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We propose using a neural network approach in conjunction with digital holographic microscopy in order to
rapidly determine relevant parameters such as the core and shell diameter of coated, non-absorbing spheres. We
do so without requiring a time-consuming reconstruction of the cell image. In contrast to previous approaches, we
are able to obtain a continuous value for parameters such as size, as opposed to binning into a discrete number of
categories. Also, we are able to separately determine both core and shell diameter. For simulated particle sizes
ranging between 7 and 20 μm, we obtain accuracies of �4.4� 0.2�% and �0.74� 0.01�% for the core and shell
diameter, respectively. © 2015 Optical Society of America

OCIS codes: (090.1995) Digital holography; (200.4260) Neural networks; (290.5850) Scattering, particles; (100.3190) Inverse prob-

lems; (100.2960) Image analysis.
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1. INTRODUCTION

Characterizing spherically shaped particles is of great importance
when studying their related scattering properties. Sprays, aero-
sols, and colloidal suspensions, e.g., paint, reflect light depend-
ing on their particle size, density, and homogeneity. Coatings
can be used to modify particle properties, such as color, adsorp-
tion, and flow properties, in a designed way, leading to numer-
ous industrial, military, and biomedical applications [1–4]. For
the latter, stability and composition of the functionalized surfa-
ces is of the utmost importance. These examples show that a
measurement of coated layer thickness is an essential feature
during process verification. In this paper we focus on a more
biologically inspired application of particle characterization:
low refractive index particles in water solution (relative Δn �
2–4%) with sizes ranging between 7 and 20 μm. These values
are chosen similar to what is found for white blood cells (WBCs)
[5] and thus form a simplified model for real-lifeWBCs encoun-
tered in flow cytometers. The results achieved in this paper
serve as a proof-of-concept for characterization of more realistic
cell images such as circulating tumor cells that typically have a
larger diameter than healthy cells [6].

Common optical techniques that are used in particle sizing
are based on light scattering, velocimetry, and microscopy. In
this paper we use digital holography for particle sizing. It allows
for single-shot characterization and can be extended to particle
tracking when recording a suite of images. Extracting particle

[7] and distribution characteristics [8] from holograms, bright
field images [9], or Fraunhofer diffraction patterns [10] has
already been studied in the past and is generally solved by
applying different numerical algorithms involving inversion,
nonlinear pattern matching, or performing image analysis de-
composition. Since integrals of special functions or an extensive
use of FFTs occur in most of these algorithms, they all suffer
from a tremendous increase in computational cost if the image
size increases or several particles are studied in parallel.
Therefore severe limitations exist on real-time particle charac-
terization for those image processing algorithms in high-
throughput applications.

In this work we consider the use of artificial neural networks
(ANNs) in order to cope with the requirement of fast particle
characterization. Neural networks are a powerful tool, well-
known in the field of machine learning. They have been suc-
cessfully applied to particle shape classification in the past.
What is different here is that we do not feed a (reconstructed)
image to an ANN but rather directly use the holographic in-
terference pattern as input. This avoids the considerable com-
putational cost related to the reconstruction of the image from
the interference pattern. Also, ANNs that are presented with
the raw microscopy image as input features only perform matrix
multiplications and standard function evaluations (tanh) and
can easily be optimized for parallel computation and accelerated
Graphics Processing Unit arrays. In fact, the main contribution

