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We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect
of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with the ease
of implementation of sampling-based methods. Its flexibility makes it suitable to be applied to a large range of
photonic devices. We compare the stochastic collocation method with a Monte Carlo technique on a numerical
analysis of the variability in silicon directional couplers. © 2016 Chinese Laser Press
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1. INTRODUCTION
Integrated photonics, and in particular, silicon photonics, is
rapidly enabling complex photonic functions on a chip [1].
However, variability due to fabrication processes and opera-
tional conditions limits the complexity of the circuits that can
be implemented [2,3]. A proper analysis of the effects of the
variability in geometrical, electrical, and optical parameters
on the performance of the photonic building blocks and cir-
cuits has become crucial. Indeed, the variability introduced
by the variations of the manufacturing process is a primary
source of degradation of larger photonic circuits, especially
when wavelength-selective filters are implemented [4]. The
primary functional parameters that are affected are the wave-
guide propagation constants (the effective index) and the cou-
pling coefficients in coupling structures. The Monte Carlo
(MC) method [5] is considered the standard approach for vari-
ability analysis, thanks to its accuracy and ease of implemen-
tation. Unfortunately, the MC analysis has a slow convergence
rate, and it requires a large number of data points (simulations
or measurements). Therefore, MC has a high computational
cost, considering that accurate simulations of photonic devi-
ces can be time and resource intensive.

The generalized polynomial chaos (gPC) expansion has
been applied in several domains as an efficient alternative to
the classic MC method [6–8], and, recently, it has been pro-
posed for the variability analysis of photonic devices [9,10].

The gPC-based modeling approach aims at expressing a
stochastic process as a series of orthogonal basis functions
with suitable coefficients and gives an analytical representa-
tion of the variability of the system on the random variables
under consideration [11].

In this paper, we propose a stochastic collocation (SC)
method as an efficient alternative to characterize photonic

devices under the effect of uncertainty. The fundamental prin-
ciple of the SC approach is to approximate the unknown sto-
chastic solution by interpolation functions in the stochastic
space. The interpolation is constructed by repeatedly solving
(sampling) the deterministic problem at a predetermined set
of nodes in the stochastic space. This approach offers similar
high accuracy and efficiency as the stochastic gPCmethod, but,
at the same time, it is easy to implement, such as sampling-
based methods (e.g., MC approach).

We apply the SC method to analyze the variability of a key
building block for silicon photonic circuits: the directional
coupler (DC). This device is essential in the construction
of wavelength filters, as it implements an arbitrary fractional
2 × 2 power coupling, but, at the same time, it is extremely
sensitive to fabrication variations: a small shift in linewidth
or thickness of the core can dramatically change the coupling
coefficients.

The paper is organized as follows: Section 2 gives a general
introduction of SC methods. It provides the essential math-
ematics knowledge that readers need to know to understand
its application in the photonic domain. Section 3 uses a DC as
an example to test the performance of SC in performing
variability analysis of photonic devices. Section 4 draws the
conclusions.

2. STOCHASTIC COLLOCATION METHODS
SC methods are based on interpolation schemes to compute
stochastic quantities. The interpolation is constructed by re-
peatedly solving (sampling) the deterministic problem at a
predetermined set of nodes in the stochastic space [12] (also
defined as collocation points). Indeed, a stochastic process
Y�ξ� can be expressed as
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Y�ξ� �
XQ
i�1

Y�ξi�Li�ξ�; (1)

where ξ denotes the N stochastic parameters and fLi�ξ�gNn�1
represents the interpolation basis functions.

For a photonic device, the process Y could correspond to
the functional parameters such as the waveguide propagating
constants and the coupling coefficients in coupling devices.
The stochastic variables ξi correspond to device properties
affected in a stochastic way by fabrication and operational
conditions (e.g., waveguide line, width, or temperature).

In Eq. (1), different types of interpolation schemes can be
adopted (e.g., piecewise linear [12,13], Lagrange [11,14], or
interpolation methods that belong to the general class of pos-
itive interpolation operators such as multivariate simplicial
methods [15]). However, the key issue for this approach is the
selection of the support nodes, such that when using the min-
imal number of nodes one achieves good approximation.

