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Abstract

Nonlinear photonic delay systems present interesting implementation platforms for machine
learning models. They can be extremely fast, offer great degrees of parallelism and poten-
tially consume far less power than digital processors. So far they have been successfully
employed for signal processing using the Reservoir Computing paradigm. In this paper we
show that their range of applicability can be greatly extended if we use gradient descent
with backpropagation through time on a model of the system to optimize the input encod-
ing of such systems. We perform physical experiments that demonstrate that the obtained
input encodings work well in reality, and we show that optimized systems perform signifi-
cantly better than the common Reservoir Computing approach. The results presented here
demonstrate that common gradient descent techniques from machine learning may well be
applicable on physical neuro-inspired analog computers.
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1. Introduction

Applied research in neural networks is currently strongly influenced by available computer
architectures. Most strikingly, the increasing availability of general-purpose graphical pro-
cessing unit (GPGPU) programming has sped up the computations required for training
(deep) neural networks by an order of magnitude. This development allowed researchers
to dramatically scale up their models, in turn leading to the major improvements on state-
of-the-art performances on tasks such as computer vision (Krizhevsky et al., 2012; Cireşan
et al., 2010).
One class of neural models which has only seen limited effects of the boost in speed from
GPUs are recurrent models. Recurrent neural networks (RNNs) are very interesting for
processing time series, as they can take into account an arbitrarily long context of their in-
put history. This has important implications in tasks such as natural language processing,
where the desired output of the system may depend on context that has been presented to
the network a relatively long time ago. In common feedforward networks such dependen-
cies are very hard to include without scaling up the model to an impractically large size.
Recurrent networks, however, can–at least in principle–carry along relevant context as they
are being updated.
In practice, recurrent models suffer from two important drawbacks. First of all, where
feedforward networks fully benefit from massively parallel architectures in terms of scal-
ability, recurrent networks, with their inherently sequential nature do not fit so well into
this framework. Even though GPUs have been used to speed up training RNNs (Sutskever
et al., 2011; Hermans and Schrauwen, 2013), the total obtainable acceleration for a given
GPU architecture will still be limited by the number of sequential operations required in
an RNN, which is typically much higher than in common neural networks. The second
issue is that training RNNs is a notoriously slow process due to problems associated with
fading gradients, which is especially cumbersome if the network needs to learn long-term
dependencies within the input time series. Recent attempts to solve this problem using
the Hessian-free approach have proved promising (Martens and Sutskever, 2011). Other
attempts using stochastic gradient descent combined with more heuristic ideas have been
described in Bengio et al. (2013).
In this paper we will consider a radical alternative to common, digitally implemented RNNs.
A steadily growing branch of research is concerned with Reservoir Computing (RC), a con-
cept which employs high-dimensional, randomly initialized dynamical systems (termed the
reservoir) to perform feature extraction on time series (Jaeger, 2001; Jaeger and Haas, 2004;
Maass et al., 2002; Steil, 2004; Lukosevicius and Jaeger, 2009). Despite its simplicity, RC
has several important advantages over traditional gradient descent training methods. First
of all, the training process is extremely fast. Only output weights are trained, and this is
performed by solving a single linear system of equations. Second, and of great importance,
the RC concept is applicable to any non-linear dynamical system, as long as it exhibits
consistent responses, a high-dimensional state space, and fading memory. This has opened
lines of research that go beyond common digital implementations and into analog physical
implementations. The RC concept has been demonstrated to work on a variety of physical