Research Article Vol. 55, No. 1 / January 1 2016 / Applied Optics 133

1559-128X/16/010133-07$15/0$15.00 © 2016 Optical Society of America

http://dx.doi.org/10.1364/AO.55.000133


to the computational complexity stems from the matrix multi-
plication of the input vector with the input-to-hidden weights
and scales as O�2N pixNHLU�. For a 10 GFlops/s processing
unit it takes less than 1 μs to perform the prediction step of
a neural network composed of NHLU � 10 hidden units
and about N pix � 1000 inputs (pixel values). Indeed, we mea-
sured a processing time of 1 μs per prediction on a 2.8 GHz
Intel Xeon X5560 CPU. We therefore observe a significant in-
crease in image processing speed. The only drawback is the time
necessary for training the ANN upon calibration, which can
take seconds up to minutes depending on the network archi-
tecture, size, and training algorithm. However, this needs to
happen only once and can be done offline. Only single isolated
particle holograms are considered at the current stage of our
work. An extension to imaging and characterizing multiple par-
ticles together is possible but not easily implemented. Although
this might be a severe limitation in some fields of particle holog-
raphy, it is not the case for flow experiments in microfluidic
channels if the particles are well aligned in the center. For in-
stance the experimental work on lab-on-a-chip, label-free cell
classification [11] enables high-throughput operation since hun-
dreds or thousands of microfluidic channels are used in parallel.
In a stable flow each cell is isolated from the others as it passes
across an illuminating pinhole. Additionally the microfludic
confinement leads to an improved control and a reduced uncer-
tainty for the optical depth. Our research was highly motivated
by these experiments because its high-speed, on-line image clas-
sification requirements are without doubt. Indeed we proved
recently [12] that our method successfully applies to the classi-
fication of experimentally recorded inline holograms of white
blood cells in a microfluidic channel. In that sense the method
still allows for parallel computation of many spatially isolated
particles but excludes currently the possibility of characterizing
and tracking multiple particles that are close to each other.

A recent study reports on the direct application of support
vector machines (SVMs) to digital holographic images [13]
yielding a 1000-fold gain in computational speed as compared
to nonlinear fitting techniques. Parameters relevant for particle
tracking, such as refractive index, depth, and radius, are recov-
ered. However, a disadvantage of that approach lies in the fact
that SVMs are built from a discrete set of target vectors that
span the underlying sample space (dictionary) and to which
collected data is matched subsequently. If a fine resolution is
needed the dictionary size increases substantially and requires
the creation of an unrealistically big, expensive training set.
This important problem is addressed and solved by the use
of ANNs. Additionally they have the possibility to output con-
tinuous variables, which is not straightforward with SVMs.

To summarize, the main contribution of this paper is a
method that can not only obtain continuous-valued estimates
for particle size (as opposed to binning in discrete sets like
in [13]), but also separately determine both core and shell
radius in coated particles. Moreover, the method is computa-
tionally efficient, because it skips a time-consuming image
reconstruction step and has an ANN directly operating on the
holographic interference pattern.

The rest of this paper is structured as follows: Section 2
describes how digital inline holography in conjunction with

artificial neural networks can be successfully applied to extract
shell and core diameter of coated spheres directly from the
hologram record. In Section 3 the outcomes of the suggested
method under different imaging conditions, such as change in
optical depth z, numerical aperture (NA), or pixel pitch (Δpix),
are investigated. Concluding remarks are presented in the final
Section 4 of the paper.

2. PARTICLE CHARACTERIZATION USING
DIGITAL HOLOGRAPHY AND ARTIFICIAL
NEURAL NETWORKS

Digital inline holography (DIH) has widely been applied to
various studies of microscopic objects, e.g., for flows around
obstructions and tracking in microfluidics [14], microsphere
imaging [15], and the characterization of optical components
[16]. As a holographic approach, DIH relies on the fact that
the superposition of a wave scattered off the object and a refer-
ence wave leads to a unique interference pattern on a recording
medium. Inline holography uses a robust common path con-
figuration in which the reference and the object wave are com-
pletely aligned (see Fig. 1).

Making the assumptions of an object wave, EO, with
magnitude much smaller than the reference, ER , and constant
background intensity that can be subtracted from the recorded
hologram, one derives the well-known expression for the con-
trast image [14]:

Ī ∝ jEO � ERj2 − jERj2 ≈ EOE�
R � E�

OER: (1)

It contains two terms, which are conjugate to each other and
are known as the image and twin image contribution. There
exist a variety of integral transforms that allow the numerical
reconstruction of the hologram, of which the inverse Fresnel
transform is one of the most popular choices.

