PS 0° PS 109°

P2

P3

P4

P1

Fig. 13. Example 7.B. The schematic circuit of the ring-loaded
MZI filter.
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Fig. 14. Example 7.B. The accuracy of the VF-based Model (9)
(top) built via the technique in Ref. [12] with 42 poles and the
CVF Model (6) (bottom) built via the newly proposed technique with
21 poles; the red solid lines represent the simulated scattering param-
eters, and the blue dashed lines represent the models, while the green
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Fig. 15. Example 7.B. The poles of the CVFModel (6) (represented
by circles) and the Model (9) from the VF-based technique in Ref. [12]
(represented by crosses).
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Time-domain simulations are conducted with the three mod-
els, and the results for the first 250 ps are shown in Fig. 16.

For a better observation of the transmission signal at P3,
constellation diagrams are plotted in Fig. 17, where the results
from different models are compared to the input. It is evident
that the constellation symbols are still clearly separated by safe
gaps, but rotated by the total phase delay of the filter circuit
at the carrier frequency f c. The results shown in Figs. 14, 16,
and 17 demonstrate the accuracy of the proposed modeling
approach.

The model-building times of the VF-based Model (9) and
the CVF Model (6) are 2.7 s and 2.6 s, respectively. The
simulations of the VF-based Model (9), CVF Model (6),
and the real-valued Model (14) require 8.2 s, 2.5 s, and 2.6 s,
respectively. In this example, the simulation speed-up is less

significant than the previous example in Section 7.A, because
fewer poles are needed in the models. This result is consistent
with the analysis in Section 5: the efficiency of the proposed
technique with regard to the previous ones [12,13] increases
with respect to the size of the models [21].

In practice, it is possible that the passband of the filter can
shift due to fabrication variations. So, extra tests are conducted
to study the influence of the passband shifting of the filter on
the same input signal. We assume that the passband redshifts or
blueshifts by 0.3 nm in wavelength (about 36 GHz in fre-
quency). Then, the corresponding baseband model can be built
in two ways: (i) rebuild a CVF model at the new passband
following the proposed technique; (ii) directly shift the CVF
model computed so far at the original passband to the new
passband, by only shifting the poles in the matrix A, which
is represented by(

dx l �t�
dt

� �A − j2πΔf Im�x l �t� � Bal �t�,
bl �t� � Cx l �t� �Dal �t�,

(21)

where Δf is the amount that the passband shifts, which is very
different from Model (9), where the shifted value is the optical
carrier frequency. In this example, Δf is 36 GHz for the red-
shift and −36 GHz for the blueshift. This approach can be
adopted since it is proven in Refs. [12,13] that shifting the poles
of state-space models is equivalent to shifting the frequency re-
sponse. It is also studied in Refs. [12,13] that shifting poles
along the imaginary axis in the complex plane does not affect
the model stability and passivity. Therefore, the shifted CVF
Model (21) is still stable and passive. It is important to remark
that the maximum absolute error of the shifted CVF model
with regard to the scattering parameters is the same as the origi-
nal CVF model, but only if the shifted modeling frequency
range still covers the entire spectrum of the input signal [12].
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Fig. 16. Example 7.B. The output signals at P3 and P4 obtained
from baseband time-domain simulation of Models (6), (9), and (14).

Fig. 17. Example 7.B. Constellation diagram of the transmission
signal at P3 calculated from different models.

Fig. 18. Example 7.B. Constellation diagram of the transmission
signal at P3 calculated from the rebuilt CVF Model (6) and the shifted
Model (21), when the passband of the filter redshifts and blueshifts
by 0.3 nm.
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The wider the spectral range of the original CVF model, the
more it can be shifted to perform a tolerance analysis without
the need to rebuild the model.

The results from the models generated by the two methods
at redshifted and blueshifted passbands are shown in Fig. 18.
Due to the asymmetric passband of the filter, it is understand-
able that the blueshifted passband makes the constellation sym-
bols more fuzzy than the redshifted case.

C. Mach–Zehnder Lattice Filter
The baseband models based on the VF and CVF techniques in
the previous two examples are passive by construction. In this
example, the passivity enforcement of the CVF algorithm
will be demonstrated via modeling the Mach–Zehnder-based
lattice filter presented in Ref. [12], whose structure is shown
in Fig. 19.