implementation platforms, such as water ripples (Fernando and Sojakka, 2003), mechanical
constructs and tensegrity structures (Caluwaerts et al., 2013; Hauser et al., 2011), electro-
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optical devices (Larger et al., 2012; Paquot et al., 2012), fully optical devices (Brunner et al.,
2013) and nanophotonic circuits (Vandoorne et al., 2008, 2014). As opposed to digital im-
plementations, physical systems can offer great speed-ups, inherent massive parallelism, and
great reductions in power consumption. In this sense, physical dynamical systems as ma-
chine learning implementation platforms may one day break important barriers in terms of
scalability. In the near future, especially optical computing devices might find applications
in several tasks where fast processing is essential, such as in optical header recognition,
optical signal recovery, or fast control loops.
The RC paradigm, despite its notable successes, still suffers from an important drawback.
Its inherently unoptimized nature makes it relatively inefficient for many important machine
learning problems. When the dimensionality of the input time series is low, the expansion
into a high-dimensional nonlinear space offered by the reservoir will provide a sufficiently di-
verse set of features to approximate the desired output. If the input dimensionality becomes
larger, however, relying on random features becomes increasingly difficult as the space of
possible features becomes so massive. Here, optimization with gradient descent still has an
important edge over the RC concept: it can shape the necessary nonlinear features auto-
matically from the data.
In this paper we aim to integrate the concept of gradient descent in neural networks with
physically implemented analog machine learning models. Specifically, we will employ a
physical dynamical system that has been studied extensively from the RC paradigm, a
delayed feedback electro-optical system (Larger et al., 2012; Paquot et al., 2012; Soriano
et al., 2013). In order to use such a system as a reservoir, an input time series is encoded
into a continuous time signal and subsequently used to drive the dynamics of the physical
setup. The response of the device is recorded and converted to a high-dimensional feature
set, which in turn is used with linear regression in the common RC setup. In this particular
case, the randomness of RC is incorporated in the input encoding. This encoding is per-
formed offline on a computer, but is usually completely random. Even though efforts have
been performed to improve this encoding in a generic way (by ensuring a high diversity in
the network’s response, discussed in Rodan and Tino (2011) and Appeltant et al. (2014)),
a way to create task-specific input encodings is still lacking.
In Hermans et al. (2014b), the possibility to use backpropagation through time (BPTT)
(Rumelhart et al., 1986) as a generic optimization tool for physical dynamical systems was
addressed. It was found that BPTT can be used to find remarkably intricate solutions to
complicated problems in dynamical system design. In Hermans et al. (2014a) simulated
results of BPTT used as an optimization method for input encoding in the physical sys-
tem described above were presented. In this paper we go beyond this work and show for
the first time experimental evidence that model-based BPTT is a viable training strategy
for physical dynamical systems. We choose two often-used high-dimensional data sets for
validation, and we show that input encoding that is optimized using BPTT in a common
machine learning approach, provides a significant boost in performance for these tasks when
compared to random input encodings. This not only demonstrates that machine learning
approaches are more broadly applicable than is generally assumed, but also that physical
analog computers can in fact be considered as parametrizable machine learning models, and
may play a significant role in the next generation of signal processing hardware.
This paper is structured as follows: first of all we discuss the physical system and its corre-
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sponding model in detail. We explain how we convert the continuous-time dynamics of the
system into a discrete-time update equation which we use as model in our simulation. Next,
we present and analyze the results on the tasks we considered and compare experimental
and simulated results.

