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We present a novel and simple method to obtain an ultra-wide free spectral range (FSR) silicon ring resonator
together with a tuning range covering the entire spectrum from 1500 nm to 1600 nm. A ring resonator with a
large FSR together with a high Q factor, high tuning efficiency, low fabrication cost and complexity is desired
for many applications. In this paper, we introduce a novel way to make such a ring resonator, which takes
advantage of the well known resonance-splitting phenomenon. It is a single ring resonator with a FSR more
than 150 nm around 1550 nm and has an easy thermo-optic tunability which can produce a tuning range
around 90 nm or even more. Moreover, the device is simple to implement and can be fabricated in standard
CMOS technology without requiring any kind of complicated processing or extra materials. The potential
applications include single mode laser cavities, WDM filters, (de)multiplexers, optical sensors and integrated
reflectors.

OCIS codes: (230.5750) Resonators; (230.7408) Wavelength filtering devices; (230.3120) Integrated
optics devices; (280.4788) Optical sensing and sensors; (140.3570) Lasers, single-mode.
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1. Introduction
Microring resonators (MRR) have proven to be one of
the most intensively used components in various appli-
cations, covering laser cavities, WDM filters, optical sen-
sors, optical (de)multiplexers, all optical signal process-
ing and more [1–6]. Silicon photonics is a very attractive
platform to implement MRRs because of its high index
contrast and compatibility with CMOS technology [7, 8].
This allows the fabrication of compact rings with small
roundtrip length, leading to a large free spectral range
(FSR). Most applications desire a ring resonator with a
large FSR, wide tuning range, low insertion loss (IL),
high quality Q factor, narrow bandwidth (BW) as well
as low fabrication cost and complexity. However, these
performance indicators cannot all be optimized at the
same time, there is always a trade-off. For instance, the
most straightforward way to get a ring resonator with a
large FSR is to shorten its length, as the FSR is inversely

proportional to the roundtrip length: FSR =
λ2
0

ngL
, here

λ0 is the resonance wavelength, ng and L are the group
index and total length of the ring waveguide, respec-
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tively.

But it is not possible to reduce the roundtrip length
of the ring indefinitely. First of all, this will complicate
the tuning scheme. Moreover, a very short length means
a very sharp bend radius, sometimes smaller than 5 μm
in silicon strip waveguides. This can lead to significant
bend loss as well as bend/straight transition loss [9, 10],
and make the ring more vulnerable to sidewall roughness
as the mode profile in the bend waveguide is positioned
closer to the outer wall. It is also difficult to obtain
the correct coupling coefficient in the coupling sections
because of the extremely short coupling length. All these
factors impose a lower limit on the ring roundtrip length,
and therefore an upper limit on the FSR.

Most applications limit the operational wavelength
range of the ring to a single FSR. In silicon nanopho-
tonic waveguides, the widest practical FSRs are of the
order of 40 nm in the telecommunication C-band around
1550 nm [11] and the tuning efficiency is fixed at a value
around 370 nm/RIU (refractive index unit), according
to equation (1)[8], where the Δλ,Δneff is the resonance
wavelength shift and the effective index change, respec-
tively. This tuning efficiency generates a tuning range
limited to 7 nm if thermo-optic effect is applied, as the
temperature variation induced by heater is generally less
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than 100 K and the thermo-optic coefficient of Silicon is
1.8 × 10−4 K−1[12]. A ring resonator that has a much
wider FSR, or is even free of any FSR, and can be tuned
in a much wider range by simple thermo-optic effect,
while at the same time does not suffer from implemen-
tation or performance limitations is therefore highly de-
sirable.

