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Abstract: The computational power required to classify cell holograms is a major limit to the
throughput of label-free cell sorting based on digital holographic microscopy. In this work, a
simple integrated photonic stage comprising a collection of silica pillar scatterers is proposed
as an effective nonlinear mixing interface between the light scattered by a cell and an image
sensor. The light processing provided by the photonic stage allows for the use of a simple linear
classifier implemented in the electric domain and applied on a limited number of pixels. A
proof-of-concept of the presented machine learning technique, which is based on the extreme
learning machine (ELM) paradigm, is provided by the classification results on samples generated
by 2D FDTD simulations of cells in a microfluidic channel.
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1. Introduction

The sorting of biological cells is of key importance in several biomedical applications, like
diagnostics, therapeutics and cell biology. However, an accurate classification and separation of
different cell types is usually expensive, time consuming and often requires alterations of the
samples due to the use of labels, e.g. fluorescent tags, that may hinder subsequent analyses [1]. For
these reasons, the development of label-free, high-speed, automated and integrated cell sorting
solutions is of particular interest. Among several options, the employment of digital holographic
microscopy in microfluidic flow cytometry is a promising candidate. In this technique, the
classification is carried out through the analysis of the interference pattern (hologram) projected
by the cell when illuminated by monochromatic light. The hologram is acquired by an image
sensor and contains information on the 3D refractive index structure of the cells [2].The large
amount of information contained in a cell hologram enables nontrivial analysis and classifications.
On the other hand, the computational cost of elaborating such a complex source of information
by reconstructing the image from the hologram is a major hindrance to an increase in the cell
sorter throughput, e.g. by parallelization of the process.
An important reduction in the required computing power was achieved by bypassing the

reconstruction of the cell image and directly processing the acquired hologram with a machine
learning algorithm that carries out the classification task [2, 3]. However, a further improvement
of the classification simplicity and performance is desired in order to fully exploit the potential
of this implementation.

Pillar scatterers for an extreme learning machine (ELM) implementation

In this work, a passive, linear, integrated photonic stage is proposed as an interface between
the hologram projection and the image sensor, in order to simplify the classification process in
the relatively slow electric domain. In particular, the forward scattered light coming from a cell
and the corresponding background are made to propagate through a collection of silica pillar
scatterers of elliptic cross section embedded in silicon nitride (Fig. 1). For computational time
reasons, this process has been investigated via 2D finite-difference time-domain (FDTD, [4])
simulations as a proof-of-concept, approximating the 3D case of a cell flowing in a microfluidic
channel interfaced with a photonic chip. The far-field intensity of the light exiting the scatterers
cluster is collected by an array of virtual pixels that approximately simulate a line scan image
sensor. The pixel outputs are fed into a linear classifier that can be, for example, implemented in
the electric domain.
The photonic stage containing the scatterers is intended to exploit the nonlinearity of the

transfer function that relates the phase shift accumulated by the light through the cell to the
corresponding interference pattern measured by an image sensor. Basically, the system can be
seen as an hardware implementation of an extreme learning machine (ELM), i.e. a feedforward
neural network whose hidden nodes are randomly generated and kept fixed [5] (see subsection
Nonlinear phase sensitivity in Results and discussion for a further argumentation). In the past
decade, this machine learning paradigm has been the object of an increasing interest in various
research field due to its remarkable efficiency, simplicity, and generalization performance [6].
Generally, the main advantages of ELMs with respect to other machine learning techniques
are that only a linear readout (in this case a linear classifier) needs to be trained and that it is
easily implemented in hardware. In this case, the pillar scatterer stage determines the ELM
hidden node structure by projecting onto the far-field intensity a very intricate nonlinear mapping
(based on sinusoidal functions of the phase information). This parallel processing is carried out
nearly instantaneously with respect to both the cell movement and the operating speed of an
electronic computer, providing an important advantage over other machine learning solutions
in the electric domain. It should be stressed that the phase-to-intensity nonlinearity is already
expressed by the interference pattern projected by the cell alone, without scatterers. However, the
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complexity of such a nonlinear mapping can be enhanced and controlled by the use of scatterers
in order to increase the performance of a subsequent linear classification. The exploitation of
light interference in order to fabricate a passive integrated reservoir computing implementation
(which is based on similar principles of ELMs but is applied to time-dependent signals [7]) using
linear optical media was demonstrated in [8]. However, the time-dependent input information was
encoded in the intensity of a laser signal and therefore the transfer function to the output detector
was quadratic (amplitude to intensity). Here, the input information is encoded in the phase of a
laser signal, such that the readout transfer function can be sinusoidal with respect to that input
(see subsection Nonlinear phase sensitivity in Results and discussion for a further argumentation).
The sine, for example, can be profitably employed as activation function in feedforward neural
networks under suitable conditions [9].

