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We experimentally demonstrate extraction of silicon waveguide geometry with subnanometer accuracy using
optical measurements. Effective and group indices of silicon-on-insulator (SOI) waveguides are extracted
from the optical measurements. An accurate model linking the geometry of an SOI waveguide to its effective
and group indices is used to extract the linewidths and thicknesses within respective errors of 0.37 and
0.26 nm on a die fabricated by IMEC multiproject wafer services. A detailed analysis of the setting of the bounds
for the effective and group indices is presented to get the right extraction with improved accuracy. © 2018
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1. INTRODUCTION

The submicron silicon-on-insulator (SOI) platform for silicon
photonics offers tight confinement of light and compact integra-
tion of photonic devices. However, the high material index con-
trast also makes devices very sensitive to the geometry variation
[1]. The variation introduced in fabrication often significantly
deteriorates the device performance. Especially for spectral filters,
geometry variation causes a shift in the spectrum and needs good
compensation [2,3]. Therefore, an accurate evaluation of the
fabricated geometry helps to estimate how to compensate the
performance error and make a sensible design.

Extracting the fabricated linewidth and layer thickness is
essential in getting the input data for analysis, such as perfor-
mance evaluation [4,5] variability analysis [6,7], and revising
compact behavior models [8]. However, metrology measurement
of a fabricated photonic chip using a scanning electron micro-
scope (SEM) is both expensive and destructive. Conventionally,
the semiconductor fab only takes a few destructive cross-section
pictures at given wafer locations on different dies, and this is only
during process development, not in production. The geometry
accuracy of such SEM-based measurements is usually good for a
qualitative confirmation but not accurate enough for exact mod-
eling. Ultraprecise methods such as the atomic force microscope
(AFM) are extremely time-consuming [9]. In production, non-
destructive methods such as top-down SEM, ellipsometry, and
scatterometry are used to measure geometries such as linewidth
and layer thickness. The problem with such measurements is

that they are collected in dedicated measurement sites, which
are often not representative of the actual waveguide devices.
Current methods are not capable of extracting accurate wafer
maps of the actual device geometry on a nanometer scale and
its variability.

An alternative approach is to use optical transmission mea-
surements on the actual devices to extract geometry parameters.
Investigating the spectral response of devices such as microdisks
or long Bragg gratings offers a more efficient way of character-
izing manufacturing variations. However, most demonstrated
methods either use dual-polarization measurements or request
complex spectral reflection measurements from both ends of
the device [4,10]. Optical properties such as the effective index
and group index can be extracted from interfering structures
such as Mach–Zehnder interferometers (MZIs) [11] and ring
resonators [5,12]. Recent research shows the possibility to cor-
relate waveguide geometry with these behavioral parameters
such as resonance wavelength and group index by mapping
them with a linear model [5]. Lu et al. measured spectral re-
sponses of ring resonators over the wafer and from this derived a
geometry wafer map, demonstrating the potential of the optical
method for wafer-scale geometry extraction. In this study, they
used a ring resonator that consists of both straight and bent
waveguides. Since straight and bent waveguides have different
effective and group indices, the geometrical cross section of a
straight waveguide cannot be extracted accurately from a ring,
without making assumptions on the straight and bent geometry
that cannot be verified.
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Even though geometry extraction through transmission mea-
surements shows real practical potential, it is still challenging to
characterize the manufacturing quality accurately. First of all, the
geometry model that links geometry with the behavior param-
eters should on one hand be very accurate, but on the other hand
have as few parameters as possible. This is hard to achieve with
combinations of different waveguide types (straight and bent),
each with their own optical properties. Second, there is always
noise in the spectral measurements, error in measurement align-
ment, and variability in grating couplers (GCs). It is essential to
develop a method that is tolerant of the above-mentioned factors.
Third, geometry extraction requires a method to simultaneously
extract both effective and group indices from the same device.
Most importantly, it is not trivial to get the correct effective index
from the spectrum of an interfering device [13]. We need a
quantitative discussion to choose the right effective index from
many possible solutions.

In this paper, we address the above-mentioned challenges in
a systematic way. As shown in Fig. 1, we first perform optical
measurements on MZIs. We build a circuit model of the device
and match the simulated transmission curve with measurement
to get behavior parameters of a waveguide such as neff and ng .
Next, we build an accurate model to map neff and ng to wave-
guide width and thickness. Then, using the model, we obtain
waveguide geometry parameters from extracted behavior
parameters. We automated the optical measurement and re-
peated the geometry extraction on devices with the same design
over the wafer. From the extraction, we perform variability
analysis and derive fabrication variation with high accuracy.
In Section 2, we propose an improved geometry model to offer
high modeling accuracy. In Section 3, we show that the curve
fitting method is less sensitive to measurement noise and helps
in removing GC envelope, and in Section 4, we show how to
design two MZIs to extract the accurate and unique neff and ng

Fig. 1. Work flow of extracting behavior parameters and fabricated geometry using optical measurements.
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given the waveguide geometry variation range. Section 5 dis-
cusses the procedure of the waveguide geometry from a couple
of MZIs. Finally, in Section 6, we apply the method to extract
linewidths and thicknesses of SOI waveguides on a die fabri-
cated by the IMEC multiproject wafer (MPW) service.