2. Physical System

In this section we will explain the details of the physical system. We will start by formally
introducing its delay dynamics operating in continuous time. Next, we will explain how the
feedback delay can be used for realizing a high-dimensional state space encoded in time,
and we demonstrate that–combined with special input and output encoding–the setup can
be seen as a special case of RNN. Finally we explain how we discretize the system’s input
and output encoding, which enables us to approximate the dynamics of the system by a
discrete-time update equation.
The physical system we employ in this paper is a delayed feedback system exhibiting Ikeda-
type dynamics (Larger et al., 2004; Weicker et al., 2012). We provide a schematic depiction
of the physical setup in Figure 1. It consists of a laser source, a Mach-Zehnder modulator, a
long optical fiber (≈ 4 km) which acts as a physical delay line, and an electronic circuit which
transforms the optical beam intensity in the fiber into a voltage. This voltage is amplified
and low-pass filtered and can be measured to serve as the system output. Moreover, it
is added to an external input voltage signal, and then serves as the driving signal for the
Mach-Zehnder modulator. The measured output signal is well described by the following
differential equation (Larger et al., 2012):

T ȧ(t) = −a(t) + β
[
sin2(a(t−D) + z(t) + φ)− 1/2

]
. (1)

Here, the signal a(t) corresponds to a measured voltage signal (down to a constant scaling
and bias factor). The factor T is the time scale of the low-pass filtering operation in the
electronic circuit, equal to 0.241 µs, β is the total amplification in the loop, which in the
experiments can be varied by changing the power of the laser source. D is the delay of the
system, which has been chosen as 20.82 µs. z(t) is the external input signal, and φ is a
constant offset phase (which can be controlled by setting a bias voltage), which we set at
π/4 for all results presented in this paper. For ease of notation we will call the system a
delay-coupled Mach-Zehnder, which we abbreviate as DCMZ.
Note that the parameters β and φ, together with the global scaling of the input signal z(t),
control the global dynamical behavior of the system (Larger et al., 2012). Indeed, previous
research in the RC context have identified the role of these parameters in connection with
task performance. They found that good performance is usually found when the parameters
put the system in an asymptotically stable regime. For instance, if we keep φ = π/4, and
β < 1, the system state will always fall back to zero in the absence of input. In the case of
β > 1, the state of the system will spontaneously start to oscillate, which has a detrimental
effect on task performance. In this paper we will simply use values for β and φ that were
found to generally work well in the reservoir setup.
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2.1 Input and Output Encoding

Delay-coupled systems have–in principle–an infinite-dimensional state space, as these sys-
tems directly depend on their full history covering an interval of one delay time. This prop-
erty has been the initial motivation for using delay-coupled systems in the RC paradigm
in the past years. Suppose we have a multivariate input time series, which we will denote
by si, for i ∈ {1, 2, · · · , S}, S being the total number of instances (the length of the input
sequence). Each si is a column vector of size Nin× 1, with Nin the number of input dimen-
sions. We wish to construct an accompanying output time series yi. We convert each data
point si to a continuous-time segment zi(t) as follows:

zi(t) = m0(t) + mT(t)si,

where m0(t) and m(t) are masking signals, which are defined for t ∈ [0 · · ·P ], with P the
masking period. The signal m0(t) is scalar, and constitutes a bias signal, and m(t) is a
column vector of size Nin × 1. The total input signal z(t) is then constructed by time-
concatenation of the segments zi(t):

z(t) = zi(t mod P ) for t ∈ {(i− 1)P · · · iP}.

Similarly, we define an output mask u(t). We divide the state variable time traces a(t) in
segments ai(t) of duration P such that

a(t) = ai(t mod P ) for t ∈ {(i− 1)P · · · iP}.

The output time series yi is then defined as

yi = y0 +

∫ P

0
dt ai(t)u(t). (2)

It is possible to see the delay-coupled dynamical system combined with the masking prin-
ciple as a special case of an infinite-dimensional discrete-time recurrent neural network, as
illustrated in Figure 2. The recurrent weights, connecting the hidden states over time, are
fixed, and manifested by the delayed feedback connection. The input and output weights
correspond to the input and output masks.
The role of the parameters D and P is important to consider. If they are equal to each other
the recurrent network analogy, as shown in Figure 2b, reduces to a network where all nodes
have self-connections, and interaction between different nodes between different tasking pe-
riods is due to a combination of the low-pass filtering effect and the self-connection. If the
difference between D and P is small, there will be direct time-interaction between different
nodes. In fact, using a difference of one masking step between D and P has been the basis
for opto-electronic systems that do not have a low-pass filter (Paquot et al., 2012). If the
difference between D and P becomes significant it is difficult to anticipate how performance
will be affected. If D � P , most interactions will happen within a single masking period,
such that there will be little useful interaction between the nodes at different time steps. If
D � P , the nodes interact over connections that bridge several time steps. We found that,
for small differences of D and P , there is little to no noticeable effect on performance, such
that we kept D = P , as was used in previous publications.
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Figure 1: Schematic depiction of a delay-coupled Mach-Zehnder interferometer.

In practice, we cannot measure the state trajectory with infinite time resolution, nor can
we produce signals with an arbitrary time dependency, as there will always be constraints
that limit the maximum bandwidth of the generated signals. Therefore, we assume that
m0(t), m(t) and u(t) all consist of piecewise constant signals1, which are segmented in Nm

parts, Nm being the number of masking steps:

m0(t) = m0k for t ∈ {(k − 1)Pm · · · kPm},

m(t) = mk for t ∈ {(k − 1)Pm · · · kPm},

u(t) = uk for t ∈ {(k − 1)Pm · · · kPm}, (3)

where the length of each step is given by Pm = P/Nm. This means that we now have a finite
number of parameters that fully determine m0(t), m(t) and u(t). Note that, due to our
choice of P = D, Pm will by definition be an integer number of times the delay length D.
This is convenient for the next section, where we will make a discrete-time approximation
of the system, but it is not a necessary requirement of the system to perform well.