Fig. 1. Schematic of the classification process. From right to left: a monochromatic plane
wave impinges on a microfluidic channel containing a cell in water (nH2O ∼ 1.34), which
has a low refractive index contrast (ncytoplasm = 1.37, nnucleus = 1.39); the forward
scattered light passes through a collection of silica scatterers (nSiO2 ∼ 1.461) embedded
in silicon nitride (nSi3N4 ∼ 2.027) and organized in layers; the radiation intensity is then
collected by a far-field monitor, which is divided into bins (pixels); each pixel value is fed
into a trained logistic regression, which classifies the cell as a “normal” cell (small nucleus)
or as a “cancer” cell (big nucleus). The logistic regression consists of a weighted sum of
the pixel values. The weights are trained so that the sum exceeds a threshold value only if a
certain input class is recognized.

2. Simulation details

Concerning the optical simulations, the FDTD method was chosen because of its reliability in
dealing with complex dielectric structures (provided that a fine enough mesh size is chosen) and
because it allows for an intuitive understanding of the computed physical process. In particular,
visualizing the light field as a function of time provided a qualitative idea of how much the light
signal coming from the cell was mixed by the dielectric scatterers.
Both a cell in a microfluidic channel and the proposed silica scatterers were modeled in

the same 2D FDTD simulation (Fig. 1) employing Lumerical’s FDTD Solutions software. A
monochromatic plane wave (vacuum wavelength λ = 532 nm as in [2]) of constant intensity
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impinges transversely on a microfluidic channel (15 µm wide) filled with water. The channel
interfaces with a region containing layers of elliptic scatterers (0.5 µm wide and 1 µm long)
made of SiO2 embedded in Si3N4. At the end of the scatterer region, a vertical far-field monitor
(with an angular resolution of 55.6 points/deg) covers the total length of the simulated space.
The simulation region is 28 µm long along the vertical direction and from 20 µm to 30 µm along
the horizontal direction, depending on the number of scatterer layers. The FDTD mesh size is
∼ λ/29.
It should be stressed that the scope of this work is to provide a proof-of-concept of a new

approach to photonics machine learning, that can be generalized to many other implementations
besides the discussed examples. Therefore, the dimensionality of the simulation, the size of the
structures and the cell model are a consequence of a trade-off between closeness to reality, saving
of computational time and the search of a sufficiently complex (but not overly so) task. In any
case, all the simulated objects, aside from the scatterers, were designed independently of the
classification results.

Cell model

The cell model is composed of a cytoplasm region (ncytoplasm = 1.37) surrounding a nucleus
region (nnucleus = 1.39). An example is shown in Fig. 1. In order to generate a different cell
shape for each simulation, a 2D randomized cell model was employed, based on distorted ellipses.
Considering the ellipse equation in polar coordinates (ρ is the distance from the origin and θ the
angle with respect to the horizontal axis)

ρ2 cos2 θ

a2 +
ρ2 sin2 θ

b2 = 1 (1)

a surface modulation is introduced through the following substitution:

ρ→ ρ (1 + A cos(ωθ)) (2)

In addition, irregularities of the cell external surface are simulated by adding a noisy high-
frequency modulation through:

ρ→ ρ + Bεs (3)

where εs is a random number sampled from an uniform distribution from -1 to +1 for each point
on the surface. The cytoplasm and the nucleus were designed using a 1000 vertices polygon, thus
the last substitution introduces 1000 additional random variables in the cell model.
In this work, two different classification tasks are considered. The first is based on average

nucleus size and aims to distinguish between “normal” cells (small nucleus) and “cancer” cells
(bigger nucleus). The names in quotation marks were chosen because of the common tendency
of cancer cells to show evident irregularities in nucleus size [11]. The second task is based on
nucleus shape and aims to distinguish between “lymphocytes” (big quasi-spherical nucleus) and
“neutrophils” (nucleus divided in 3 lobes). The names in quotation marks refer to two among
the most common white blood cells that are present in human blood. These two cell models are,
physically and biologically speaking, only rough representations of their real counterparts when
flowing in a liquid medium [12]. The scope of this work, though, is to demonstrate the differences
between two classification approaches applied on models that are sufficiently representative of
real cell cases from a machine learning perspective.