Fig. 1. Simulation setup: A green light laser beam is collimated by a
lens before impinging on a coated particle suspended in water. The
scattered part of the incident plane wave (described by Mie theory)
interferes with its direct part on an image sensor, spaced at a distance
z from the particle. The digitized version of the fringe patterns form
the inline hologram.
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In traditional holography, the twin term, if not suppressed
by an appropriate filter, creates a defocused virtual image that
spatially overlaps with the real image. This led to the numerous
off-axis holography systems. In DIH microscopy, however, the
twin image spreads out over the whole reconstructed image.

ANNs are machine learning techniques that are used to
learn an arbitrary input-to-output mapping. Feed-forward
neural networks are ANNs that are devoid of feedback.
They are typically arranged in multiple layers: an input layer,
one or several hidden layers, and an output layer. Each layer is
solely connected to the following one and is composed of a
varying number of neurons. These neurons are biologically in-
spired and function in a similar, although more abstract, way.
Every single neuron receives weighted inputs from the neurons
located in the preceding layer. The inputs are summed up (neu-
ron activation) and a nonlinear (tanh) transfer function is ap-
plied. This forms the neuron output response that connects to
the subsequent layer. At the output layer the network response
is compared to the target signal. Any deviation results in an
error signal, which is used to adjust the network weights so
as to minimize the error metric, e.g., the sum of squared errors.
Presenting a large number of input–output pairs to the network
eventually results in a supervised training effect: the neural net-
work “learns” the mapping by tuning its weights accordingly.
The trained network is then able to generalize for unseen input.

As is the case with all supervised machine learning tech-
niques, ANNs require a dedicated training set that grows with
the number of unknown weights inside the net. In order to
avoid a time-consuming training procedure, we limit ourselves
to rather small-size, feed-forward neural nets solely composed
of a single hidden layer. The prediction accuracy depends on
the number of hidden units. Therefore a heuristic search for a
good number of hidden units as a trade-off between accuracy
and model complexity is necessary. In a similar way, the num-
ber of input units constitutes a compromise between model
complexity and resolution capability of the device. We will de-
note a particular network architecture as (number of input units,
number of hidden units, number of output units), e.g., (1024, 10,
1). For each parameter characterizing the particle, a distinct
network is trained using a stochastic gradient descent backpro-
pagation algorithm. The learning rate decays following a search-
then-converge schedule [17]. L1 regularization of the weight
norms prevents the neural network from overfitting [18]. We
preferred L1 over the more common L2 regularization method
because of its tendency to drive many network parameters
(weights) to zero, leading to a sparse input vector representation.
This is advantageous for later hardware implementations, in
which zero or near-to-zero weights can be omitted and thus sim-
plify the architecture. The neural net is trained with 10 different
initial weight distributions so as to eliminate cases where the
training algorithm is trapped in a local, non-optimal minimum.

The training, validation, and test sets consist of random par-
titions of a catalogue of diffraction patterns. We used rigorous
Mie-scattering theory [19,20] to calculate the diffraction holo-
grams of concentric spheres at various depths and with different
radii under plane wave laser illumination (see Fig. 1).

Because of the translation and rotation invariance of the dif-
fraction patterns in the detection plane, we assume the particle

to be located at the origin of the detector coordinate system and
only record the radial dependence. In a practical setup this can
be done by locating and shifting the first moment of the dif-
fraction spot back to the origin. Figure 2 shows that in this case
the hologram is a 1024 × 1 pixel line image recorded by a sensor
(pixel pitch Δpix � 1.5 μm). This allows for a considerable
speed-up of the sensor frame rate in real-time applications.
We stress the fact that the argument of symmetry only applies
to the single particle studies, which means in low density sol-
utions or microfluidic channel flows, e.g., the cell flow cytom-
etry application mentioned above. In these cases the particles
are well-separated upon detection. If this condition cannot be
met in a particular application, our method needs to be adapted
in order to take into account the overlap of diffraction holo-
grams of nearby particles. Although we believe that this is in
principle possible, the necessary changes to the proposed
method are complex and beyond the scope of this work.