Δλ

Δneff
=

λ0

ng
(1)

There has been other work proposing different meth-
ods to implement ring resonators with a very wide FSR
[11, 13–16]. Apart from drastically reducing the bend ra-
dius, these methods can be classified in two categories:
the use of the Vernier effect in multiple rings [15, 16]; and
the use of intra-ring reflectors which require complicated
processing or CMOS incompatible materials[13, 14, 17].
Multiple rings will impose additional requirements to

the design accuracy and fabrication tolerance, as the
resonance wavelength and bandwidth of the individual
rings need to be extremely well matched. If not the
multi-ring configuration can result in a split resonance.
Moreover, the tuning efficiency is relatively poor and
the resonance mode is hard to move continuously in the
spectrum, moreover the well known problem of backscat-
tering induced splitting is not considered and cannot be
compensated [18].
An alternative is to introduce reflectors into the ring

to induce a strong coupling between the clockwise and
the counterclockwise propagating mode. Bragg grat-
ings can be used to this effect, but the need for high-
resolution e-beam lithography negates some of the ad-
vantages of current silicon photonics technologies. The
same can be said for the use of metal particles as a back-
reflector, which would introduce material incompatibili-
ties. Moreover, extra loss mechanisms are accompanied
with Bragg grating or metal particles. As clearly shown
in [13], the Q factor as well as the extinction ratio of
the resonance is quite poor. Again, these methods, even
though they make use of deliberate backreflection, can-
not compensate for unintentional, stochastic backscat-
tering along the circumference of the ring.
Our device presented in this paper is a simple struc-

ture consisting of a ring resonator with a loop-MZI re-
flector inside the ring to intentionally introduce reflec-
tion. The device is accompanied with an ultra-wide FSR
that spans more than 150 nm. Besides, by implementing
two phase shifters, which can be based on simple thermo-
optic effect, its tuning range can almost cover the whole
spectrum from 1500 nm to 1600 nm, this is equivalent to
a tuning efficiency 13 times higher than that of a normal
silicon ring resonator. Moreover, for most of the former
literature, the ring can only be configured as an all-pass
ring, thus the applications are limited. The device we
propose could be configured as either an all pass or an
add drop ring resonator.
The paper is constructed in the following way: in sec-

tion 2 we will explain schematic of the device as well as

the theory behind this phenomenon by means of tempo-
ral Coupled Mode Theory (tCMT). In the section 3 after
that, the design principles, detailed characterisation and
simulation results by using circuit simulator-Caphe [19]
will be given. Finally we will conclude our work.

2. Theory and Schematic
In this section, we will first use temporal Coupled Mode
Theory (tCMT) to explain how reflection inside the
MRR could significantly influence the extinction ratio
of MRR. Then we will introduce how to get an ultra
wide FSR by taking advantage of this phenomenon. Fi-
nally we will give and briefly introduce the schematic for
our device.

2.A. Extinction Ratio Modified by Reflection Inside
the MRR

Fig. 1: Schematic of the tCMT model for ring
resonators. (a) An ideal ring resonator has no

reflection inside, thus only one circulating mode is
activated by corresponding input port. (b) In a ring
resonator with internal backreflection, the two modes

are coupled thus simultaneously active.

tCMT has been used intensively to analyze a ring res-
onator with or without reflection [18, 20–22]. We will
first use tCMT to build a model for an ideal MRR and
then build a model for a MRR with reflection inside,
to clearly and quantitatively show how the reflection
will influence the performance (resonance wavelength,
extinction ratio etc.) of the ring.

2.A.1. tCMT for Ideal MRR
For an ideal MRR without any kind of reflection or
backscattering inside, there is only one circulating mode
when only one port is injected with light as shown in
Fig. 1 (a). According to tCMT, equations describing
the circulating mode αccw as well as the transmitted
field at through port St are given in equation (2) and
(3) [20, 21]:

dαccw

dt
= jω0αccw − (

1

τi
+

1

τo
+

1

τl
)αccw − jμiSi (2)

St = Si − jμiαccw Sd = −jμoαccw Sa = Sr = 0 (3)