“Normal” and “cancer” cells

The parameters for “normal” and “cancer” cell models are chosen as follows (subscript c stays
for “cytoplasm” and n for “nucleus”): ac = bc = 5 × (1 + 0.1ε) µm, Ac = 0.1 × (1 + 0.9ε),
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ωc = 3 × (1 + 0.9ε)rad−1, Bc = 0.2 for cytoplasm and

an = bn =
{

1.2 × (1 + 0.1ε)µm “normal” cells
2.5 × (1 + 0.1ε)µm “cancer” cells (4)

An = 0.1 × (1 + 0.9ε), ωn = 3 × (1 + 0.9ε)rad−1, Bn = 0 for nucleus. Here ε is a random
variable with uniform distribution from -1 to +1. In addition, the cytoplasm and the nucleus
center displacements are given respectively by xc = yc = ε µm, xn = xc + ac × 0.3ε and
yn = yc + bc × 0.3ε. Note that even if the expressions for the couples (ac, bc) , (an, bn) and
(xc, yc) are equal, they can differ in their values being ε a random variable.

“Lymphocytes” and “neutrophils”

The main difference between the “lymphocyte” and the “neutrophil” models is that the first has a
big quasi-spherical nucleus while the latter has 3 quasi-spherical nuclei whose average total area is
equal to the average area of the “lymphocyte” nucleus. The corresponding parameters are chosen
as follows (subscript c stays for “cytoplasm” and n for “nucleus”): ac = bc = 5.5× (1+ 0.1ε) µm,
Ac = 0.03 × (1 + 0.67ε), ωc = 3 × (1 + 0.9ε)rad−1, Bc = 0.2 for cytoplasm and

an = bn =
{

3.5 × (1 + 0.2ε)µm “lymphocytes”
3.5/
√

3 × (1 + 0.2ε)µm “neutrophils” (5)

An = 0.025 × (1 + ε), ωn = 4.5 × (1 + 0.33ε)rad−1, Bn = 0 for nucleus. Also here, ε is a
random variable with uniform distribution from -1 to +1. The cytoplasm center displacements is
xc = yc = ε. The nuclei center displacements are

an = bn =
{

xn = xc + ac × 0.2ε and yn = yc + bc × 0.2ε “lymphocytes”
xn = xc + r cos(αk + β) and yn = yc + r sin(αk + β) “neutrophils” (6)

Where r = 2.75 × (1 + 0.2ε)µm, β = (1 + ε)π and αk = 2
3πk + π

12ε, being k = 0, 1, 2 a different
integer for the 3 nuclei in a “neutrophil”.
In order to provide the reader with an intuitive idea of the shapes and the randomness of the

employed cell models, some examples are represented in Fig. 2.

Fig. 2. Examples of cells automatically generated by the employed randomized models. a)
Comparison between generated examples of “normal” cell and “cancer” cell. b) Comparison
between generated examples of “lymphocyte” and “neutrophil”.
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Scatterer configuration

The scatterer configuration has a large number of degrees of freedom and its complete exploration,
even using smart methods such as evolutionary algorithms, would be computationally quite
expensive. In fact, for each tested configuration, hundreds or thousands of simulations have
to be performed in order to provide the classifier with a sufficient number of training and test
samples. Therefore, only a few general parameters that control the complexity of the collected
interference pattern were explored, looking for a maximum in the classifier performances. The
scatterers are placed in vertical layers (e.g. Fig. 1) with an average vertical distance of 1µm
between their centers. The center of each scatterer is randomly displaced with respect to their
unperturbed center in the layer, both along the vertical and the horizontal directions. All the
random displacements belonging to the same architecture are sampled from the same uniform
probability distribution. The considered parameters for the structure optimization are:

• the random displacement amplitude Ar of the scatterers ;

• the horizontal distance D between the layers;

• the number Nlayers of layers.