3. SIMULATION RESULTS

In order to exploit the full learning capacity of the neural net-
work a large enough training data set is mandatory. Therefore
the Mie scattering patterns of 20,000 transparent concentric
spheres of different sizes in water were simulated and used as
inputs to the network. More specifically the input to the i-th
unit, xi, is determined as

xi � const ·
Z

T exposure

0

Z �i�0.5�·Δ�0.5f f ·Δ

�i�0.5�·Δ−0.5f f ·Δ
Szdxdt;

i � 0…N pix − 1; (2)

with N pix � 1024 being the number of pixels, f f � 0.9 the
pixel fill factor, Δ the pixel pitch, and Sz the projection of the
Poynting vector on the detector surface normal. The magnitude
of Sz corresponds to the hologram intensity value as indicated
by Eq. (1). In our simulations we also retained the weaker

Fig. 2. Selection of four different hologram records. The underlying
radial symmetry allows one to select only a one-dimensional line
scan as input vector to the subsequent neural network (intersecting
plane). The dimension of the input vector is determined by the num-
ber of pixels in one line of the sensor (shortened in the image for better
visibility).
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contribution proportional to jEOj2. The neural network then
maps the input vector x onto hidden layer state vector z accord-
ing to Eq. (3a). A prediction value ŷ at the output layer neuron
results from a linear combination of all the hidden layer states
in Eq. (3b). All the trainable network weights and biases are
contained inside the weight matrices W Inpto Hid, W Hidto Out,
and the bias vectors biasHid, biasout, respectively. As a result
of the training the neural network, the weights are incremen-
tally adjusted so as to bring the predicted value ŷ closer to its
corresponding target y:

z � tanh�WT
Inpto Hidx � biasHid�; (3a)

ŷ � WT
Hidto Outz � biasOut: (3b)

All solutions to the Mie scattering problem assumed an
x-polarized plane wave of wavelength λ � 532 nm incident on
the layered particle with core refractive index (RI) of 1.39 and
shell RI of 1.37. The RI of the surrounding water was taken as
1.34. Particle diameters were chosen according to the probabil-
ity density functions in Eqs. (4a) and (4b) with a � 7 μm,
b � 20 μm, and c � 4 μm. The initial joint distribution of
core and shell diameters is shown in Fig. 3. Two distinct depth
values, z1 � 100 μm and z2 � 250 μm, of the particles along
the optical axis were investigated. We emphasize that at those
optical depths neither the Fraunhofer nor the Fresnel approxi-
mation holds. We chose fixed values for the optical depth as it
agrees with the fact that the depth is well controlled in micro-
fluidic flow channels, which triggered our interest in this re-
search topic (see [11,12]). Nonetheless our method is not
restricted to any specific choice of the optical depth, which
is often unknown. The artificial neural network can in fact
be trained to continuously predict the optical depth value z
as well. The reason that we did not include this prediction
parameter yet is based on the fact that a much more compre-
hensive data set is required in order to train this augmented
network properly and that it is a very time-consuming process:

pCore�xC � � �b − a�−11�a;b�; (4a)

pShell�xS jxC � � �xC − 1 − c�−11�c;xC−1�; c < a − 1: (4b)

We measure the overall prediction accuracy as the achieved
normalized mean square error norm (NRMSE) across the test
data:

NRMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i�1 �ŷi − yi�2

q
ymax − ymin

: (5)

In order to obtain the best possible results, we optimize the
number of units in the hidden layer. On the one hand, more
hidden units lower the model bias and lead to a better fit of the
training data. On the other hand, the model complexity and
computational cost grow as more and more network weights
need to be adjusted. This is shown in Fig. 4, in which the num-
ber of hidden units is swept for the core diameter prediction
task. For fewer than 30 hidden units we observed a substantial
prediction error, i.e., the model is not accurate enough. Using a
lot more than 30 hidden layer units, however, does not give rise
to improved performances. In contrast, the computation time
increases and the model is easily prone to overfitting the train-
ing data. As a consequence of these findings we reported opti-
mal results at a hidden unit number of 30, whereas the more
time-consuming sweeps of detector configurations are accom-
plished with only 10 hidden layer units.

