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Abstract — In the paper, we review our work on heterogencous integration of InP photonic devices on silicon. We
elaborate on two integration technologies that have been widely explored in the Photonics Research group, i.e. the
relatively mature adhesive bonding based integration scheme and a newly demonstrated buffer-less epitaxial growth
approach. Based on these techniques, we describe a broad range of photonic devices including mode-locked lasers,
high speed directly modulated distributed feedback lasers, electro-absorption modulators, photodetectors, super-
luminescent light emitting diodes, etc.
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I. INTRODUCTION

Emerging as an attractive integrated photonics platform, silicon photonics uses 200mm or 300mm CMOS
fabrication infrastructure to manufacture compact photonic ICs with capability of mass production and hence low
cost'. In addition, the co-integration of electronics with photonics is also becoming a reality’. While 56Gbps
photodetectors and optical modulators are readily available?, an efficient way of light generation on chip becomes
the fundamental limit that hinders the wide adoption of silicon photonics. Here, we review two technologies that
can integrate InP-based laser sources and other opto-electronic components on silicon in a scalable way.

II. HETEROGENEOUS INTEGRATION TECHNOLOGIES

Over the past decade, the bonding technology has been well-developed®. By using adhesive agents,
benzocyclobutene (BCB) in this case, we are able to realize wafer scale integration of InP-based epitaxial layer
structures on silicon with high yield, and an example of a silicon photonic chip with muitiple bonded InP dies can
be found in Fig. 1. After the II[-V material is bonded onto silicon photonic ICs, the post-processed photonic
components are lithographically aligned to the underlying silicon waveguide circuit (see Fig. 1). As a near-/mid-
term solution, the adhesive bonding technology suits well the primary target of silicon photonics, i.e. optical
interconnects, with the possibility of scaling from the first commercially available 4x28G transceivers to 400G or
1.6T transceivers by integrating arrays of III-V lasers on silicon in a cost-effective way. We will elaborate on
some photonic devices that were demonstrated in the past few years, including single wavelength InP DFB lasers,
tunable extended cavity lasers, multi-wavelength lasers, modelocked lasers, but also electro-absorption
modulators and photodetectors (see an example of MLL in Fig. 2). Also GaAs VCSELs have recently been
integrated onto a silicon photonics platform. Beyond the field of optical interconnects, silicon photonics is
expected to also have an impact on the field of optical sensing. Such optical spectroscopic sensor systems
integrated on a silicon chip require the integration of light sources and photodetectors operating at wavelengths
outside the telecommunication wavelength window. In this paper we will present the integration of broadband
waveguide coupled LEDs and spectrometer photodetector arrays covering the 1.5 to 4 um wavelength range (see
an example of type II InP QW photodiodes in Fig. 3).

As a long-term solution, the possibility of growing I1I-V materials directly on silicon enables to fully benefit
from the economies of scale offered by processing in advanced CMOS foundries on large wafers. For this to
become reality considerable hurdles need to be overcome: the large lattice mismatch (eInP/Si = 8.06%), the
difference in thermal expansion and the different polarity of the materials result in large densities of crystal
defects. Recently, boosted by the renewed interest of the electronics industry in using high-mobility compound
semiconductors in next-generation CMOS, considerable progress has been made on low-defect-density direct
growth of I1I-Vs on silicon. Well-optimized epitaxial technology confines the defect layer within 20 nm at the
interface of InP and silicon. Such buffer-less growth techniques has led to the recent demonstration of an InP
DFB laser array grown directly on silicon (Fig. 4)°. The possibility of using well-established in-plane laser
configuration and the top-down integration scheme provide a route towards the monolithic integration of dense
arrays of III-V laser sources with Si photonic circuits.
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Fig. 1 (left) Multiple InP dies bonded on a silicon photonic IC. (right) A scanning electron microscope (SEM) image of the cross-section
of the InP wafer bonded on top of a silicon waveguide.
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Fig.l 2 (left) Layout of the I11-V-on-silicon mode-locked laser cavity: (a) top view; (b) longitudinal cross-section, A microscope image of the
fabricated device is shown in (c). (right) High-resolution optical spectrum of the ps output pulse (20 MHz spectral resolution). Insert shows a
zoom-in image of the optical spectrum, representing an optical frequency comb with 1 GHz spacing.
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Fig. 3 (left) (a) Microscope image of the heterogeneously integrated type-II quantum well photodiode; (b} SEM image of the cross section of
the fabricated devices. (right) Dependence of the fiber coupled responsivity (R) on the input laser wavelength under reverse bias of 0 V and
0.5 V, the inset figure shows the grating coupler efficiency as a reference.
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Fig. 4 (left) Schematic plot of the InP DFB laser array integrated on silicon. Insert: SEM image of a InP-on-Si waveguide (right) Measured L—
L curves of an array of ten DFB lasers. Inset (top): linear-scale version of the ten log-scale L-L curves presented in the main panel. Inset