An example of how these parameters can modify the interference pattern is given in Fig. 3.

Fig. 3. Far-field intensity profiles of the light scattered by a cell: a) without the presence of
scatterers, the interference pattern is relatively simple and smooth, most of the intensity is
confined between −6° and 6°; b) with 1 layer of scatterers, the far-field intensity is distributed
around periodically placed peaks, most of the field stays between −40° and 40°; c) with 4
layers of scatterers, the far-field intensity is distributed in a complex pattern mostly between
−60° and 60°.

3. Machine learning aspects

The far-field intensity profile was divided into Npix bins (or pixels) and the integration over each
bin was fed into a logistic regression. The Scikit-learn Python library [10] was employed, using
the “liblinear” solver. For each tested scatterer configuration a number Nsamp of simulations was
performed randomly varying the cell shape, as described in the previous section. In particular, the
classification results reported in the next section are obtained from sample sets of Nsamp = 3200
samples each. In half of the Nsamp simulations a “normal” cell was considered, while in the
remaining half a “cancer” cell (with bigger nucleus) was used. 75% of these two sets was
employed in the training of the logistic regression, while the rest was used as test set.
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Gaussian white noise was added a post)eriori on the interference patterns before they were
divided into bins. Different values for the noise standard deviation were chosen: 1%, 5%, 10%,
20%, 30%, 50% and 100% of the average intensity over the sample set.

A study on the dependence of the classification test error on the regularization strength (L1 and
L2) and on Nsamp was carried out in the two cases with and without the use of scatterers, on a
set of 2000 samples each. For this investigation, a 4 layer scatterer configuration was considered,
with Ar = 150nm and D = 1.846µm (this particular configuration was one of the best performing
in a preliminary exploration based on a lower (800) number of samples). The study pointed out
that regularization had no significant positive effect on the performances of the two classification
tasks. Furthermore, it showed that the learning curve (test error v.s. number of samples) converged
around Nsamp = 800 when the scatterers were used. Thus, for the classifications presented in the
next section no regularization was considered, but the investigation on the effect of different noise
levels partially covers the topic at least with regard to the L2 regularization. The classification
dependence on the number of pixels and training epochs was instead kept under direct control by
performing sweeps for each tested configuration.
The presented results are obtained through a validation process in which the simulated data

samples are randomly shuffled before they are split into training and test sets. From the results
generated by repeating this procedure 20 times a mean value and a confidence interval (chosen as
± twice the standard deviation) were calculated and plotted. Note that a different noise vector is
added to the intensity profiles after each shuffling.

4. Results and discussion

In this section, the results concerning the classification improvements due to the employment of
silica scatterers are discussed in 4 parts:

• the first part treats the results regarding the most straightforward employment of a visible
laser source (green laser with wavelength λ = 532nm) in the classification of “normal” and
“cancer” cell samples;

• in the second part, an intuitive argumentation on the phase sensitivity of the acquired
diffraction patterns is provided to explain the advantages expected from the implementation
discussed in the third part;

• in the third part, the performance improvements obtained by considering a (more expensive)
UV laser source (λ = 337.1nm) for “normal” and “cancer” cell classification are presented;

• in the last part, the results concerning the classification of “lymphocyte” and “neutrophil”
cells using the same configuration and light source as in the first part are reported in order
to show an example of how the proposed technique can directly generalize to other tasks.

Green light

Let us consider a green laser source (λ = 532nm) and let us compare the classification error
on the test samples when no scatterers are present and when, instead, 4 scatterer layers are
employed (considering the random displacement amplitude Ar = 150nm and the layer distance
D = 1.846µm). In the first case, when no scatterers are used, the angle range for which the
far-field intensity is not negligible is estimated to be between −6° and 6° (Fig. 3(a)) and this is
the range to which the number of pixels refers. In the latter case, when the 4 scatterer layers are
present, the chosen angle range is between −60° and 60° (Fig. 3(c)). Let us stress that the error
rate expected value and the confidence intervals drawn in all the following graphs are extracted
from the results obtained from 20 random permutations of the simulated samples and correspond
to an optimal choice of the number of training epochs. The resulting error rate values for different
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numbers of pixels and for different noise levels (Fig. 4) show that the use of scatterer layers
allows for a significant error rate reduction (up to ∼ 50%), provided that a sufficient number of
pixels and a low enough noise level are considered. The increased sensitivity of classification
performance towards added noise level when scatterers are used is ascribed to the fact that the
scatterers presence unfolds the cell diffraction pattern into a higher number of components (Fig.
3(c)) that may be important for classification. Thus, it is probable that some of these components
have low intensity with respect to the average pattern intensity and are therefore easily overcome
by high relative levels of noise.

