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The computational power needed to classify interference patterns of biological cells is a 
major limit to the implementation of fast label-free cell sorting based on digital 
holographic microscopy and flow cytometry [1]. In this work we discuss some properties 
of a technique that employs a collection of integrated silica micro-pillars to significantly 
simplify the classification of raw holograms obtained from cells with different average 
nucleus size lighted by a laser. 

Introduction 
Fast sorting of biological cells is crucial for several biomedical applications, like 
diagnostics, therapeutics and cell biology. However, an accurate classification and 
separation of different cell types is usually expensive, time consuming and often requires 
the use of labels, such as fluorescent tags, that may spoil the samples hindering 
subsequent analyses [1]. Therefore, the development of label-free, high-speed, automated 
and integrated cell sorting solutions would enable new types of biological investigations 
and could considerably decrease the costs and duration of existing cell analysis that 
require selected samples.  
Among several options, the integration of digital holographic microscopy in a 
microfluidic flow cytometry system is a promising candidate. In this technique, the 
classification is carried out considering the interference pattern (hologram) projected by 
the cells when lighted by a laser. The hologram is acquired by an image sensor and 
contains a large amount of information on the 3D refractive index structure of the cells[2], 
enabling nontrivial analysis and classification. However, the computational cost of 
reconstructing the image from the hologram acts as a bottleneck to the increase in the cell 
sorter throughput, e.g. by parallelization of the process. 
An important reduction in the required computing power can be achieved by bypassing 
the reconstruction of the cell image and training a machine learning classifier algorithm 
on the acquired hologram[2][3]. Moreover, a further increase in classification speed can 
be obtained by employing a linear machine learning classifier while performing the 
required nonlinear operations (corresponding to hidden neurons in feedforward neural 
networks) in the optical domain. In the Extreme Learning Machine (ELM) approach[4], 
such nonlinear operations can be chosen randomly, optimizing only the linear readout 
classifier. An implementation of this kind of solution, based on integrated dielectric 
scatterers and applied to the classification of 2 cell types with different average nucleus 
sizes or shapes, was numerically demonstrated in [5]. The key concept is that the transfer 
function linking the phase-encoded optical signal generated by the cell presence to the 
corresponding intereference pattern acquired by an image sensor is nonlinear, and its 
complexity can be enhanced by the presence of interposed dielectric pillars (Figure 1).  
When a real-life application is considered, a crucial requirement is that the performance 
of cell classification is robust to the fabrication errors affecting the integrated silica micro-
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pillars employed as random scatterers. In this work we investigate this robustness 
property by showing the classification performances corresponding to the use of 6 
different scatterer configurations. 
Furthermore, we include the results corresponding to the classification of near field cell 
holograms, which are indicative of the feasibility of employing an all-optical readout 
classifier, that could operate at a much higher speed with respect to its electronic 
counterpart. 

 
Figure 1. Schematic of the classification process.  A monochromatic plane wave impinges on a microfluidic 
channel containing a cell in water (nH2O ~ 1.34), which has a low refractive index contrast (ncytoplasm=1.37, 
nnucleus=1.39); the forward scattered light passes through a collection of silica scatterers (nSiO2 ~ 1.461) 
embedded in silicon nitride (nSi3N4 ~ 2.027) and organized in layers; the radiation intensity is then collected 
by an 1D image sensor, which is divided into bins (pixels); each pixel value is fed into a trained linear 
classifier (logistic regression) that consists of weighted sums (1 per class) of the pixel values. 

Discussion and results 
This work is a continuation of  [5], which provided a proof of concept of a novel hardware 
machine learning technique by processing the results of thousands 2D Finite-difference 
time-domain (FDTD) optical simulations (Figure 1). The variability of the cells shape and 
position in the microfluidic channel is simulated using a randomized cell model that 
makes each simulated cell significantly differ from the others. In this paper, the results 
obtained from tens of thousands new 2D FDTD simulations are presented, in order to 
give an insight on important properties of the proposed technique, such as robustness to 
fabrication errors and employability of near field intensity patterns for a completely on-
chip implementation. The simulation and classification design/parameters are the same 
as described in [5] for the case of nucleus size classification using a green laser, with the 
exception of:  

x the pillar scatterers configuration, 7 different cases are considered in this work; 
x in addition to the far field intensity, also the near field intensity at the simulated 

image sensor was calculated and used as sample for the classification task; 
x the number of simulated cell scattering processes was increased from 3200 to 

7200 (3600 per class) per scatterer configuration, to slightly reduce the overfitting 
and the variance of the classifier performance; 

x the technique used to validate the classification results is 8-fold cross-validation, 
instead of bootstrapping. 
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The considered scatterer configurations (Figure 2) are: (a) 1 layer of scatterers; (b) 2 
layers of scatterers; (c) 3 layers of scatterers; (d) 4 layers of scatterers; (e) 5 layers of 
scatterers; (f) 4 ordered layers of scatterers (no random displacement applied); (g) no 
scatterers. The spacing between the scatterer layers is 1.846 μm and the inter-scatterer 
vertical spacing is 1 μm. Except for the last two configurations, the amplitude of the 
random displacement applied to the scatterers is 0.225 μm. 

 
Figure 2. Configurations of silica pillar scatterers as employed in the FDTD simulations (see Figure 1). 
The 7th configuration, which does not comprise any scatterer, is not shown. 

A comparison between the estimated classification error rates obtained using scatterer 
configurations d and g shows that the use of 4 layers of scatterers leads to a relative 
improvement of roughly 75% when the classification is performed on near field 
interference patterns, while when far field patterns are considered, the improvement is 
roughly of 50% (Figure 3). This is grosso modo true also for the other investigated 
scatterer configurations, suggesting that the advantage coming from the use of dielectric 
pillars is in general significantly larger in the nearfield rather than in the far field. 
Considering for example a simulated 1D image sensor of 373 pixels, the obtained 
classification results show that the improvement in accuracy due to the presence of 
dielectric scatterers is essentially independent of the differences between the employed 
configurations (Figure 4). 

 
Figure 3. Classification error rate with 2 standard deviation confidence intervals as a function of the 
pixels number of the simulated 1D image sensor. A white Gaussian noise with standard deviation 
corresponding to 1% of the average acquired intensity was added to the interference patterns before 
classification in order to account for experimental noise. Blue and red data respectively correspond to 
scatterer configurations d and g, i.e. 4 layers of (disordered) scatterers and no scatterers. a) the linear 
classifier is applied on far field intensity patterns. b) the linear classifier is applied on near field intensity 
patterns. 
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Figure 4. Training (red) and test (blue) classification error rate with 2 standard deviation confidence 
intervals (black bars) for different scatterer configurations (Figure 2). A simulated image sensor with 373 
pixels was considered. a) 1% added white noise level. b) 5% added white noise level. 

Conclusions 

We discussed some properties of a machine learning technique for fast optical 
classification of biological cells based on the combination of integrated dielectric 
scatterers (simulated via FDTD method) and a linear classifier implemented in software. 
This technique was originally presented and numerically investigated in [5], considering 
the problem of classifying cells with different nucleus size or shape. In this work, we 
show that the relative improvement in classification accuracy due to the use of dielectric 
scatterers is roughly 75% when sample intensity patterns are acquired in the near field. 
This suggests that the speed of the discussed classification technique could be 
further increased by considering an all-optical integrated linear classifier applied on the 
near field radiation exiting the scatterer stage. 
Furthermore, the testing of classification performance for 6 different configurations of  
dielectric scatterers shows an unexpected robustness to configuration variations such as 
fabrication errors. 
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