2.2 Converting the System to a Trainable Machine Learning Model

In Hermans et al. (2014b) it was shown that BPTT can be applied to models of continuous-
time dynamical systems. Indeed, it is perfectly possible to simulate the system using differ-
ential equation solvers and consequently compute parameter gradients. One issue, however,
is the significant computational cost. Note that, in a common discrete-time RNN, a single
state update corresponds to a single matrix-vector multiplication and the application of a
nonlinearity. In our case it involves the sequential computation of the full time trace of
ai(t). This is considerably more costly to compute, especially given the fact that–as in most
gradient descent algorithms–we may need to compute it on large amounts of data and this
for multiple thousands of iterations.
Due to the piecewise constant definition of u(t) we can make a good approximation of a(t).

1. Note that with a finite frequency bandwidth we cannot produce immediate jumps from one constant
level to the next. Therefore, we make sure that the duration of each constant part is much longer than
the transient in between, and we can safely ignore it.
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Figure 2: Schematic representation of the masking principle. a: Depiction of the input time
series si and the way it is converted into a continuous-time signal by means of
the input masking signals m(t). The horizontal line in the middle shows the time
evolution of the system state a(t). We have depicted two connection arrows at
one point in time, which indicate that a(t) depends on its immediately preceding
value (due to the low-pass filtering operation), and its delayed value. The state
trajectories are divided into segments each of which are projected to an output
instance yi. b: The same picture as in panel a, but now represented as a time-
unfolded RNN. We have shown the connections between the states as light grey
arrows, but note that there are in principle infinitely many connections.)

First we combine Equations 2 and 3. This gives us:

yi =

Nm∑
k=1

∫ kPm

(k−1)Pm

dt ukai(t) =

Nm∑
k=1

ukāik,

where āik =
∫ kPm

(k−1)Pm
dt ai(t). This means that we can represent ai(t) by a finite set of

variables āik. To represent the full time trace of a(t) we adopt a simplified notation as
follows2: āj = āik, where j = (i− 1)Nm + k.
Now we make the following approximation: we assume that for the duration of a single
masking step, we can replace the term a(t − D) by āi−Nm , that is, we consider it to be
constant. With this assumption, we can solve Equation 1 for the duration of one masking
step:

a(t) = γi + (âi − γi) exp

(
− t

T

)
for t ∈ {0 · · ·Pm}, (4)

with
γi = β

[
sin2(āi−Nm + z(t) + φ)− 1/2

]
,

and âi the value of a(t) at the start of the interval. Integrating over the interval t =
{0 · · ·Pm} we find:

āi = (âi − γi)κ+ Pmγi,

2. Please do not confuse with the index i in ai(t). Here the index indicates single masking steps, rather
than full mask periods.
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with κ = 1− e−Pm/T . We can eliminate âi as follows. First we derive from Equation 4 that
âi+1 = (âi − γi)e−Pm/T + γi. If we combine this expression with the following two:

āi = (âi − γi)κ+ Pmγi,

āi+1 = (âi+1 − γi+1)κ+ Pmγi+1,

we can eliminate âi, and we end up with the following update equation for āi:

āi+1 = ρoāi + ρ1γi + ρ2γi+1,

with ρ0 = e−Pm/T , ρ1 = Tκ−Pme−Pm/T , and ρ2 = Pm−Tκ. This leads to a relatively quick-
to-compute update equation to simulate the system. BPTT can also be readily applied on
this formula, as it is a simple update equation just like for a common RNN. This is the
simulation model we used for training the input and output masks of the system.
We verified the accuracy of this approximation both on measured data of the DCMZ and
on a highly accurate simulation of the system. For the parameters used in the DCMZ we
got very good correspondence with the model (obtaining a correlation coefficient between
simulated and measured signals of 99.6%).

2.3 Hybrid Training Approach

One challenge we faced when trying to match the model with the experimentally measured
data was that we obtained a sufficiently good correspondence only when we very carefully
fitted the values for β and φ. We can physically control these parameters, but exactly
setting their numerical values turned out not to be trivial in the experiments, especially
since they tend to show slight drifting behavior over longer periods of time (in the order of
hours). As a consequence, it turned out to be a challenge to train parameters in simulation,
and simply apply them directly on the DCMZ. Therefore, we applied a hybrid approach
between gradient descent and the RC approach. We train both the input and output masks
in simulations. Next, we only use the input masks for the physical setup. After recording all
the data, we retrained the output weights using gradient descent, this time on the measured
data itself. The idea is that the input encoding will produce highly useful features for the
system even when it is trained on a model that may show small, systematic differences with
the physical setup.