Here, αccw stands for the energy amplitude of the
counterclockwise propagating mode, normalized such
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that |αccw|2 represents the total energy of this mode. Sx

refer to the wave amplitude at each port, quite similar
to the electric filed amplitude, as |Sx|2 also has the unit
of power. The decay rates 1

τi
and 1

τo
describe the trans-

fer of energy to the input and output bus waveguides,
and 1

τl
represents the intrinsic (”unloaded”) roundtrip

loss. The coupling in the directional couplers μi and μo

are related to these decay rates and the field coupling
coefficients κi and κo as in equation (4)[21]:

μ2
i = κ2

i

c

ngL
=

2

τi
μ2
o = κ2

o

c

ngL
=

2

τo
α2
l

c

ngL
=

2

τl
(4)

Here, the c, ng, L are light speed in vacuum, group
index of the waveguide and physical length of the ring,
respectively. The term αl denotes the roundtrip loss of
electric field in the MRR, and is similar in concept as the
field coupling coefficients κi and κo. After solving the
equations (2) and (3), we can extract a straightforward
formula for the amplitude as well as the power at each
port as in equation (5) and (6):

St

Si
= 1−

2
τi

j(ω − ω0) + ( 1
τi

+ 1
τo

+ 1
τl
)

(5)

|St|2
|Si|2 = 1−

2
τi
( 2
τo

+ 2
τl
)

(ω − ω0)2 + ( 1
τi

+ 1
τo

+ 1
τl
)2

(6)

Clearly, the resonance is a Lorentzian-shape line. Its
central frequency ω0 or wavelength λ0 is entirely deter-
mined by the physical length L and effective index neff

of the MRR. The extinction ratio is directly related with
the transmission at the resonance frequency ω = ω0,
which is shown in equation (7):

Pi = 1−
2
τi
( 2
τo

+ 2
τl
)

( 1
τi

+ 1
τo

+ 1
τl
)2

(7)

When 1
τi

= 1
τo

+ 1
τl
, then Pi = 0, or physically speak-

ing, when the power coupled into the MRR from the
input port i equals the roundtrip loss plus the power cou-
pled to the output port d, we get critical coupling, which
gives us the largest extinction ratio. For an all-pass ring,
where 1

τo
= 0, the critical coupling condition is changed

to κ2
i = α2

l . It is in good correspondence with former lit-
erature which describes critical coupling in the space do-
main [8]. In [8], the critical coupling condition for an all-
pass MRR gives the same result, while for an add-drop
MRR it is written as (1− κ2

i ) = (1− κ2
o)(1− α2

l ). After
some transformation we get κ2

i = κ2
o +α2

l −κ2
oα

2
l , where

the term κ2
oα

2
l is generally two orders of magnitudes

smaller, and therefore negligible. at that point it be-
comes the same as our condition, which is κ2

i = κ2
o+α2

l .

2.A.2. tCMT model for a MRR with Reflection In-
side
After having an understanding of the tCMT and the
concept of critical coupling, we will derive the equations

for MRR with internal reflection. The essential differ-
ence with an ideal MRR is that, due to reflection inside,
the two degenerate circulating modes αcw (clockwise),
and αccw (counterclockwise) are coupled and activated
simultaneously as illustrated in Fig. 1 (b). This leads
to resonance splitting and a change in the extinction ra-
tio. The equations for amplitudes of these modes are
modified to equations (8) and (9):

dαccw

dt
= jω0αccw− (

1

τi
+

1

τo
+

1

τl
)αccw− jμiSi− jμrαcw

(8)

dαcw

dt
= jω0αcw − (

1

τi
+

1

τo
+

1

τl
)αcw − jμ∗

rαccw (9)

There is an extra term of μr appearing in these equa-
tions. Here we consider a simple coupling of these two
modes, which means the coupling is conservative instead
of dissipative. Similar to μo and μi, μr refers to the mu-
tual coupling between these two modes. But slightly
different in its dependency on the field reflectivity r as
given in equation (10):