2. ACCURATE GEOMETRY MODEL

We cannot measure linewidth w and thickness t directly, so we
infer them from the results of optical transmission measure-
ments. In particular, we first extract the effective index neff
and group index ng of the waveguide. To calculate the fabricated
waveguide linewidth w and thickness t from the effective index
neff and group index ng , we require a geometry model that links
neff and ng to w and t. To build the model, we simulated an
oxide-clad Si waveguide cross section [Fig. 2(a)] with the
COMSOL Multiphysics finite element method (FEM) solver.
According to the IMEC technology handbook, a fabricated strip
waveguide has a sidewall angle of 85°, so we simulated the wave-
guide with an 85° sidewall angle. The waveguide width is the
bottom width of the trapezoid. We swept width from 440 nm
to 500 nm and thickness from 195 nm to 235 nm, and calcu-
lated neff and ng at 1550 nm wavelength. The linewidth-
thickness grid in Fig. 2(b) can be mapped one-on-one to the
simulated neff–ng grid (black solid line with circles) in Fig. 2(c).
Then, we fitted simulated neff and ng using polynomials ofw and
t . We build first-, second-, and third-order polynomial models
[dashed lines in Fig. 2(c)]. Both neff and ng vary quite linearly
with w and t. Nonetheless, the first-order fitted linear model
shows a clear deviation (maximum 0.32% error in neff and

0.40% in ng ) from simulated neff and ng . The third-order model
matches the simulation very accurately. Then, to get w and t
from spectral measurements, we wrote w and t, as a polynomial
of neff and ng at 1550 nm as

w � p0 � Σn
i�1pein

i
eff � Σn

j�1pgjn
j
g � Σm

j�1,i�1, npegijn
i
effn

j
g ,

(1)

t�q0�Σn
i�1qein

i
eff �Σn

j�1qgjn
j
g �Σm

j�1,i�1,nqegijn
i
effn

j
g , (2)

where p0 and q0 are constant terms, and pei and pgi are coef-
ficients in polynomials.

Using a simulated model can introduce a simulation error,
coming from a difference between the actual waveguide geo-
metry (both dimensions, shape, and material properties) and
the trapezoidal geometry model we used in the mode solver.
We have considered the sidewall angle in our model, but still
we do not know the actual geometry, so it is very hard to com-
pensate for this error. This means that some parameters will be
only relative. In addition, the mapping error is the difference
between the simulated trapezoidal waveguide geometry and ex-
tracted trapezoidal waveguide geometry using the geometry
model. To calculate the mapping error, we first use simulated
neff and ng for simulated geometry. Then, we calculate the
waveguide geometry using a polynomial model with the simu-
lated neff and ng . The mapping error reduces significantly with
the order of the polynomial (Table 1). The first-order model
has a maximum error of several nanometers, which is compa-
rable to the reported intra-wafer manufacturing variations in
width of 0.78 to 2.65 nm, and in thickness of 0.83 to

Fig. 2. (a) Cross-section schematic of an oxide-clad SOI strip waveguide with a 85° sidewall angle; (b) width and thickness grid of strip wave-
guides; (c) effective and group indices of strip waveguides on the geometry grid using the COMSOL FEM simulation, and the first-, the second-,
or the third-order polynomial mapping model.
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4.16 nm [14–19]. Obviously, the modeling error is too large to
extract intra-die variations (variations between the same devices
on one die). For a good estimation of the fabricated geometry
variation, especially to study variability on the intra-wafer level
and the intra-die level, a lower modeling error is required. The
third-order polynomial model has a maximum error of 0.05 nm
for both linewidth and thickness (Fig. 3), which is one mag-
nitude smaller than the fabrication variation. A low modeling
error makes geometry extraction more accurate and credible.

3. EXTRACTING neff AND ng FROM AN MZI
USING THE CURVE FITTING METHOD

Before we can determine the waveguide geometry from neff and
ng , we need to measure those quantities on a device and isolate
the values for a straight waveguide. This effectively means that
we need a device where a transmission measurement can give us
an accurate extraction of both neff and ng of a straight wave-
guide only, and which is in the presence of measurement noise
and variation in the coupling structures.