(bottom): camera-recorded photoluminescence image of ten working lasers under a large-area pumping condition.
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Monolithic laser array integration
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Laser static and dynamics characteristics Photonic interposers
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InP-based type Il short-wave infrared photodetector
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*  Monolithic 11IV-on-Si Integration platform promises very high
Integration density of HIV lasers on silicon.
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Foreword

We welcome you to Compound Semiconductor Week (CSW) 2016 in Toyama, Japan.

Following the great success of CSW2015 in Santa Barbara, USA and CSW2014 in Montpellier, France,
CSW2016 is a joint venue for the 43rd International Symposium on Compound Semiconductors (ISCS) and
the 28th International Conference on Indium Phosphide and Related Materials (IPRM). CSW2016 aims to be
the premier forum for science, technology, and applications in all areas of compound semiconductors.

ISCS is the preeminent international conference in the field of I1I-V, II-VI, and IV-IV semiconductors. The
ISCS series was initiated in 1966 under the name of “International Symposium on GaAs”. Later, in 1970
(the 3rd conference), the name of the conference was changed to “International Symposium on GaAs and
Related Compounds” in order to cover not only GaAs but also GaP, InP, and their alloys in the scope of
the conference. Since 1994 (the 21st conference), the conference name has been changed to “International
Symposium on Compound Semiconductors (ISCS)”. The current name reflects the broadening of the
conference scope due to the wide variety of compound semiconductors vital to materials for modern
electronic and optoelectronic devices. IPRM is the major conference worldwide on Indium Phosphide and
Related Materials, from physics to applications. The first conference was held in in 1989, Norman, OK, USA.
The IPRM technical conference and exhibit is held yearly and its location alternates between North America,
the Pacific Rim and Europe.

CSW2016 will start on Sunday, the 26th of June with two short courses, given by Prof. Susumu Noda, Kyoto
University, on Manipulation of Photons by Photonic Crystals, and by Prof. Akira Ohtomo, Tokyo Institute
of Technology, and Dr. Masataka Higashiwaki, National Institute of Information and Communications
Technology, on New Perspectives for Oxide Semiconductors and Their Applications.

On Monday, the 27th of June, CSW2016 will open with plenary sessions addressing recent and important
developments in compound semiconductor research. The four distinguished plenary speakers this year
are Prof. Jerome Faist, ETH Zurich, with a talk on Quantum Cascade Laser Frequency Combs: Physics
and Applications; Prof. Hideo Hosono, Tokyo Institute of Technology, who will discuss Novel Oxide
Semiconductors for OLEDs and Catalysis; Prof. Jests A. del Alamo, Massachusetts Institute of Technology,
who will speak about Nanometer-Scale 1lI-V CMOS;, and Dr. Hajime Shoji, Sumitomo Electric Industries,
Ltd., who will present his vision in a talk on InP-Based Integrated Optical Devices — Present and Future —.
The opening session will be followed by the ISCS/IPRM awards session.

At CSW2016, 37 invited talks, 142 contributed oral and 169 poster papers will be presented during the
course of both the ISCS and IPRM conferences. We are confident that you will find a lot of interesting papers
in your related fields, while the industrial exhibition will offer you opportunities to discover new products.
Finally, joint excursions and the conference dinner on Wednesday will complete CSW 2016. The proceedings
are published in IEEE conference proceedings (IEEE Xplore) and we are also planning to publish a special
conference issue in Physica Status Solidi (a/b) to highlight the most exciting new results presented at
CSwW2016.
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