μ2
r = r2(

c

ngL
)2 (10)

The equation to get St and Sd remains the same as
equation (3) (note, even though the equations are the
same, αcw, αccw are modified), but Sa and Sr are mod-
ified to equation (11). And this time, we get quite a
different formula for St as in equation (12):

Sa = −jμoαcw Sr = −jμiαcw (11)

St

Si
=1− 2

τi

j(ω − ω0) + ( 1
τi

+ 1
τo

+ 1
τl
)

[j(ω − ω0) + ( 1
τi

+ 1
τo

+ 1
τl
)]2 + |μr|2

=1− 2

τi
(

0.5

j(ω − ω1) + ( 1
τi

+ 1
τo

+ 1
τl
)

+
0.5

j(ω − ω2) + ( 1
τi

+ 1
τo

+ 1
τl
)
)

(12)

Clearly, instead of one single Lorentzian-shape reso-
nance as in equation (5), there are now two Lorentzian-
shape resonances with their own resonance frequency
ω1 = ω0+|μr|, ω2 = ω0−|μr|. The modified power trans-
mission Pr at the resonance frequency ω1 or ω2 are given
in equation (13). Note that in equation (13), 1

τi
, 1
τo
, 1
τl

and μr are already replaced by equations (4) and (10).

Pr = (
2
τo

+ 2
τl

2
τi

+ 2
τo

+ 2
τl

)2 +
( 2
τi
)2 − 2 2

τi
( 2
τo

+ 2
τl
)

( 2
τi

+ 2
τo

+ 2
τl
)2 + 16|μr|2

= (
κ2
o + α2

l

κ2
i + κ2

o + α2
l

)2 +
(κ2

i )
2 − 2κ2

i (κ
2
o + α2

l )

(κ2
i + κ2

o + α2
l )

2 + 16r2

(13)
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Note that, if r = 0, equation (13) becomes identical
to equation (7). Because of the existence of reflection
μr, the transmission at resonance becomes impossible
to directly analyze in a quantitative way. By assuming
the MRR is still at the original critical coupling point
as an ideal MRR, we will see how the extinction ratio
changes dramatically with the reflection. By making
κ2
i = κ2

o + α2
l , Pr is modified to equation (14):

Pr|cp =
1

4
− |κ|4

4|κ|4 + 16r2
(14)

Fig. 2: At the critical coupling point, the extinction
ratio drops dramatically with increasing reflection until
it reaches an almost constant value. This phenomenon
is one of the basic principles to obtain an ultra wide

FSR ring resonator.

Fig. 3: This figure shows how the extinction ratio
changes with reflectivity when the MRR deviates from

its critical coupling point, and it’s configured as
κi = κo, which is the general case and easy to

guarantee. Note that, the side mode suppression could
be improved by simply increasing coupling coefficient.

In Fig. 2, we get the extinction ratio of a critically
coupled MRR as a function of field reflectivity |r| un-
der different field coupling coefficient |κi|. Clearly, the
extinction ratio drops dramatically with increasing re-
flectivity. This phenomenon is one of the basic princi-
ples in our paper to get an ultra wide FSR in a MRR.
We will introduce a reflector whose reflection spectrum
is strongly wavelength dependent. In a specific config-
uration, we can obtain a spectrum where only a single
resonance suffers zero reflection while the others within

a wavelength range of 150 nm suffer from a strong re-
flection.
Before this, we investigate how the extinction ratio

changes with reflectivity when the MRR is not critically
coupled. This is important because in reality, it’s very
difficult to fabricate a ring where all coupling factors
and losses are matched at the correct wavelength, due
to fabrication variability. So exploring the behavior of
the ring in the non-critical-coupling regime can also be
considered as a fabrication tolerance analysis of the de-
vice. In Fig. 3 the dependency of extinction ratio on
reflectivity |r| under different coupling strength is given.
In contrast to Fig. 2, the MRR is not configured at
the critical coupling point. The loss factor α2

l is set
to be constant at 0.0114 corresponding with a 0.05 dB
roundtrip power loss and κi is set to be identical with
κo, which is often the case and easier to ensure than an
absolute coupling coefficient.