In Ref. [5], ring resonators were used to extract neff and ng .
A ring resonator has sharp resonance peaks that are easy to de-
tect and less prone to error in peak positions. However, a ring
uses either a bent waveguide or it combines bends with straight
sections, and the round trip path also includes the coupling
sections, which will also have different optical properties. As
such, we cannot isolate neff and ng of the straight or bent wave-
guide. The alternative is to use an MZI with two arms that are
identical except for that one arm has a longer straight part than
another [11]. Ideally, the neff and ng of the two arms are iden-
tical so that the spectral response of the MZI is only dependent

on the path length difference between two arms.We can useMZI
to measure varying waveguide geometry under process variation
at different locations. In practice, the path length difference in a
single MZI is also induced by a difference in neff in the two arms
because of process variability. Also, there is also the difference in
neff that the bends will contribute to. Those differences also lead
to the extraction error in neff and ng . However, since the distance
between waveguides within an MZI compact is within 100 μm,
we can safely assume that the error will be much smaller than the
device-to-device variation.

An interfering structure such as a ring or an MZI would
have a constructive interference when interference order m is
an integer and

m � neff ,0ΔL
λres

, (3)

FSR � λ2res
ngΔL

, (4)

where neff ,0 is the prior estimate at the resonance wavelength
λres and ΔL is the physical path length difference. If we know
the resonance order m, we could get neff by locating λres in the
output spectrum. It is natural to apply the resonance detection
method [5,12] to locate resonances in the spectrum and get
both neff and ng . However, an MZI has a sinusoidal-like spec-
tral transmission. Its curve is quite flat near a maximum or
minimum. Especially when measurement noise is involved,
it is hard to locate its resonance by the peak detection method
(in Fig. 6, the green cross indicates detected valleys). Using only
the maximum detection method leads to a significant error
(Table 2) in effective index and group index extraction, making
it not suitable for geometry extraction.

To improve the extraction accuracy, we used the curve fit-
ting technique. It extracts parameters by minimizing the differ-
ence between a circuit simulation and the measurement data.
While maximum/minimum extraction only uses information
at the peaks and ignores information on the rest of the spec-
trum, the curve fitting method utilizes the information from

Table 1. Error of Polynomial Models

Error Δw [nm] Error Δt [nm]

First order 5.10 4.57
Second order 0.14 0.18
Third order 0.06 0.08

Fig. 3. Error contour plot of the proposed third-order polynomial model where w ranges from 440 to 500 nm and thickness ranges from 195 to
235 nm. Left, width extraction error; right, thickness extraction error.
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the entire measured spectrum, which is more tolerant to the
measurement noise and gives more reliable extraction.

We simulate the MZI circuit in Caphe [20], a circuit sim-
ulator that calculates the scattering matrix of the circuit from
the defined scattering matrix of each component. We built a
Caphe circuit model of the MZI in the same way as our device
under test (DUT), which has two types of components: wave-
guide and multimode interferometer (MMI).

A. Eliminating the Effect of the Grating Couplers
For automated measurement, light is vertically coupled to the
DUT using a pair of GCs. We need to remove the envelope of
the GC before fitting the spectrum with the circuit model. We
can remove the GC in two ways. In one way, we measure a pair
of reference GCs, preferably close to the DUT. By subtracting
the measured reference GC from the DUT spectrum in a log
scale, we can normalize the transmission spectrum of the DUT.
It is a very common practice in optical transmission measure-
ments. However, this method is error-prone in the presence of
fabrication variation in GCs, because the reference GC can be
subtly different from the GCs connected to the DUT. Even

more, the input and output GCs of the DUT can be different
from each other. As shown in Fig. 5, MZI transmission after
subtracting the reference is not we would expect: the linear-
scale spectrum should be a sine-like curve with maxima of the
same amplitude. The significant mismatch between the mea-
sured and fitted spectrum introduces a large error in the ex-
tracted parameters.

Instead, we use a fourth-order polynomial to represent the log-
arithmic transmission spectrum of the combined input and out-
put GC. We include two GCs in the circuit model together with
the MZI. As shown in Fig. 6, the fitting is considerably enhanced
where the simulation matches measurement nicely. From fitting,
we can get circuit parameters such as effective index, group index,
and coefficients of the polynomial describing the GC.