First, the scattering parameters of the filter are simulated
in Caphe in the frequency range �f c − Δ; f c � Δ�, where Δ �
760 GHz and f c � 195.11 THz. Then, a compact state-space
model is built via the CVF technique with 34 poles and a
magnitude of the maximum absolute error of −51 dB. The pas-
sivity of the model is assessed with the method presented in
Section 4, and small but multiple passivity violations are found.

The passivity enforcement algorithm is then applied to the
nonpassive model, as shown in Fig. 20. Before passivity
enforcement, the singular values of the CVF model are plotted
with solid blue lines, where small passivity violations can be
observed (singular values are larger than unity). After passivity
enforcement, all the singular values are forced below unity, at
the expense of a slight increase in the maximum absolute error
(−48 dB). For comparison, Model (9) is also built with 68 poles
by first obtaining a VF model according to Ref. [12]. Passivity
enforcement of the VF model is also required in the modeling
process, leading to an increase in the maximum absolute error
from −51 dB to −49 dB. The modeling accuracy of the two
techniques is illustrated in Fig. 21.

The modeling times (including passivity enforcement) of
the VF-based Model (9) and the CVF Model (6) for the lattice
filter are 6.3 s and 6.2 s, respectively. When the input signal in
Section 7.B is applied to port P1 of the lattice filter in Fig. 19,
the time-domain simulations of the VF-based Model (9), CVF
Model (6), and the real-valued Model (14) require 19.5 s, 5.9 s,
and 5.85 s, respectively. Since the accuracy of the time-domain
simulation with the proposed models is demonstrated in
Sections 7.A and 7.B, and the filter was studied in both
Refs. [12] and [13], time-domain results are not presented
in this paper.

8. CONCLUSION

This paper presented a novel compact modeling approach for
linear photonic circuits that is based on the scattering param-
eters and the proposed CVF technique. The new CVF models
offer significant advantages in terms of compactness and sim-
ulation speed, as compared to the VF-based models derived
from previous work. In order to extend the compatibility of the
proposed approach to simulators that only support real-valued
signals [such as many electronic design automation (EDA)

Fig. 20. Example 7.C. The singular values of the scattering matrices
calculated from Model (6) before and after passivity enforcement.
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Fig. 19. Example 7.C. The structure of the Mach–Zehnder inter-
ferometer lattice filter.
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simulators], equivalent real-valued baseband models were ana-
lytically derived, and their stability and passivity were rigorously
studied. Three photonic circuits examples were provided to val-
idate the proposed approach.

APPENDIX A: TRANSFORMATION OF
HAMILTONIAN MATRIX

By means of Eq. (13), the following relation between L̂−1 in
Eq. (17) and L−1 in Eq. (8) can be derived:

L̂−1 �
��

DT 0

0 DT

��
D 0

0 D

�
−

�
I n 0

0 I n

��−1

�
�
DTD − I n 0

0 DTD − I n

�−1
�

�
L−1 0

0 L−1

�
: (A1)

In a similar way, there is

Q̂−1 �
�
Q−1 0
0 Q−1

�
: (A2)

Thanks to the relations between A, B, C , D and Â, B̂, Ĉ , D̂
in Eq. (13), the following results can be derived by simple block
matrices calculations:

M̂ 11 �
�
AR −AI

AI AR

�
−

�
B 0

0 B

��
L−1 0

0 L−1

��
DT 0

0 DT

��
CR −CI

CI CR

�
�

�
AR − BL−1DTCR −AI � BL−1DTCI

AI − BL−1DTCI AR − BL−1DTCR

�
�

�
MR

11 −M I
11

M I
11 MR

11

�
, (A3)

M̂ 12 � −

�
B 0
0 B

��
L−1 0
0 L−1

��
BT 0
0 BT

�
�

�
−BL−1BT 0

0 −BL−1BT

�
�

�
M 12 0
0 M 12

�
, (A4)

M̂ 21 �
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�
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�
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�
, (A6)

where MR
11 and M I

11 are the real and imaginary parts of M 11,
respectively, and the same notation is also used for M 21 and
M 22, while M 12 is a real-valued matrix.

It is important to note that Eqs. (A3)–(A6) hold because
B̂ and D̂ are block diagonal matrices, while B and D are real
matrices.
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