The chosen scatterer configuration (Nlayers = 4, Ar = 150nm and D = 1.846µm) was the best
performing among the tested combinations (800 simulated samples each) of Nlayers = 1, 2, 3, 4, 5,
Ar = 50nm, 100nm, 150nm, 200nm, 250nm and D = 1.846µm, 2.85µm, 3.40µm. The two last
values of D respectively give a maximum and a minimum in the far-field transmission, considering
four layers of scatterers without any random displacement. Performances similar to the ones
presented in this paper were obtained for a broad number of cases. Therefore, the main conclusion
of this (non-exhaustive) geometrical exploration is that the employment of scatterer layers of
different kinds can decrease the classification error rate significantly, up to 50%.

Fig. 4. Comparison between the test error rates of “normal” and “cancer” cell classification,
corresponding to the absence (in red) and the presence (in blue) of scatterers (4 layers,
Ar = 150nm, D = 1.846µm). A green laser source (λ = 532nm) is employed. a) Test error
rate as a function of the number of employed pixels, with 5% added white noise. The darker
and the lighter versions of the two line colors respectively represent the mean value and the
confidence interval (of 2 standard deviations) over the 20 sample sets generated for validation.
b) Test error rate (averaged on the values obtained considering Npix = 250, 260, ..., 300) as
a function of the added noise percentage. In order to avoid error bar overlap, some of the
blue points are slightly shifted to the right. Both the plots show that the scatterers’ presence
allows for an error rate reduction up to ∼ 50%, provided that a sufficient number of pixels
and a low enough noise level are considered.

Nonlinear phase sensitivity

If there seems to be a limit to the improvements obtainable via the use of scatterers when a green
coherent source is used, this limit is easily overcome by decreasing the source wavelength. An
explanation of this effect can be provided by the following simplified argumentation.
Let us neglect for a moment the light deflection due to the cell refractive index structure and

let us consider only the phase shift of the light along all the possible fixed paths (here labeled
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with n) through the cell to one pixel on the screen. At the top of Fig. 5 a schematic representing 3
of these paths is shown. Let us state that the light along a path n has unitary initial amplitude and
null initial phase (the reasoning is independent from the initial conditions) and that it accumulates
a phase shift θn through the cell. Moreover, let us say that its amplitude is reduced by a factor An

and its phase is increased by φn along the path to the pixel excluding the path inside the cell.
Thus, the complex amplitude of the radiation impinging on the pixel is

∑
n Anei(θn+φn) and the

acquired intensity I is proportional to:

I ∝
�����∑
n

Anei(θn+φn)

�����2 = C +
∑
m<n

[Anm cos(θn − θm) + Bnm sin(θn − θm)] (7)

where C, Anm and Bnm (that can also account for the presence of scatterers) are constants with
respect to θn but depend on An and φn. These dependencies are omitted as the phase shifts θn
are the only actual inputs of our classifying system, neglecting the light absorption in the cell.
Eq. (7) shows that the phase shift to intensity transfer function on the pixel can be written as a
linear combination of all the possible sine and cosine functions whose argument is the phase
shift difference between two of the considered optical paths (bottom of Fig. 5). Note that if
the deflection of the light path due to the cell presence was also considered, we would have a
richer dependence on θn in the right-hand side of Eq. (7) (C, Anm and Bnm will also depend on
θn). Nevertheless, the sines and the cosines in Eq. (7) would still be present and the following
argument would still be relevant. It is important to note that, in this representation, the only
role of the scatterer layers is to improve classification performances by providing more suitable
weights Anm, Bnm and C.