B. Fitting Accuracy versus MZI Order
In the transmission spectrum of theMZI, the positions of the peaks
and valleys give information about the effective index neff . The
periodicity of the transmission spectrum is determined by the
group index ng . An MZI with a low-order m has only a few
peaks/valleys in the measurement band, and therefore it will have
a low accuracy on the extraction of ng . On the other hand, a high-
order MZI can give a high accuracy of ng extraction. As explained
by Dwivedi et al. in Ref. [11], the combination of a low-orderMZI
and a high-order MZI can give a good accuracy on both neff and
ng .When noise is mingled in themeasured spectrum, it will induce
in curve fitting an error. Then, it is a question of how fitting ac-
curacy is related to the order of the MZI. In this work, we used the
nonlinear least squares method to fit the transmission curves with a
waveguide compact model. We built a circuit model of a wave-
guide with 470 nm width and 215 nm thickness and simulated
the transmission spectrum. Then, we add a �0.2 dBm to the
spectrum to emulate the typical measurement noise. Finally,

Table 2. Comparison between the Peak Detection
Method and the Curve Fitting Methoda

neff ng Width [nm] Thickness [nm]

Curve fitting using
a GC model

2.319 4.291 466.0 211.8

Peak detection 2.318 4.302 462.0 213.8
Difference between
two methods

0.001 0.009 4.0 2.0

aWe applied both methods to extract parameters from the spectrum of a
high-order MZI (Fig. 6 right).

Fig. 4. (a) Layout of the MZI under test. (b) Circuit schematic of the MZI.
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we get neff and ng using the curve fitting. The fitting error we
presented is the estimate of 1.96 times standard deviations of each
of the parameters, which provides confidence limits of approxi-
mately 95%. As shown in Table 3, we did not get an accurate

ng from the 15-order MZI. This leads to a huge error in extracted
width and thickness. The fitting error decreases with the interfer-
ence order. Therefore, an increasing interference order of the MZI
improves fitting accuracy.

Fig. 5. We removed the GC envelope using a reference GC near the DUT. Fabrication variation caused the measured spectrum after GC removal
to be far from ideal (as shown by the spectrum simulated by the circuit model), as ideally the peaks in the spectrum should have the same amplitude.
After GC removal, we fitted the measured spectrum with the circuit model (Fig. 4), not including the GC. Red solid curve, measured transmission
spectrum after removing the GC envelope using a reference GC. Blue dotted curve, fitted spectrum using the circuit model. Left, the low-order MZI.
Right, the high-order MZI.

Fig. 6. This figure shows the measured transmission spectrum (red solid curve) and fitted spectrum (blue dotted curve) using the circuit model
including the polynomial GC model. Also, valleys of the spectrum (green cross) are found by the peak detection method. Left, the low-order MZI.
Right, the high-order MZI.

Table 3. Fitting Error versus Interference Order

Order neff ng w [nm] t [nm] Errorneff Errorng Errorw Errort

15 2.336264 4.280000 472.6998 212.7182 0.014705 0.718928 270.355700 137.651600
50 2.340747 4.290649 469.3341 215.6051 2.18 × 10−5 0.001366 0.511691 0.270922
100 2.339561 4.288268 470.0631 214.9168 1.07 × 10−5 0.000663 0.248367 0.130336
150 2.339729 4.288448 470.0189 214.9829 7.39 × 10−6 0.000460 0.172499 0.090586
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4. HOW TO DESIGN THE MZI FOR GEOMETRY
EXTRACTION

When fitting the transmission curve of the MZI, the fitting
algorithm implicitly assumes that the order m of the MZI is
sufficiently accurate, i.e., that the peak near the center wave-
length of 1550 nm corresponds with the designed order m.
However, in the presence of fabrication variation, this is not
necessarily the case, and as the designed order of the MZI
increases, the uncertainty on the measured order increases.
Therefore, the design parameters should be chosen such that
the low-order MZI can be used to pin the order m of the device
unambiguously [11], and make a good estimate of neff . The
order of the high-order MZI should be chosen such that a maxi-
mum of information can be extracted, based on the estimate of
neff obtained from the low-order MZI. We discuss the design
process for these devices.

A. Deciding the Interference Order under a Given
neff Variation
Equation (4) shows that if we know the resonance order m, we
can calculate neff from the peak locating λres in the output spec-
trum. However, if fabrication variations can shift the spectrum
more than half a free spectral range (FSR), we can no longer be
certain of the order m. Therefore, we should design the MZI
with sufficiently low-order m such that the order at the center
wavelength is always within m� 0.5, which means

neff ,0ΔL
λ

� m,

�neff ,0 − Δneff∕2�ΔL
λ

> m − 0.5,

�neff ,0 � Δneff∕2�ΔL
λ

< m� 0.5:

Given the variation in neff isΔneff , we can decide the orderm that
fulfills the condition and would give us sufficient confidence:

m <
neff ,0
Δneff

: (5)

This is equivalent to a constraint on the length difference ΔL
between the two arms of the MZI:

ΔL <
λ

Δneff
: (6)