(a) Extinction ratio as a function of coupling
coefficient.

(b) Side Mode Expression as a function of
coupling coefficient.

Fig. 4: These figures show how the extinction ratio as
well as the side mode suppression changes with power
coupling coefficient when the MRR is away from its
critical coupling point, and designed as κi = κo.

It’s natural to expect a performance degradation due
to the deviation from the critical coupling condition,
which appears in the smaller side mode suppression and
the smoother slope. However, the extinction ratio still
drops significantly with increasing reflectivity, and it’s
noteworthy that the extinction ratio of the remaining
resonance as well as the side mode suppression can be
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improved by simply increasing the coupling coefficient,
as illustrated in Fig. 4. This device is then quite prac-
tical, as we require no exact configuration such as crit-
ical coupling. Another advantage is that in this con-
figuration the MRR becomes less sensitive to stochastic
backscattering, which we will discuss in detail in later
section.

2.B. Ultra Wide FSR MRR
Now we get to know that the reflection will significantly
reduce the extinction ratio of the resonance. If we could
find a way to make all but one resonance of the ideal
MRR suffer from strong reflection while the rest one suf-
fers zero reflection, then only one resonance has a large
extinction ratio while all the rest have very small ex-
tinction ratio, and we could consider this MRR as FSR
free. This requirement could be achieved by introducing
a tunable reflector consisting of a loop Mach-Zehnder in-
terferometer (MZI), as shown in Fig. 5. This circuit can
generate various reflection spectra based on the lengths
L1, L2 of its two arms. Section 3 discusses the design
and simulation in detail.

Fig. 5: The ring resonator has a loop MZI tunable
reflector inside, which introduces a

wavelength-dependent intentional reflection that
couples two circulating modes. Strong reflection will

lead to visible peak splitting, and it will in turn
influence the extinction ratio of the resonance. By

properly designing the arm lengths of the MZI, we can
obtain a spectrum where only one wavelength has zero

reflection while the rest suffer strong reflection.

2.C. Schematic
The schematic of the MRR with an ultra wide FSR is
given in Fig. 5. It consists of an MRR with an embedded
asymmetric MZI reflector. This intentionally introduces
a wavelength-dependent reflection which couples the two
circulating modes (CW and CCW).

3. Design, Simulation and Analysis
3.A. Design
The key design parameter in the loop-MZI reflector is
the length difference ΔL = L1 − L2 between the two
arms. The absolute length of each arm depends on the
specific applications, for instance, for sensing we prefer a
longer arm to capture more particles, however for filters

(a) The directional coupler performance is wavelength
independent.

(b) A linear model for directional coupler extracted
from FDTD simulation is added.

Fig. 6: Curves of the reflection spectra of the reflector.
The directional couplers are designed to be 50/50

splitter.

or laser cavities, we could rather make them as short as
possible to reduce the loss, foot print and the stochastic
backscattering. The zero-reflection wavelength depends
on the ΔL as in equation (15):

2πΔLneff

λ
= mπ (15)

Here, m is the interference order, similar to a normal
MZI. The simulated reflection spectra with various ΔL
generated by the circuit simulator Caphe[19] is given in
Fig. 6.
In the simplified case where the directional coupler is

treated as an ideal, wavelength independent component,
a larger ΔL will lead to a smaller FSR and a sharper
slope. More interesting is the case where a realistic be-
havior of the directional coupler is used, with a linear
wavelength dependency model extracted from an FDTD
simulation. In that case the FSR seems to be indepen-
dent of the ΔL, while the slope still shows the same
trends with ΔL. This facilitates our design as we can
now get a large FSR together with a sharp reflection
slope.

