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Abstract: Next-generation wireless communication will require increasingly faster data links. 
To achieve those higher data rates, the shift towards mmWave frequencies and smaller cell 
sizes will play a major role. Radio-over-Fiber has been proposed as a possible architecture to 
allow for this shift but is nowadays typically implemented digitally, as CPRI (Common 
Public Radio Interface). Centralization will be important to keep next-generation architectures 
cost-effective and therefore shared optical amplification at the central office could be 
preferable. Unfortunately, limited power handling capabilities of photodetectors still hinder 
the shift towards centralized optical amplification. Traveling wave photodetectors (TWPDs) 
have been devised to allow for high-linearity, high-speed opto-electronic conversion. In this 
paper, an architecture is discussed consisting of such a TWPD implemented on the iSiPP25G 
silicon photonics platform. A monolithically integrated star coupler is added in the design to 
provide compact power distribution while preserving the high linearity of the TWPD. The 
traveling wave structure (using 16 photodetectors) has a measured 3 dB bandwidth of 27.5 
GHz and a fairly flat S21 up to 50 GHz (less than 1 dB extra loss). Furthermore, the output 
referred third-order intercept point at 28 GHz, is improved from −1.79 dBm for a single Ge 
photodiode to 20.98 dBm by adopting the traveling wave design. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Future wireless communication links will require increasingly higher data rates to 
accommodate next generation applications [1]. Densification of communication cells will 
play a major role in the shift towards faster wireless data rates. To keep this technique 
economically and ecologically viable, a centralized approach needs to be pursued. A second 
key enabler for higher data rates is the usage of different parts of the spectrum. Millimeter 
wave (mmWave) frequencies are of great interest since they offer larger bandwidths and they 
are significantly less congested. Different schemes have been devised to enable centralization 
for mmWave communication. For instance Analog Radio-over-Fiber (ARoF) is a 
straightforward implementation where the RF signal is generated at the central office (CO), 
modulated on an optical carrier, and subsequently transmitted to the desired remote antenna 
unit (RAU) [2]. After transmitting the signal from the CO to the RAU, an opto-electronic 
conversion is performed by a photodetector. This RF signal should then be amplified such 
that it is sufficiently strong to overcome path losses in the wireless channel between the RAU 
and the end user. This is typically done by adding a transimpedance amplifier (TIA) followed 
by a power amplifier [3,4]. The aforementioned architecture can be altered to a more 
centralized topology by moving the amplifiers to the optical domain, where the amplification 
can be done for multiple RAUs at once, resulting in a significant decrease in RAU complexity 
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and power consumption. However, the linearity of a high-speed photodetector (PD) is 
typically inadequate to allow for high RF output power [5]. Improving the power handling 
capabilities of the photodetectors eventually allows for the omission of electrical 
amplification in the DL-RAU (downlink RAU, i.e. from central office to mobile end user), 
paving the road for passive DL-RAUs [6]. Implementing such high-power-handling 
photodiodes on a silicon photonics platform enables the low-cost manufacturing of such 
devices in high volume. Moreover, it also allows the integration of other optical functionality 
(e.g. an optical beam forming network) on the same circuit. To improve the power handling 
capabilities of an integrated high-speed p-i-n photodetector one can opt to use different 
materials and detector principles (e.g. III-V uni-travelling carrier photodetectors integrated on 
silicon [7–13]) or more complex photodetector configurations. While UTC photodetectors are 
often being used as high-power, high-speed photodetectors, they are not CMOS compatible 
because of their complex layer stack based on III-V materials (typically InGaAs-InP). To 
make optimal use of the aforementioned benefits of silicon photonics, a high-power variant of 
the existing Si-integrated Ge PiN photodetector needs to be constructed without altering the 
technology stack of the iSiPP25G platform or requiring heterogeneous integration. The 
traveling wave photodiode (TWPD) structure is the most popular configuration to realize high 
power handling while relying on high-speed p-i-n photodetectors [14]. In this paper, a high-
power-handling traveling wave photodetector (TWPD) structure integrated on a silicon 
photonics waveguide platform will be discussed. The traveling wave structure (using 16 
photodetectors) has a measured 3 dB bandwidth of 27.5 GHz and has a fairly flat S21 up to 50 
GHz (less than 1 dB extra loss). Furthermore, the output referred IP3 linearity at 28 GHz is 
improved from −1.79 dBm for a single Ge photodiode to 20.98 dBm by adopting a traveling 
wave design with dual-fed photodetectors. 