2.4 Input Limitations

One additional physical constraint is the fact that the voltages that can be generated by
the electronic part of the system are limited within a range set by its supply voltage. The
output voltage of the electronic part serves as the input of the Mach-Zehnder interferometer,
and corresponds to the term a(t−D)+z(t) in the argument of the squared sine in Equation
1 (the offset phase φ is controlled by a separate voltage source). The voltage range we were
able to cover before the amplifiers started to saturate, roughly corresponded to a range of
[−π/2 · · ·π/2] in Equation 1: one full wavelength. Instead of accounting for the saturation
of the amplifiers in our simulations, we made sure that when the input argument z(t) went
outside of this range, we mapped it back into this range by adding or subtracting π. Note
that this has no effect on Equation 1 due to the periodicity of the squared sine. Due to the
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addition of the input signal with the delayed feedback a(t−D), there is still a chance that
the total argument falls out of the range [−π/2 · · ·π/2], but in practice such occurrences
turned out to be rare, and could safely be ignored.

3. Experiments

We tested the use of BPTT for training the input masks both in simulation and in exper-
iment on two benchmark tasks. First, we considered the often-used MNIST written digit
recognition data set, where we use the dynamics of the system indirectly. Next, we applied
it on the TIMIT phoneme data set. For the MNIST experiment we used Nm = 400 masking
steps. For TIMIT we used Nm = 600.

3.1 MNIST

To classify static images using a dynamical system, we follow an approach similar to the
one introduced in Rolfe and LeCun (2013). Essentially, we repeat the same input segment
several times until the state vector ai(t) of the DCMZ no longer changes. Next we choose
the final instance of ai(t) to classify the image. In practice we used 10 iterations for each
image in the MNIST data set (i.e., each input digit is repeated for 10 masking periods).
This sufficed for ai(t) to no longer depend on its initial conditions, and in practice this
meant that we were able to present all digits to the network right after each other.
Input masks were trained using 106 training iterations, where for each iteration the gradient
was determined on 500 randomly sampled digits. For training we used Nesterov momen-
tum (Sutskever et al., 2013), with momentum coefficient 0.9, and a learning rate of 0.01
which linearly decayed to zero over the duration of the training. As regularization we only
performed 1-pixel shifts for the digits. Note that these 1-pixel shifts were used for training
the input masks, but we did not include them when retraining the output weights, as we
only presented the DCMZ with the original 60,000 training examples.
After training the input weights, we gathered both physical and simulated data for the 4
experiments as described below, and retrained the output weights to obtain a final score.
Output weights are trained using the cross-entropy loss function over 106 training iterations,
where for each iteration the gradient was determined on 1000 randomly sampled digits. We
again used Nesterov momentum, with momentum coefficient 0.9. The learning rate was
chosen at 0.002 and linearly decayed to zero. Meta-parameter optimization was performed
using 10,000 randomly selected examples from the training set.
We performed 4 tests on MNIST. First of all we directly compared performances between
the simulated and experimental data. When we visualized the features that the trained
input masks generated, we noticed that they seemed ordered (see Figure 3). Indeed, for
each masking step, a single set of weights mk, which can be seen as a receptive field, is ap-
plied to the input image, and the resulting signals from the receptive fields are injected into
the physical setup one after each other. Apparently, the trained input masks have similar
features grouped together in time. To confirm that this ordering in time is a purposeful
property, we shuffled the features mk over a single masking period to obtain a new input
mask without a natural ordering in the features. Next we tested (in simulation) how much
the performance degraded when using these masks. Finally, we also tested classification
employing masks with completely random elements, where only the scaling of the weights
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Figure 3: Depiction of the image features present in the input masks for the MNIST task.
We have shown the input weights of the 400 masking steps, which we have re-
shaped into a 20×20 grid of 28×28 pixel representations, corresponding to the
receptive fields of each masking step (which can be considered virtual ”neurons”).
Time (progression of the masking steps, and hence physical time) runs row by
row. Notice that the order in which they occur is not random, but rather similar
features are grouped in time.
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Figure 4: Depiction of the input mask trained on the TIMIT task. We have shown the input
weights of the 600 masking steps (horizontal axis) for each channel (vertical axis).
For the sake of visualization we have here depicted the natural logarithm of the
absolute value of the mask plus 0.1. This enhances the difference in scaling for
the different channels.