3.B. Simulation
In Fig. 7, the simulated through port spectrum of our
device is plotted. Here, L2 = 10 μm, m = 23, thus
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(a) κ2
i = 0.05

(b) κ2
i = 0.2

(c) κ2
i = 0.5

Fig. 7: A simulated through port of our device. The
order m is chosen to be 23, and the MRR is set at the

normal coupling condition κ2
i = κ2

o.

ΔL = 7.44 μm, and the total roundtrip length is set to
be around 150 μm and a resonance appears at 1540 nm.
The roundtrip loss is set to be 0.05 dB (corresponding
with a loss coefficient of 330 dB/m), and κi = κo. Cor-
responding with the theory, only the wavelength of zero
reflection shows a large extinction ratio of the ring reso-
nance, while the other resonances have a very small ex-
tinction ratio and a strong resonance splitting. Besides,
we notice that, another part of the theory is also veri-
fied, which is, the side mode suppression and extinction
ratio of the survived resonance could be increased by
simply coupling more power into the ring, as also shown
in Fig.7. Even though for large coupling coefficient, for
instance, κ2

i = 0.5, the adjacent resonance modes start
to arise, we can again suppress it by increasing the inter-
ference number m as this will sharpen the slope of the
reflector spectrum. This feature will be also mentioned

and illustrated in Fig. 13 in section 3.D.

3.C. Tunability

g

g

g

g

(a) The shift of the zero-reflection wavelength of the
MZI based reflector induced by effective index neff

change.

n g

n g

n g

n g

(b) The shift of the resonance wavelength of the
MRR induced by effective index neff change.

Fig. 8: The whole device sees a same index change
simultaneously, no matter whether this is induced by
tuning or environment index change. Index changes
cause a shift of the zero-reflection wavelength of the
reflector and the resonance wavelength of the MRR at
the same rate, and thus the MRR remains single mode.
The tuning efficiency is the same as that of a normal

silicon ring resonator.

We also look into the tunability of the device. As our
device consists of two components that can be individu-
ally tuned, i.e. a ring resonator and a MZI based reflec-
tor, we can easily implement two very different tuning
mechanisms or configurations by either tuning the whole
device as discussed in section 3.C.1 or separate tuning
of the ring and the reflector, as in section 3.C.2.

3.C.1. Common tuning

When the effective index of the waveguide changes on
a global scale (e.g. by ambient temperature variations
or background index change), both the zero-reflection
wavelength as well as the resonance wavelength of the
ring will drift at the same rate, as in equation (16). In
Fig. 8, the spectra of both tunable reflector and MRR
at different global effective indices are given.
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Fig. 9: Instead of using one common phase shifter for
the whole device, we can implement two separate phase

shifters to achieve individual tuning of the
zero-reflection wavelength of the reflector and the
resonance wavelength of the ring resonator. This

configuration gives a much wider tuning range, within
which the single mode can shift continuously.

Δλ

λ0
=

Δneff

ng
(16)

This configuration gives the same tuning efficiency
and thus the same tuning range as a regular silicon
ring resonator, which is not particularly efficient or
wide. However, if we direct our attention from tuning
to sensing application, this configuration could be quite
promising, as no matter how large the background in-
dex changes, the single mode condition remains within
the ultra-wide FSR and the resonance shifts corresponds
with the background index change. In other words, this
configuration could be very suitable for sensing applica-
tions, especially in large and rapid index change envi-
ronment.

3.C.2. Separate Tuning
Alternatively, we can tune the ring and the reflector sep-
arately. In Fig. 9 we add two phase shifters for one
arm of the reflector and the ring waveguide, respectively.
Logically speaking, the phase shifter 1 (PS1) performs
the function of resonance selection. It selects one out all
of the resonances of the ring resonator to be the single
mode of the device. The phase shifter 2 (PS2) takes the
responsibility of comb tuning. It shifts the resonance
spectrum of the ring resonator so that the single reso-
nance selected by PS1 can be adjusted locally to cover
a continuum rather than some discrete points. Mathe-
matically speaking, the shift of the zero-reflection wave-
length of the reflector is given in equation (17) and the
shift of resonance mode of the ring resonator is given in
equation (18).