From an exploratory, but non-exhaustive, search in param-
eter space the following optimal NRMSE performances were
derived: �4.4	 0.2�% and �0.74	 0.01�% for the core and
shell diameter prediction, respectively. Table 1 summarizes
the corresponding parameter settings. The error bounds were
calculated as the two-sided, 95% confidence intervals obtained
from fivefold cross-validation. For each fold the data set split
into training, validation, and test set is repeated randomly.

Next we are interested in the effect of lowering the model
complexity by reducing the number of input units. There are
two approaches to achieve this. The first one is to prune the
network iteratively, choosing the least significant weight for
removal and retraining the network each time. The second sim-
ply reduces the input space to contain fewer pixels. We used the
latter since it allowed us to study the practically more relevant
input configurations of regularly spaced pixels. For our purpose
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Fig. 3. Artificial data set distribution of coated spheres in the model
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we were decimating the recorded diffraction patterns by powers
of two, which results in fewer pixels. One could equally replace
the current imager (1024 pixels, 1.34 NA) by an imager with
fewer pixels but the same numerical aperture and pixel size
(e.g., 512 pixels, 1.34 NA). This decrease in the number of
input units is an important step on the route toward real-time
processing, in which fast on-line retraining algorithms adjust
the network weights over time. That way it would be possible
to refocus quickly on the particle under study while it is
diffusing.

Because of the weak index contrast in our simulations it is
more challenging to extract the core diameter precisely. This is
confirmed in Figs. 5 and 6 in which the NRMSE for the core
diameter prediction is always bigger than the one correspond-
ing to the shell diameter. Another trend confirmed in those
figures is the better prediction accuracy at larger optical depth
(z � 250 μm).

By inspecting the upper part of Fig. 5 it becomes clear that
the shell diameter is strongly affected by the downsampling at
short optical depths and its error grows approximately linearly
for small downsampling factors. At long optical depths the
increase in the shell prediction error is more gradual. In both
cases the error stays below 5% even for diffraction patterns of
only 64 pixels. In the bottom part of Fig. 5 the same decimation
is repeated for the core diameter prediction. The NRMSE error
is increasing sublinearly with better results at longer optical
depth. Only 128 pixels (downsampling integer factor of eight)
are necessary to achieve 10% relative accuracy.

As in conventional microscopy, the resolution in digital in-
line holographic microscopy is inversely proportional to the
numerical aperture of the imager. Since we assume a diffraction
pattern that is rotationally invariant in the plane of detection,
the subtended half-angle entirely contains the imager. On the
one hand, the size of the imager or the range of the pixels used is
the limiting factor for the NA. On the other hand, a restricted
number of pixels to be read out means higher processing speed,
and there is a trade-off between both. We are thus interested in
the dependence of the prediction accuracy on the NA. These
results are shown in Fig. 6, in which the NA is varied by one-
sided cropping of the digital image. As a consequence thereof,
the number of pixels N pix used as input units depends on the

optical depth z and can be determined by the following relation
[Eq. (6)], in which n stands for the ambient RI, i.e., water
(see also 1):

N pix �
z

Δpix

NA
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
NA
n

�
2

q : (6)

Analyzing Fig. 6, one concludes that the shell diameter pre-
diction is nearly unaffected by the change in NA and shows
constant performance throughout a large range of aperture
sizes. Only at very small NA (0.14) and short optical depths
(100 μm) the prediction accuracy drops. That is a strong in-
dication for the fact that the network infers the shell size cor-
rectly from the forward scatter at small angles, similar to what is
done in standard scattering theory to estimate the particle size.
In contrast to this, the core diameter prediction requires a large
enough NA close to 1 in order to work most accurately. This
is expected since a good resolution is necessary to resolve very
thin coatings too. Interestingly the optimal value of the core
prediction accuracy is found at numerical apertures of 1.0 to
1.2, slightly below the maximal achievable NA. This suggests
that the neural network is overfitting for large angles. Hence, it
is helpful to reduce the range of captured pixels to about 100
and 300 at optical depths of 100 μm and 250 μm, respectively.