MNIST test error TIMIT frame error rate

Experimental data 1.16% 33.2%
Simulated data 1.08% 31.7%

Simulated data: time-shuffled 1.41% 32.8%
Simulated data: random 6.72% 40.5%

Best in literature 0.23% 25.0%
(Cireşan et al., 2012) (Cheng et al., 2009)

Table 1: Benchmark performances for different experimental setups.

was optimized (which is the RC approach).
Results are presented in the middle column of Table 1. The difference between experimental
and simulation results is very small. The time shuffled features do indeed cause a notable
increase in the classification error rate, indicating that the optimized input masks actively
make use of the internal dynamics of the system, and not just offer a generically good fea-
ture set.
For the sake of comparison we have added the current state-of-the-art result on MNIST. For
a comprehensive overview of results on MNIST please consult http://yann.lecun.com/

exdb/mnist/. Our result are comparable to the best results obtained using neural networks
with a single hidden layer (denoted as a 2-layer NN on the previously mentioned website).
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3.2 TIMIT

We applied frame-wise phoneme recognition to the TIMIT data set (Garofolo et al., 1993).
The data was pre-processed to 39-dimensional feature vectors using Mel Frequency Cepstral
Coefficients (MFCCs). The data consists of the log energy, and the first 12 MFCC coeffi-
cients, enhanced with their first and second derivative (the so-called delta and delta-delta
features). The phonemes were clustered into a set of 39 classes, as is the common approach.
Note that we did not include the full processing pipeline to include segmentation of the
labels and arrive at a phoneme error rate. Here, we wish to illustrate the potential of our
approach and demonstrate how realizations of physical computers can be extended to fur-
ther concepts, rather than to claim state-of-the-art performance. Given that, in addition,
the input masks are trained to perform frame-wise phoneme classification, including the
whole processing pipeline would not be informative.
Input masks are trained using 50, 000 training iterations, where for each iteration the gra-
dient was determined on 200 randomly sampled sequences of a length of 50 frames. For
training we again used Nesterov momentum, with momentum coefficient 0.9, and a learning
rate of 0.2 which linearly decayed to zero over the duration of the training. As we were in
a regime far from overfitting, we simply chose the training error for meta-parameter opti-
mization. We have depicted the optimized input mask in Figure 4. Note that the training
process strongly rescaled the masking weights for different input channels, putting more
emphasis on the delta and delta-delta features (respectively channels 14 to 26 and 27 to 39
).
We repeated the four scenarios previously discussed: using optimized masks in simulation
and experiment, using time-shuffled masks, and using random masks. The resulting frame
error rates are presented in the right column of Table 1. The simulated and experimental
data differ by 1.5%, a relatively small difference, indicating that input masks optimized in
simulation are useful in practice, even in the presence of unavoidable discrepancies between
the used model and the DCMZ. Results for random masks are significantly worse than those
with optimized input masks.
Comparison to literature is not straightforward as most publications do not mention frame
error rate, but rather the error rate after segmentation. We included the lowest frame error
rate mentioned in literature to our knowledge, though it should be stated that other works
may have even lower values, even when they are not explicitly mentioned. For an overview
of other results on frame error rate please check Keshet et al. (2011).
The decrease in performance when using time-shuffled masks is quite modest, suggesting
that in this case, most of the improvement over random masks is due directly from the
features themselves, and the precise details of the dynamics of the system are less crucial
than was the case in the MNIST task 3. Although further testing is needed, we suggest two
possible reasons for this. First of all, the TIMIT data set we used contained the first and
second derivatives of the first thirteen channels, which already provides information on the
preceding and future values and acts as an effective time window. Indeed as can be seen
from Figure 4, the input features amplify these derivatives. Therefore, a lot of temporal

3. Note that, when the features are shuffled in time over a single masking period, this indirectly also affects
the way information is passed on between different masking periods as the communication between
specific nodes between masking periods is a combined effect of the low-pass filter and the self connection.
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context is already embedded in a single input frame, reducing the need for recurrent con-
nections. Secondly, the lack of control over the way information is mixed over time may
still pose an important obstacle to effectively use the recurrence in the system. Currently,
input features are trained to perform two tasks at once: provide a good representation of
the current input, and at the same time design the features in such a way that they can
make use of the (fixed) dynamics present within the system. It may prove the case that
the input masks do not have enough modeling power to fulfill both tasks at once, or that
the way temporal mixing occurs in the network cannot be effectively put to use for this
particular task.