B. Defining the Bounds for neff and ng from the
Geometry Variation
Within the measurement interval, the spectrum of an MZI
looks quasi-identical if we shift the interference order m by
an integer number. Without a proper confidence interval on
neff , there would be multiple solutions of neff to fit the spec-
trum. As neff and ng can be mapped to linewidth w and thick-
ness t, we can derive the bound of �neff , ng� from the confident
interval of the geometry parameters �w, t�, which are supplied
by the fab. As presented in Section 2, ng and neff can be
accurately mapped on w and t by a third-order polynomial
model. For simplicity of analysis in the derivation below,
we use the linear geometry model, where

neff � neff 0 �
∂neff
∂w

�w − w0� �
∂neff
∂t

�t − t0�,

ng � ng0 �
∂ng
∂w

�w − w0� �
∂ng
∂t

�t − t0�:

When the bounds for linewidth and thickness form the rec-
tangle ABCD in �w, t� space [Fig. 7(a)], the parameter range
in �neff , ng� space lies in between neff ∈ �neff 1 , neff 2 � and
ng ∈ �ng1 , ng2 �:

neff 1 � neff 0 �
∂neff
∂w

�w1 − w0� �
∂neff
∂t

�t1 − t0�, (7)

neff 2 � neff 0 �
∂neff
∂w

�w2 − w0� �
∂neff
∂t

�t2 − t0�, (8)

ng1 � ng0 �
∂ng
∂w

�w2 − w0� �
∂ng
∂t

�t1 − t0�, (9)

ng2 � ng0 �
∂ng
∂w

�w1 − w0� �
∂ng
∂t

�t2 − t0�, (10)

where w0 and t0 are the nominal values for w and t variations.
The range is a rectangle in �w, t� space whose center is �w0, t0�.
We assume Δw � w2 − w1 and Δt � t2 − t1. As �w, t� and
�neff , ng� follow a near-linear mapping, the vertices of the bound
rectangle in the �w, t� space A, B, C , D can be mapped to the
�neff , ng� space as A 0, B 0, C 0,D 0. Intuitively, the bound rectangle
ABCD in �w, t� space is linearly transformed into a parallelo-
gram A 0B 0C 0D 0 in �neff , ng� space. The tilted boundary
A 0B 0C 0D 0 is within the original rectangular boundary and much
smaller. For the fundamental TE mode of an SOI oxide-clad

Fig. 7. Bounds of the extraction. (a) The bound of width and thickness. (b) Rectangle bound [11] parallelogram, reduced bounds by linear
transformation of geometry bounds. (c) Rectangle bounds cannot separate three groups of solutions (red, blue, and green circles). The parallelogram
cleanly isolates the correct solutions (blue circles).
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waveguide, ∂ng∂w is negative while ∂neff
∂w ,

∂neff
∂t , and

∂ng
∂t are positive. The

parallelogram A 0B 0C 0D 0 then will be tilted as in Fig. 7(b).
The bounds of the confidence interval for neff are funda-

mental to get a correct extraction. Extraction of the group index
ng does not pose that much of a problem, as the confidence
interval is much larger, and there are no multiple solutions.
Depending on whether we know ng of the same waveguide,
we can estimate the range for neff in two ways.

1. Estimating neff without Information on ng
Sometimes we cannot obtain accurate information of ng , such
as when we are using a low-order MZI. Then, as in Ref. [11],
we can calculate the uncertaintyΔneff from geometry variations
Δw and Δt as

Δneff ,rectangle � neff 2 − neff 1 �
∂neff
∂w

Δw� ∂neff
∂t

Δt , (11)

which essentially corresponds to the width of the rectangle
ABCD, or the horizontal distance A 0C 0.

2. Estimating neff with Information on ng
The maximal range of the neff for a given ng is E 0F 0 [Fig. 7(b)],
which is the maximal distance between two edges of the
parallelogram at the given ng . The distance is dependent on
the shape of the parallelogram. When A 0 is higher than C 0

[n�g ,A� > n�g ,C�], using Eq. (7), we can derive ∂ng
∂t Δt <

−
∂ng
∂w Δw. Then, E 0F 0 is the horizontal distance between lines

A 0B 0 and C 0D 0, and the range of neff is determined by the range
of linewidth Δw. When A 0 is lower than C 0 [n�g ,A� <
n�g ,C�], using Eq. (7), we can derive ∂ng

∂t Δt > −
∂ng
∂w Δw.

Then, E 0F 0 is the horizontal distance between lines A 0C 0

and B 0D 0, and the range of neff is determined by the range
of thickness Δt:

Δneff ,parallelogram �
�
−
∂neff
∂w

∂ng
∂t

∂ng
∂w

� ∂neff
∂t

�
Δt ,

when
∂ng
∂t

Δt < −
∂ng
∂w

Δw, (12)

Δneff ,parallelogram �
�
∂neff
∂w

−
∂ng
∂w

∂neff
∂t

∂ng
∂t

�
Δw,

when
∂ng
∂t

Δt > −
∂ng
∂w

Δw: (13)