Δλref

λ0
=

Δnps1

ng

Lps1

ΔL
(17)

Δλring

λ0
=

Δnps1Lps1 +Δnps2Lps2

ng(Lps1 + Lps2) + neffLrest
(18)

g

g

g

g

(a) Without PS2, the single mode resonance can only
take place at some discrete wavelength points, as the
zero-reflection wavelength of the reflector might not

match the resonance of the ring resonator.

g

g

g

g

(b) With PS2 working, the single mode resonance can
be tuned to more wavelength points, as the resonance

of the ring resonator can now be aligned to the
zero-reflection wavelength of the reflector.

Fig. 10: Two phase shifters are implemented, PS1 is
responsible for the mode selection, while PS2 is in

charge of comb tuning. Compared to common tuning
configuration, with the same index change, we achieve

a 4 times larger wavelength shift.

Fig. 11: When optimizing for a larger tuning range (at
the cost of side-mode suppression ratio) we achieve a
tuning rang almost as wide as 100 nm with the same

index change.

• λ0 is the wavelength of the single resonance. At
original state, this is the zero-reflection wavelength
of the reflector and it matches one of the resonance
wavelength of the ring resonator.

• Δnps1 and Δnps2 are the effective index change
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Ring 1 aiming for a larger SMS

Max@1554 nm 

Min@1526 nm 

(a) Wavelength of single mode ring 1.

Ring 2 aiming for a wider tuning range

Max@1593 nm 

Min@1508 nm 

(b) Wavelength of single mode ring 2.

All@34 dB

(c) Extinction ratio of single mode ring 1.

Max@36 dB

Min@27 dB

(d) Extinction ratio of single mode ring 2.

All@28 dB

(e) Side mode suppression of single mode ring 1.

Min@14 dB

Max@19 dB

(f) Side mode suppression of single mode ring 2.

Fig. 12: Tuning map for the two phase shifters PS1 and PS2 (
Δφps1

2π ,
Δφps2

2π ) to achieve a continuous shift of the single
mode resonance. Figures 12a, 12c and 12e give the results of the first design, where the parameters are designed in
such a way that the SMSR of each wavelength is larger than 28 dB while the tuning range is only 30 nm, 4 times
wider than that of a normal silicon ring resonator; The results of the modified design are illustrated in figures 12b,
12d and 12f, where the design parameters are changed to achieve a much wider tuning range around 90 nm at the
price of a smaller SMSR, but still, at each wavelength, a SMSR larger than 14 dB can be guaranteed. Note that,

85 nm tuning range comes with a Δφps1 that is less than 0.7× 2π, an even wide range is feasible by increasing Δφps1.

in PS1 and PS2 respectively. Similarly, Lps1, Lps2

refer to the length of these two phase shifters.

• Lrest stands for the rest length of the ring res-
onator. Lrest+Lps1+Lps2 equals the total length
of ring L.

• Δλref and Δλring are the shift of the zero-
reflection wavelength of the reflector and the res-
onance wavelength of the ring resonator, respec-
tively.