4. Discussion and Future Work

In this paper we presented an experimental survey of the use of backpropagation through
time on a physical delay-coupled electro-optical dynamical system, in order to use it as a
machine learning model. We have shown that such a physical setup can be approached as
a special case of recurrent neural network, and consequently can be trained with gradient
descent using backpropagation. Specifically, we have shown that both the input and output
encodings (input and output masks) for such a system can be fully optimized in this way,
and that the encodings can be successfully applied to the real physical setup.
Previous research in the usage of electro-optical dynamical systems for signal processing
used random input encodings, which are quite inefficient in scenarios where the input di-
mensionality is high. We focused on two tasks with a relatively high input dimensionality:
the MNIST written digit recognition data set and the TIMIT phoneme recognition data
set. We showed that in both cases, optimizing the input encoding provides a significant
performance boost over random masks. We also showed that the input encoding for the
MNIST data set seems to directly utilize the inherent dynamics of the system, and hence
does more than simply provide a useful feature set.
Note that the comparison with Reservoir Computing is based on the constraints by a given
physical setup and a given set of resources. We note that the Reservoir Computing setup
could give good results on the proposed tasks too, if we were greatly scaling up its effec-
tive dimensionality. This has been evidenced in, for example, Triefenbach et al. (2010),
where good results on the TIMIT data set were achieved by using Echo State Networks (a
particular kind of Reservoir Computing) of up to 20,000 nodes. In our setup this would
be achieved by increasing the number of masking steps Nm within one masking period.
In reality, however, we will face two practical problems. First of all, there are bandwidth
limitations in signal generation and measurement. Parts of the signal that fluctuate rapidly
would be lost when reducing the duration of a single masking step. If one would scale up
by keeping the length of the mask steps fixed but use a longer physical delay, for instance
a fiber of tens or hundreds of kilometers, the potential gain in performance comes at the
cost of one of the systems important advantages: its speed. Also it is hard to foresee how
other optical effects in such long fibers such as dispersion and attenuation, would affect
performance. This would be an interesting research topic for future investigations.
At the current stage we did not quantify how much the results in this paper hinge on the
ability to model the system mathematically. This particular system can be modeled rather
precisely, but it is unclear how fast the usefulness of the presented approach would degrade

2093



Hermans, Soriano, Dambre, Bienstman, and Fischer

when the model becomes less acute.
Several directions for future improvements are apparent. The most obvious one is that we
could greatly simplify the training process by putting the DCMZ measurements directly in
the training loop: instead of optimizing input masks in simulations, we could just as well
directly use real, measured data. The Jacobians required for the backpropagation phase
can be computed from the measured data. A training iteration would then consist of the
following steps: sample data, produce the corresponding input to the DCMZ with the cur-
rent input mask, measure the output, perform backpropagation in simulation, and update
the parameters. The benefit would be that we directly end up with functional input and
output masks, without the need for retraining. On top of that, data collection would be
much faster. The only additional requirement for this setup would be the need for a single
computer controlling both signal generation and signal measurement.
The next direction for improvement would be to rethink the design of the system from a
machine learning perspective. The current physical setup on which we applied backprop-
agation finds its origins in reservoir computing research. As we argue in Section 2, the
system can be considered as a special case of recurrent network with a fixed, specific con-
nection matrix between the hidden states at different time steps. In the reservoir computing
paradigm, one always uses fixed dynamical systems that remain largely unoptimized, such
that in the past this fact was not particularly restrictive. However, given the possibility
of fully optimizing the system that was demonstrated in this paper, the question on how
to redesign this system such that we can assert more control over the recurrent connection
matrix, and hence the dynamics of the system itself, becomes far more relevant. Currently
we have a fixed dynamical system of which we optimize the input signal to accommodate
a certain signal processing task. As explained at the end of Section 3.2, it appears that
backpropagation can currently only leverage the recurrence of the system to a limited de-
gree, when using a single delay loop. Therefore it would be more desirable to optimize both
the input signal and the internal dynamics of the system to accommodate a certain task.
Alternatively, the configuration can be easily extended to multiple delay loops, allowing for
a richer recurrent connectivity.
The most significant result of this paper is that we have shown experimentally that the
backpropagation algorithm, a highly abstract machine learning algorithm, can be used as
a tool in designing analog hardware to perform signal processing. This means that we may
be able to vastly broaden the scope of research into physical and analog realizations of
neural architectures. In the end this may result in systems that combine the best of both
worlds: powerful processing capabilities at a tremendous speed and with a very low power
consumption.
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Helmut Hauser, Auke J Ijspeert, Rudolf M Füchslin, Rolf Pfeifer, and Wolfgang Maass.
Towards a theoretical foundation for morphological computation with compliant bodies.
Optics Express, 105(5-6):355–370, 2011.