For the same geometry variation, an estimate of ng reduces the
uncertainty Δneff. Figure 7(c) shows that we can separate three
groups of solutions with the bound A 0B 0C 0D, which are all
located in the previous rectangle bound. Also, Δneff becomes
solely dependent on Δt in the linear approximation. So if we
have a small Δt and a relatively large Δw, we can benefit more
from knowing ng , because we can use a high-order MZI that

improves the accuracy of extraction. When ∂ng
∂t Δt < −

∂ng
∂w Δw,

the ratio between Δneff calculated without and with ng is

Δneff ,rectangle
Δneff ,parallelogram

� a
Δw
Δt

� b,

where

a �
∂neff
∂w

− ∂neff
∂w

∂ng
∂t ∕

∂ng
∂w � ∂neff

∂t

, b �
∂neff
∂t

− ∂neff
∂w

∂ng
∂t ∕

∂ng
∂w � ∂neff

∂t

:

Both a and b are positive, so that the ratio is increasing with Δw
Δt .

Intuitively, the smaller that AD is compared to AB in Fig. 7(a),
the shorter the EF is. A similar conclusion can be made when
∂ng
∂t Δt < −

∂ng
∂w Δw, where the ratio is increasing with Δt

Δw.

5. EXTRACTION PROCEDURE

A. Extracting neff and ng from Two MZIs
The total process variation (intra-die, die-to-die, and wafer-to-
wafer) on an isolated waveguide on an SOI platform is large.
The variation can be several tens of nanometers for both line-
width and thickness. As discussed in the previous section, to
capture the large variation using an MZI, we should choose
a sufficiently low-order m. However, this low-order MZI suffers
from a low accuracy on ng extraction. On the other hand,
a high-order MZI can offer good accuracy of ng extraction.
So a combination of the two devices can give us both essential
optical parameters. So we can extract neff and ng using a low-
order MZI and a high-order MZI:

1. Extract a good estimate of neff from the low-order MZI.
2. Extract an accurate ng from the high-order MZI.

Even though the devices are close together, they do not have
the same neff and ng because of local variations. To accurately
map the waveguide geometry, we need to extract both neff and
ng from the same waveguide. In the following discussion,
we will present how to obtain an accurate neff and ng both
of the high-order MZI step by step.

B. Extracting Inter-Die and Intra-Die Variability
in Three Steps
In a wafer-scale fabrication process, we can identify different levels of
process variations. For each die, all the variations that originate at
levels such as lot-to-lot, wafer-to-wafer, and die-to-die variations
have the same impact on every device in the die. In this paper,
we categorize these variations together as the inter-die variation.
However, then we also get the intra-die variation that affects devices
differently on the same die. We can further decompose the intra-die
variation into location-dependent variation and local variation. The
location-dependent variation is the variation depending on the lo-
cation of the device on the die. It can be caused by the continuous
variation of thickness, photoresist spinning effects or plasma distri-
butions, and other equipment nonuniformity that affects the fab-
ricated geometry varied spatially. On the other hand, the local
variation we define here induces local disparities between devices
placed close together (less than a few hundred microns apart). It
includes intrinsic variability such as thickness fluctuations and width
randomness caused by pattern density nonuniformity. The sum of
the three variations gives us the process variation of a device:

variationtotal � variationinter-die � variationlocation-dependent

� variationlocal: (14)

The total process variation is considerably larger than the intra-
die variability. The total linewidth and thickness variation of an
isolated waveguide on an SOI platform can amount to tens of
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nanometers [15], while intra-die variation is typically only a few
nanometers [5,15,16,21].

With our two MZIs, we address variations on the different
levels in three steps. In the first step, we extract neff from a low-
order MZI. Since the ng extracted from the low-order MZI is
very inaccurate, we estimate the range of neff without the in-
formation of ng by substituting geometry variation by the total
variation in Eq. (11):

Δneff ,total �
∂neff
∂w

Δwtotal �
∂neff
∂t

Δt total:

Given the range, we derive a fairly accurate value of neff from
the low-order MZI. In the second step, we obtain the neff map
over the die by interpolation. The map offers the average neff
of the waveguide placed at each location where we can remove
the local variation, and the inter-die variation and location-
dependent variation together determine the average value.

In the third step, we use interpolated neff ,μ at each location
as a reference. Now, rather than the total variation, we can only
deal with the much smaller local variation. Since we can accu-
rately extract ng on the high-order MZI, the range for neff
under the local variation is estimated by substituting geometry
variation using the local variation in Eq. (12):

Δneff ,local �
 
−
∂neff
∂w

∂ng
∂t

∂ng
∂w

� ∂neff
∂t

!
Δt local:

Because our analysis decreases the bound of extraction, we can
use a much high-order MZI to get neff and ng simultaneously
and accurately.