In contrast to the common tuning configuration,
where the zero-reflection wavelength of the reflector and
the resonance wavelength of the ring resonator shift
at the same rate as in equation (16), they now shift
at a very different rate. And the former one shifts

much faster, depending on the value of Lps1 and ΔL.
This provides the possibility to achieve a much wider
tuning range. Specifically speaking, when Δλref =
Δλring + nFSR, the new zero-reflection wavelength will
again match one of the resonances of the ring resonator,
thus the single mode condition remains. In the first de-
sign (where L2 = Lps2 = 10 μm, m = 23, L=150 μm),
we achieve a 4× higher tuning efficiency as illustrated
in Fig. 10. In other words, with the same amount of
effective index change (around 0.02), a tuning range of
30 nm is achieved instead of 7 nm. With further opti-
mization (L2 = Lps2 = 50 μm, m=27, L=260 μm, and
the same loss coefficient of 330 dB/m), the tuning range
can expand to almost 100 nm, covering the spectrum
from 1500 nm to 1600 nm, as illustrated in Fig. 11.
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In Fig. 12, we give a more straightforward way to
illustrate how to tune the PS1 and PS2 in order to
achieve a continuous tuning of the single mode wave-
length. Clearly, by tuning the index change of PS1 and
PS2 in a feasible range (0-0.02), we can address a contin-
uous shift of the single mode wavelength in a 30 nm span
or a 90 nm span, depending on the design parameters of
the MZI reflector. And at each wavelength, an extinc-
tion ratio larger than 30 dB and a side mode suppression
larger than 26 dB (14 dB for 90 nm tuning span) can be
guaranteed. In other words, a wide tuning range comes
at the price of a smaller side mode suppression. How-
ever, the extinction ratio would be roughly independent
of the length of PS1. Thus, the choice between a larger
tuning range and a larger side mode suppression would
depend on its specific application. These figures actually
reveal another important feature of our device, which is
the tolerance to the design accuracy. In other words, it
does not require a ridiculously precise design of the indi-
vidual optical length, as the single mode condition can
be always achieved by dynamic tuning PS1 and PS2.

3.D. Effect of Unintentional Backscattering

Now we need to focus on some more practical issues, for
instance, the well known backscattering in a SOI MRR.
Backscattering can introduce 6-8 m−1 power reflectivity
Rbs in a single-mode silicon strip waveguide with a di-
mension around 450 nm × 220 nm[23]. As mentioned
above, the total length of our MRR is very flexible, and
can be as short as 150 μm. The only drawback of the
long length is its higher power reflection caused by the
backscattering as it linearly scales with length.
In Fig. 13, we show the influence of backscattering

for an MRR configured at normal coupling condition
(κi = κo). As expected, the backscattering induced re-
flection will degrade the performance. When the length
grows from 150 μm to 300 μm, and the power reflectiv-
ity caused by backscattering increases from 0.00105 to
0.0021, the single mode condition is damaged when the
ring is configured at κ2

i = 0.2 and m = 23. But still,
one could increase the performance by simply coupling
more light and increasing the resonant number m, as
illustrated in Fig. 13b and Fig. 13c.

4. Conclusion

In conclusion, in this paper, we proposed a novel and
simple method to obtain an all-silicon ring resonator
which has only a single resonance in wavelength range
of over 150 nm and a 13 times higher tuning efficiency
compared to normal silicon ring resonator, that is to say,
a tuning range almost as wide as 100 nm. One signifi-
cant advantage is its simple structure, which is compat-
ible with most of today’s CMOS-based silicon photonics
technology platforms. We provide a comprehensive and
systematic theoretical model based on temporal coupled
mode theory. Simulations with respect to the main de-
sign parameters are discussed, as well as the tolerance
to the well known and unavoidable backscattering.

(a) L = 150 μm, κ2
i = 0.2, Rbs = 7× L.

(b) L = 300 μm, κ2
i = 0.2, Rbs = 7× L.

(c) L = 300 μm, κ2
i = 0.4, Rbs = 7× L and m = 55.

Fig. 13: Effect of unintentional backscattering on the
performance of the MRR. When the length increases
from 150 μm to 300 μm, and the corresponding power
reflectivity of backscattering grows to 7L = 0.0021, the
side mode suppression shows a significant decrease.

But we could increase the κi and the resonant number
m to compensate as in Fig. 13c.
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