Michiel Hermans and Benjamin Schrauwen. Training and analysing deep recurrent neural
networks. In Advances in Neural Information Processing Systems, pages 190–198, 2013.

2095



Hermans, Soriano, Dambre, Bienstman, and Fischer

Michiel Hermans, Joni Dambre, and Peter Bienstman. Optoelectronic systems trained with
backpropagation through time. IEEE Transactions in Neural Networks and Learning
Systems, 2014a. in press.

Michiel Hermans, Benjamin Schrauwen, Peter Bienstman, and Joni Dambre. Automated
design of complex dynamic systems. PloS One, 9(1):e86696, 2014b.

Herbert Jaeger. Short term memory in echo state networks. Technical Report GMD Report
152, German National Research Center for Information Technology, 2001.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless telecommunication. Science, 308:78–80, April 2 2004.

Joseph Keshet, David McAllester, and Tamir Hazan. Pac-bayesian approach for minimiza-
tion of phoneme error rate. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 2224–2227, 2011.

Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25,
pages 1106–1114, 2012.

Laurent Larger, Jean-Pierre Goedgebuer, and Vladimir Udaltsov. Ikeda-based nonlinear
delayed dynamics for application to secure optical transmission systems using chaos.
Comptes Rendus Physique, 5(6):669–681, 2004.

Laurent Larger, Miguel C Soriano, Daniel Brunner, Lennert Appeltant, Jose M Gutiérrez,
Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. Photonic information processing
beyond turing: an optoelectronic implementation of reservoir computing. Optics Express,
3:20, 2012.

Mantas Lukosevicius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3):127–149, 2009.
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Fischer, and Lúıs Pesquera. Opto-electronic reservoir computing: tackling noise-induced
performance degradation. Optics Express, 21(1):12–20, 2013.

Jochen Steil. Backpropagation-Decorrelation: Online recurrent learning with O(N) com-
plexity. In Proceedings of the International Joint Conference on Neural Networks, vol-
ume 1, pages 843–848, 2004.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural
networks. In Proceedings of the 28th International Conference on Machine Learning,
pages 1017–1024, 2011.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 1139–1147, 2013.

Fabian Triefenbach, Azaraksh Jalalvand, Benjamin Schrauwen, and Jean-Pierre Martens.
Phoneme recognition with large hierarchical reservoirs. In Advances in Neural Informa-
tion Processing Systems 23, pages 2307–2315, 2010.

Kristof Vandoorne, Wouter Dierckx, Benjamin Schrauwen, David Verstraeten, Roel Baets,
Peter Bienstman, and Jan van Campenhout. Toward optical signal processing using
photonic reservoir computing. Optics Express, 16(15):11182–11192, 2008.

Kristof Vandoorne, Pauline Mechet, Thomas Van Vaerenbergh, Martin Fiers, Geert Mor-
thier, David Verstraeten, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman. Ex-
perimental demonstration of reservoir computing on a silicon photonics chip. Artificial
Life, 5, 2014.

Lionel Weicker, Thomas Erneux, Otti DHuys, Jan Danckaert, Maxime Jacquot, Yanne
Chembo, and Laurent Larger. Strongly asymmetric square waves in a time-delayed sys-
tem. Physical Review E, 86(5):055201, 2012.

2097


	Introduction
	Physical System
	Input and Output Encoding
	Converting the System to a Trainable Machine Learning Model
	Hybrid Training Approach
	Input Limitations

	Experiments
	MNIST
	TIMIT

	Discussion and Future Work