C. Specification of the Two MZIs
The MZIs each consists of two waveguide arms and two 50-50
MMIs (Fig. 8 left). Our devices are fabricated by the IMECMPW
service. We design the waveguide with a linewidth of 450 nm.

Fig. 8. Top left, low-order and high-order MZIs we used for geometry extraction. Bottom left, locations of two devices on a die. Right, locations
of dies on the wafer. Red grid indicates dies on the wafer. The black circle is the boundary of the wafer.

Fig. 9. Extracted neff and ng of the high-order MZI. Left, die (X � 0, Y � 0); right, die (X � −2, Y � 2).
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According to the technology handbook, the fabricated waveguide
has a sidewall angle of 85°. The fabricated 450 nm waveguide will
have a 470 nm mean value and�20 nm variations. The nominal
thickness is 215 nm, and the variation is �10 nm. The pre-
estimated neff ,0 of the 470 nm × 215 nm waveguide is 2.340.
Using Eq. (11), we calculated that the variation of neff ,total is

Δneff ,total �
∂neff
∂w

Δwtotal �
∂neff
∂t

Δt total

� 0.002055 × 40 nm� 0.003916 × 20 nm

� 0.16:

From the third-order model, we calculate that the Δneff ,total is also
0.16. The arm length difference of the low-order MZI is
ΔL < 1.55 μm

0.16 � 9.7 μm, and the order of ml <
neff ,0

Δneff ,total
≈15.00.

Only a few references report typical fabricated geometry maps
of silicon waveguides on die-level. Thickness maps in SOI
depend largely on the qualities of the source wafer. Linewidth
maps depend much more on the actual fabrication process and

will be very different for devices fabricated with deep UV lithog-
raphy or e-beam lithography, and vary between fabs. From the
research of Lu et al. [5], the thickness varies slowly over the die,
and the maximum difference between neighboring thickness is
0.5 nm. So we assume as a worst case that the thickness is slowly
changing locally with only Δt local � 2.00 nm. We also assume
that Δwlocal � 15.00 nm, which is significant. Using Eq. (12),
we calculated the variation of neff ,intra-die. Notice that we have
no pre-estimate of the nominal value of w and t locally so that
they can be any value under the total variation. We calculated

−
∂neff
∂w

∂ng
∂t

∂ng
∂w

� ∂neff
∂t for w ∈ �450, 490� nm and t ∈ �205, 225� nm.

Its value is in between 0.0045 and 0.0074. Therefore, the max
local neff variation we can surely extract is

Δneff ,intra-die �
 
−
∂neff
∂w

∂ng
∂t

∂ng
∂w

� ∂neff
∂t

!

Δt intra-die � 0.0074 × 2 � 0.0148,

Fig. 10. x and y coordinates give the locations of the MZIs on two dies. Blue solid dot, extracted value. Green grid, fitted map of extracted values
using a bivariate polynomial. (a) Extracted width map of die (X � 0, Y � 0) (in the center of the wafer). (b) Extracted thickness map of die (X � 0,
Y � 0). (c) Extracted width map of die (X � −2, Y � 2) (near the edge of the wafer). (d) Extracted thickness map of die (X � −2, Y � 2).
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which is the same calculated using the third-order model.
The arm length difference of the high-order MZI is ΔLh <

λ
Δneff ,local

� 104.7 μm, where the order is around m ≈ 158.
The confidence limit estimated with the information on ng
on the order is 2.93× that calculated by the original method
without the information on ng . Based on the estimation, we de-
sign the low-order MZI to have an order around m � 15 at
1550 nm and the order of the high-order MZI is m � 150.

6. RESULTS

We automated optical measurements on 21 dies in the same
wafer. The optical measurement was conducted in our clean
room with the room temperature controlled at 20°C. On each
die, we distributed 44 copies of the MZI pair (Fig. 8, bottom
left) and repeated the fitting for all MZI blocks. With the esti-
mated process variations on different levels, we set up the
bound for neff and followed the three-step procedure to extract
neff and ng of high-order MZIs (Fig. 6, right). Each point in the
scatter plot represents the extracted neff and ng of one wave-
guide on the die (Fig. 9). All the points are gathered in one

group as confined by the bound. The average fitting error
for neff is 1.1 × 10−5, and the average fitting error for ng is
1.0 × 10−3. These fitting errors propagate to fitting errors of
0.33 nm in width and 0.18 nm in thickness. Adding the
mapping error of the geometry model in Section 2, the total
extraction errors for width w and thickness t are

Errorw � 0.31� 0.06 � 0.37 nm,

Errort � 0.18� 0.08 � 0.26 nm:

Using the geometry model, we mapped neff and ng to width w
and thickness t of the high-order MZI arms. The extracted line-
width on the die (X � 0, Y � 0) in the wafer center (Fig. 8,
right) ranges from 468.8 nm to 471.9 nm, and the thickness
ranges from 211.4 nm to 212.3 nm. The standard deviations
are 1.26 nm and 0.30 nm, respectively (Table 4). The extracted
linewidth on the die (X � −2, Y � 2) near the boundary of
the wafer ranges from 461.4 nm to 466.8 nm, and the thick-
ness ranges from 212.1 nm to 214.0 nm. The standard devia-
tions are 1.18 nm and 0.42 nm, respectively (Table 4). For
both dies, we observed a very weak correlation (correlation

Fig. 11. We extracted the linewidth and thickness on the same device over 21 dies on the wafer. Top left, systematic linewidth variation; bottom
left, random linewidth variation; top right, systematic thickness variation; bottom right, random thickness variation.
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coefficient is −0.2856) between the linewidth and the thick-
ness. We fitted width and thickness to its location on the die
with a linear model, and the green grid is the fitted map (Fig. 10)
that indicates the location-dependent variation.We did observe a
systematic trend for width w on this die, but the trend is quite
flat on each die, which is less than 1 nm.Meanwhile, the widthw
shows an obvious local variation with a maximum of 3 nm. For
thickness t, both dies exhibit location dependency, which might
be the result of slow-varying systematic variation over the wafer.
Local variation has a maximum of 0.5 nm, well below the local
variation range we set in the extraction. The maximum location-
dependent difference in thickness on the die (X � 0, Y � 0) is
0.4 nm while on the die (X � −2, Y � 2) is 1.5 nm.

We also extracted a width w and thickness t wafer map of
one pair of MZIs that share the same location on every die.
The extracted wafer map (Fig. 11) shows an explicit location
dependence of fabricated geometry. We fit a parameter wafer
map of w, t using a second-order bivariate polynomial. The
slow-varying trend of the linewidth matches the dome-like
radial symmetric pattern of the wafer-level systematic variation.
The width systematic variation ranges from 459 nm to 465 nm
while the random part has a maximum 2 nm contribution. The
thickness also presents a strong location dependence. Its sys-
tematic variation ranges from 211.5 nm to 214.5 nm. Its ran-
dom variation has a maximum of less than 1 nm.

7. CONCLUSION

We show how to extract waveguide geometry from optical trans-
mission measurement, and discuss how to increase the accuracy
compared to existing methods. We replaced the linear mapping
model between �w, t� and �neff , ng� with an accurate third-order
geometry model to obtain accurate waveguide geometry from
its effective index and group index. We applied a curve fitting
method that is less sensitive to measurement noise and helps in
removing the GC envelope. We discussed how to set parameter
bounds under a given process variation, which helps to choose
the correct set of extracted parameter values from multiple sol-
utions. We showed that, when the group index of a waveguide is
known, we can reduce the parameter bounds for the effective
index, allowing us to use a higher order MZI and improve fitting
accuracy. We proposed a procedure to separate different levels
of process variation so that our method can deal with a total
variation of several tens of nanometers and still obtain accurate
linewidth and thickness extraction. We applied the method to
measurement data from two dies and presented the linewidth
and thickness map on die-level. We also applied the method

to extract one pair of MZIs in 21 dies and presented a simple
wafer map of fabricated geometry.

APPENDIX A: PROCEDURE TO APPLY THE
CURVE FITTING METHOD TO EXTRACT
GEOMETRY PARAMETERS

1. Calibrate the laser before the measurement to assure the
wavelength accuracy of the measurement spectrum.

2. Calibrate the laser after the entire measurement to
assure the stability of the laser.

3. Measure a reference pair of GCs. Fit its log-scale trans-
mission with a four-order polynomial. Use the fitted coeffi-
cients of the polynomial as the nominal values for GC
parameters in the circuit model.

4. Use the circuit model of the MZI and the curve fitting
method to extract neff from the low-order MZI. Estimate the
bound of neff from the total fabrication variation on the wave-
guide linewidth and thickness. Since we have no accurate
knowledge of ng of the low-order MZI, set the bound of
neff using Section 4.B.1.

5. Extract neff of the low-order MZI over the die. Fit the
neff die map using first-order/second-order polynomials.

6. Use the circuit model of the MZI and the curve fitting
method to extract neff and ng from the high-order MZI.
Estimate the nominal value of neff at each die location using
the fitted neff die map from low-order MZIs. Estimate the
bound of neff from intra-die fabrication variation on the wave-
guide linewidth and thickness. Since we can extract ng accu-
rately from the high-order MZI, set the bound of neff using
Section 4.B.2.

7. Extract neff and ng of the high-order MZI over the die.
8. Map neff and ng to linewidth w and thickness t using

the third-order geometry model.
9. Plot the die map of width and thickness. Identify ob-

vious outliers in the thickness map and check the errors of the
corresponding curve fitting to evaluate the problem.
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