2. Ge traveling wave photodetectors on a Si photonics platform 

In this work, the iSiPP25G silicon photonics platform of imec is used to realize the traveling 
wave photodetector structure. The germanium photodiodes available on the platform have a 
responsivity of 0.8 A/W and a bandwidth of more than 50 GHz. However, their power 
handling capabilities are limited, as will be discussed below. A clever rearrangement of the 
photodetector structure and splitting the power over multiple PDs can significantly increase 
the linearity. 

2.1 Dual fed photodetectors 

While the standard mode of operation for the Ge photodiode on the iSiPP25G platform is to 
use a single optical input waveguide, one of the features available in the platform is that the 
Ge PDs can be optically fed from two sides. This immediately allows for a linearity 
improvement by increasing the optical input power for which compression occurs in the 
optoelectronic conversion. By adding a splitter in front of the PD, the linearity can be 
improved at the cost of a slight increase in insertion loss (due to the excess loss of the splitter, 
which is specified to be below 0.2 dB). This enhanced power handling capability is caused by 
the increased portion of the absorption layer that is used for the opto-electronic conversion 
[14]. 

2.2 Increasing the number of photodetectors 

Another solution to improve the power handling capability of the optoelectronic conversion is 
to increase the number of photodetectors per RAU. The power handled per individual PD 
drops proportional with the amount of PDs, enhancing the power limit of the RAU 
significantly. However, in the electrical domain the RF signals will need to be recombined 
constructively. 
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can see a 7 dB increase in power handling capabilities when dual feeding the PD. 
Additionally, it is clear that multi-PD structures are capable of handling higher powers. 
Adding multiple photodetectors in parallel results in RC low pass filtering as discussed 
before. Taking into account the frequency dependent current-to-power conversion, displayed 
in Fig. 4, of the parallel combination of 16 PDs, an improvement of approximately 9.5 dB 
over the dual fed, standalone germanium photodetector is expected. This value agrees 
reasonably well to the measured linearity improvement, namely 10.6 dB. For the TWPD with 
and without dummy termination improvements of respectively 14.2 dB and 14.6 dB are to be 
expected over the standalone, dual fed Ge PD based on Fig. 4. The measured improvements 
in linearity are respectively 15.8 dB and 13.2 dB. Simulations indicated that the slightly 
higher power handling capabilities at 28 GHz would be achieved without dummy termination 
while the measurements show that more power can be obtained by adding the termination 
resistor. A possible explanation for the discrepancy is a deviation in the equivalent network of 
the Ge PD. 

Table 2. Output referred third order intercept points at 28 GHz. 

Imec iSiPP25G, Silicon Photonics 
Ge PD, Single fed −1.79 dBm 

Ge PD, Dual fed 5.22 dBm 
Lumped parallel configuration, 16 Ge PDs 15.83 dBm 

TWPD, 16 Ge PDs, without RTerm 18.43 dBm 
TWPD, 16 Ge PDs, with RTerm 20.98 dBm 

5. Conclusion 

Centralization is key in making future wireless network architectures feasible. Typical 
implementations of an ARoF link comprise of electrical amplification at the antenna. To push 
towards an increase in centralization and therefore a drop in cost and power consumption, 
amplification can be done for multiple RAUs simultaneously. Optical amplification at the CO 
will however require opto-electronic conversion with high power handling capabilities. In 
case of mmWave communication, a traveling wave photodiode with a monolithically 
integrated star coupler implemented on a silicon photonics platform is proposed in this paper. 
The TWPD combines high linearity with high bandwidth while the star coupler allows for a 
compact solution that preserves the high linearity obtained from adopting a multi-PD 
architecture. In this paper, a TWPD is described that has a 3 dB bandwidth of 27.5 GHz with 
a gentle roll-off off at higher frequencies allowing for mmWave operation. Additionally, the 
OIP3 of the TWPD is found to be nearly 21 dBm which is a significant improvement over the 
standard single fed Ge PD where the OIP3 is −1.8 dBm. 
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