Table 1. Simulation Parameters at Best Performance

Parameter Symbol Value

Optics
Optical depth z 250 μm
Numerical aperture NA 1.18
Core RI nCore 1.39
Shell RI nShell 1.37
Solution RI nWater 1.34
Pixel number/input units N pix 305
Pixel pitch Δpix 1.5 μm
Pixel fill factor f f 0.9
Machine learning
Hidden layer units NHLU 30
Learning rate lr 0.01
L1-regularization L1 10−4

Annealing time T 500
Annealing constant C 30
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Fig. 5. Normalized root mean square error as a function of the
downsampling factor. Top: results for the shell diameter prediction.
Bottom: results for the core diameter prediction. The best and the
average performance for 10 randomly initialized networks are shown
at two optical depths (100 and 250 μm).
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This measure decreases the model complexity, decreases the
readout time, and avoids the overfitting.

Finally we take a glance at the detailed error map in order to
see which points in parameter space are the most difficult to
predict. This information is obscured by the use of a global
error measure. Therefore we study the optimal network (82-
10-1) determined from Fig. 6 at an optical depth of 100 μm.

Figure 7 clearly shows that the core diameter prediction
accuracy is worsening for tiny cores, especially for increasing
shell diameters. In these situations the core contribution to the
scattering amplitude is particularly small. Shell diameters are
predicted very accurately within the entire configuration space.
The worst possible relative errors of about 4% are those ob-
tained for small-sized spheres. We can explain the larger error
for the core diameter prediction, especially in regions where
DCore ≪ DShell, by considering the scattering of light by par-
ticles with a small index contrast as a first-order scattering proc-
ess under the Born approximation. The small index contrast
leads to a small magnitude of the scattering potential that can
be treated as a perturbation to the free particle problem. As a
consequence one can show that the differential cross section
σdiff scales as

σdiff ∝ ΔnV 2k40; (7)

in the limit of small angles. That is at a fixed incident wave-
length (wave vector k0) and index contrast Δn the small angle

approximation of the differential cross section scales with the
square of the particle volume V 2, or as D6 in terms of the par-
ticle diameter D. Practically this implies that the overall particle
size can be inferred from the hologram by inspecting the scat-
tered intensity pattern at small angles. Indeed the relative
prediction error of the shell diameter is very small for all the
particles under consideration. However, Eq. (7) also implies
that the scattered signal originating from the core is very weak
in comparison to the one that stems from the shell in the limit
of small core diameter and large shell diameter, DCore

DShell
≪ 1. It

scales as �DCore

DShell
�6. Such a weak signature naturally falls beyond

the detection limit in any practical arrangement or is shadowed
by rounding and averaging in simulations. Therefore we con-
clude that the nature of the larger core prediction errors shown
in Fig. 7 is not due to our specific prediction method but a
fundamental problem intrinsic to weak scattering processes.

4. CONCLUSION

We demonstrated numerically that characteristic parameters of
a particle can be reliably retrieved by direct investigation of its
holographic interference pattern with the help of a single-
layered feed-forward neural network. We implemented a
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simple model for light scattering off WBCs by studying the
digital inline holograms of concentric, transparent spheres in
the Mie regime. In this way important cell parameters such
as overall cell size and nucleus size can be predicted. Those cell
parameters are significant for classification of different groups
of WBCs. Our best simulation results for sphere diameters
varying between 7 and 20 μm achieve NRMSE accuracy of
�4.4	 0.2�% and �0.74	 0.01�% for the core and shell
diameter, respectively. Future efforts are necessary in building
more realistic cell models, including multi-lobed, non-concen-
tric nuclei and granules.

The neural network boosts real-time application because of
its intrinsic parallelism and easy-to implement matrix opera-
tions. No time-consuming image reconstruction is needed and
all the training experience of the network is stored in its con-
nection weights. No time-consuming look-up procedure in a
dictionary-based solution is necessary. Further investigation
is necessary in order to include more realistic noise models, par-
ticle shapes (e.g., aspherical core and/or shell), and a larger con-
figuration space including multiple particle imaging events.
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