Let us now consider, for instance, the difference ∆θ between phase shifts corresponding to a
path through the nucleus and a neighboring path that instead does not intersect the nucleus. Let
us call this phase shift difference ∆θn in the case of a “normal" cell (smaller nucleus) and ∆θc
in the case of a “cancer" cell (bigger nucleus). We can intuitively say that if the readout linear
classifier is able, for example, to detect the difference ∆I between the intensity contributions
produced by ∆θn and ∆θc respectively among the other intensity contributions, the system can be
successfully trained in carrying out the classification task. From Eq. (7) follows that an estimate
of this critical intensity difference is given by:

∆I ∝ A [sin(∆θc) − sin(∆θn)] + B [cos(∆θc) − cos(∆θn)]

with ∆θc =
2πDc

λ
(nnucleus − ncytoplasm)

and ∆θn =
2πDn

λ
(nnucleus − ncytoplasm)

(8)

where A and B are constants, Dc ∼ 2.5µm and Dn ∼ 1.2µm are the average diameter of
the “cancer” and the “normal” cell model respectively, λ is the wavelength of the considered
radiation, nnucleus = 1.39 and ncytoplasm = 1.37 are the refractive index of the nucleus and
of the cytoplasm in the employed cell model. Let us stress that we expect bad classification
performances if the system has a too linear or a too random response. It can be noted that in
Eq. (7) these two undesired conditions may be ascribed to θn − θm � π (linear regime) and
θn − θm � π (periodic regime) respectively. When we focus on distinguishing between different
nucleus sizes, Eq. (8) have to be considered. In particular, if λ = 0.532µm we have ∆θc ∼ 0.6
and ∆θn ∼ 0.3, which are quite smaller than π. By looking at the expressions for these two
differences, it can be noticed that they can be increased by lowering the wavelength. This implies
the need to employ an UV laser, which is usually significantly more expensive than its green
counterpart and could damage the lighted cell.
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Fig. 5. Two equivalent schematics of the proposed classifying system. At the top, a physical
schema shows an example of amplitude and phase evolution along 3 optical paths that end
up impinging on the same pixel of the image sensor. The acquired light intensity is then
weighted and summed by a linear classifier. At the bottom, a diagram (under the form of
a neural network architecture) represents the corresponding mathematical operations on
the light phase accumulated through the cell refractive index structure (see Eq. (7)). For
simplicity’s sake, the light deflection due to the cell presence is neglected and thus the
amplitudes An and the factors Anm, Bnm and C are considered as constants with respect to
the inputs θn.

UV light

Considering a system comprising 4 scatterer layers (Ar = 150nm and D = 2.85µm) with source
wavelengths λ = 532nm, 400nm, 300nm and 200nm, the overall change in the acquired diffraction
patterns was calculated for small modifications (of 130 nm) of the nucleus size (Fig. 6), keeping
the rest of the simulation parameters fixed. The change between two interference patterns has been
calculated by summing the absolute values of the elements of their point-wise difference vector.
The dispersion of the employed materials was accounted for and the same absolute contrast was
kept between the refractive indexes in the cell model and the water. As expected, the impact of
such nucleus modifications on the acquired interference pattern increases significantly as the
laser wavelength is decreased. On the other hand, the same happens to the transmission losses
due to the scatterers presence (from ∼ 29% at λ = 532nm to ∼ 54% at λ = 200nm).

In order to consider a plausible UV laser source, the classification performance was investigated
using λ = 337.1nm. In particular, a comparison between the case without scatterers and the case
with 4 scatterer layers (Ar = 150nm and D = 2.85µm) is discussed (Fig. 7). In comparison with
the results obtained using a green laser source (Fig. 4), the UV laser implementation substantially
enhances the beneficial effects of the scatterers employment. In fact, not only the achieved error
rate reduction (up to an order of magnitude) is remarkably larger, but also the robustness to
noise is significantly improved. This confirms the predictions arisen from the previous discussion
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λ= 200 nm

λ= 532 nm

λ= 400 nm

λ= 300 nm

Fig. 6. Change in the acquired diffraction pattern due to small increases (130 nm) of the
nucleus size as a function of the starting nucleus size. The change between two interference
patterns has been calculated by summing the absolute values of the elements of their
point-wise difference vector. It can be noted that the smaller the employed wavelength is, the
larger the pattern modifications become, implying an easier classification task.

on the nonlinear phase sensitivity of the cell diffraction pattern: as expected, even a slight
nonlinearity increase of the hidden nodes processing determines a considerable enhancement of
the classification performance.

Fig. 7. Comparison between the test error rates of “normal” and “cancer” cell classification,
corresponding to the absence (in red) and the presence (in blue) of scatterers (4 layers,
Ar = 150nm, D = 2.85µm). An UV laser source (λ = 337.1nm) is employed. a) Test error
rate as a function of the number of employed pixels, with 5% added white noise. The darker
and the lighter versions of the two line colors respectively represent the mean value and the
confidence interval (of 2 standard deviations) over the 20 sample sets generated for validation.
b) Test error rate (averaged on the values obtained considering Npix = 250, 260, ..., 300) as
a function of the added noise percentage. Both the plots show that the scatterers presence
allows for a considerable error rate reduction (up to an order of magnitude) in the whole
investigated ranges of pixel number and noise level.
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Generalization to another task

It is worth wondering whether and how the proposed technique can generalize to other kinds
of tasks. In fact, one of the key advantages of ELM implementations is that one network type
can work for different applications [6]. In order to (non exhaustively) test this property, the
classification of “lymphocyte” and “neutrophil” cells was attempted using exactly the same
hyperparameters of the previously discussed classification with a green light source, i.e. without
performing any kind of further optimization. The obtained classification improvement due to the
use of scatterers (Fig. 8) is even greater than the one for “normal” and “cancer” cell classification
(Fig. 4). Thus, the technique discussed in this paper was proven to generalize to two fundamentally
different classification tasks, as one is based on nuclei with different area but same shape, the
other on nuclei with same overall area but different shape.

Fig. 8. Comparison between the test error rates of “lymphocyte” and “neutrophil” cell
classification, corresponding to the absence (in red) and the presence (in blue) of scatterers.
The scatterers configuration and the light source are the same as in Fig. 4. a) Test error rate
as a function of the number of employed pixels, with 5% added white noise. The darker
and the lighter versions of the two line colors respectively represent the mean value and the
confidence interval (of 2 standard deviations) over the 20 sample sets generated for validation.
b) Test error rate (averaged on the values obtained considering Npix = 250, 260, ..., 300) as
a function of the added noise percentage. In order to avoid error bar overlap, some of the
blue points are slightly shifted to the right. Both the plots show that the scatterers’ presence
allows for an error rate reduction greater than 50%, provided that a sufficient number of
pixels and a low enough noise level are considered.

5. Conclusions

In this work, a simple passive integrated photonic structure is proposed to improve the performance
of a linear classifier employed for the optical classification of different cell kinds. The main
advantage of this application is that the light processing performed by the photonic structures is
much faster than traditional computations in the electric domain. Therefore, only the computational
power needed to perform a linear combination of the intensities measured by a limited number
of pixels is required for the cell classification. This allows, for example, for high throughput
label-free cell sorting employing several parallel channels along which the diffraction patterns of
the lighted cells are acquired. Another advantage is that a linear classifier is usually much easier
to train with respect to more complex machine learning applications, such as multi-layer neural
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networks.
The proposed integrated structure consists of a collection of silica pillars embedded in silicon

nitride that scatters the monochromatic light diffracted by a cell. When a green laser source
is employed, the scatterers’ presence leads to a significant improvement in performance (up
to 50%) of the classification of simulated cells with different nucleus size, provided that a
sufficient number of pixels and a low enough noise level are considered. Furthermore, an intuitive
reasoning on the nonlinear phase sensitivity of a cell diffraction pattern suggests that remarkably
bigger improvements can be achieved, for example, by decreasing the source light wavelength.
Indeed, when a UV laser source (λ = 337.1nm) is employed, the scatterers presence leads to
a considerable error rate reduction (up to an order of magnitude) for all the considered pixel
numbers and noise levels. Finally, the generalization capability of the proposed technique was
tested by considering the classification of cells with equal overall nucleus size but different
nucleus shape. Indeed, also in this case the use of scatterers was proven to be beneficial, increasing
the classification performance of more than 50%.
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