For example, if the Lagrange interpolation scheme is
chosen, the element Li in Eq. (1) for a 1D interpolation can be
expressed as

Li�ξ� �
YQ

i�1;i≠j

ξ − ξi
ξj − ξi

; (2)

where Li is equal to 1 for ξ � ξj and is equal to 0 for ξ � ξi.
Next, for interpolation in multiple dimensions, a tensor-
product approach can be used, and Eq. (1) becomes

Y�ξ� �
XQk1

i1�1

� � �
XQkN

iN�1

Y�ξk1i1 ;…; ξkNiN ��L
k1
i1
⊗ � � � ⊗ LkN

iN
�; (3)

where ξki is the i-th node in the k-th direction, and the total
number of nodes used in Eq. (3) is

Q �
YN
n�1

Qkn : (4)

As can be seen in Eq. (4), the number of nodes required by the
full tensor product increases rapidly with the number of ran-
dom parameters N . For example, if three random variables
are considered and 10 collocation points are used for each
parameter, a total of 1000 nodes are required by the full tensor
product approach. Hence, the performance of the photonic
device under study must be evaluated for 1000 different com-
binations of the random variables considered, leading to an
expensive computational time.

The required number of nodes can be significantly reduced
by adopting sparse grids in the stochastic space, based on the
Smolyak algorithm [12,16–19]. By choosing the collocation
points correctly, the Smolyak algorithm drastically reduces
the total number of nodes used in the interpolation with re-
spect to the full tensor product approach while preserving
a high level of accuracy.

It is important to remark that the SC models are expanded
using interpolation functions of independent random varia-
bles ξ [11]. In the general case of correlated random variables,
decorrelation can be obtained via a variable transformation,
such as the Nataf transformation [20] or the Karhunen–Loéve
expansion [21].

The stochastic moments (mean, variance, …) can be com-
puted utilizing analytical formulas and then efficiently, once
the analytical form of the interpolation functions fLi�ξ�gNn�1
has been decided. For example, if the random variables ξ
are defined in the sample space Ω, the mean of Y�ξ� is
defined as

μ�Y�ξ�� �
Z
Ω
Y�ξ�W�ξ�dξ; (5)

where W�ξ� is the joint probability density function (PDF) of
the random variables ξ. Using Eq. (1) in Eq. (5) leads to

μ�Y�ξ�� �
Z
Ω

XQ
i�1

Y�ξi�Li�ξ�W�ξ�dξ; (6)

which depends only on the interpolation functions Li�ξ� and
joint PDF W�ξ�. Note that, if the choice of the interpolation
functions and probability measure does not allow an analyti-
cal computation of the stochastic moments like Eq. (6), an ef-
ficient numerical solution can be used (e.g., by MC analysis of
the interpolation model or numerical integration). Finally, it is
important to remark that it is not possible to define a priori

the speed-up of a generic SC modeling technique compared
with the MC method. Indeed, the number of nodes needed
to compute an accurate SC model (which is directly related
to the efficiency of SC methods, as described above) cannot
be decided upfront because it depends on the following
factors:

• the impact of the chosen random variables ξ on the var-
iations of the stochastic process considered Y (dynamic sto-
chastic processes require a higher number of collocation
points);

• the interpolation scheme Li adopted (the more powerful
the interpolation scheme, the fewer nodes are needed);

• the sampling strategy adopted (efficient sampling strat-
egy limit the number of collocation points used);

• the number of random variables considered (the higher
the number of variables the more collocation points are
needed).

However, it has been proven in the literature that, for a lim-
ited number of random variables (indicatively less than 10) SC
methods are much more efficient with respect to the MC
analysis (see [11,12,14]). For stochastic processes depending
on a high number of random variables, the efficiency of SC
methods is significantly reduced.

Two approaches can be used to increase the efficiency of
an SC modeling technique. Using nested sampling schemes
allows us to adaptively choose the collocation points (addi-
tional details are provided in Section 3.E and Appendix 5.
B). Adopting adaptive sparse grids [16] reduces the nodes re-
quirement, which is especially useful when a high number of
random variables is considered. For a more detailed reference
on SC methods, we refer the reader to [11,12,14,16].

3. DIRECTIONAL COUPLER EXAMPLE
A. Benchmark Description
We demonstrate the use of SC for integrated photonics
through the analysis of a DC in a silicon photonics platform.
Silicon photonics is rapidly gaining adoption due to its poten-
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tial for large-scale integration and volumemanufacturing. [22].
However, the same high-index contrast that enables dense in-
tegration also makes silicon photonic waveguides extremely
sensitive to small imperfections in their geometry. Also, the
high thermo-optic coefficient of silicon makes silicon pho-
tonic devices temperature sensitive. For instance, a change
in linewidth and thickness of waveguide would noticeably
vary the effective index (neff ) of optical modes, resulting in
a shift of 1 nm in the response of a wavelength-selective filter.
This variation leads to performance degradation in devices
such as DCs, Mach–Zehnder interferometers (MZIs) and ring
resonators, and limits the number of devices that a single
circuit can have.

Power coupling devices are essential parts for splitting and
combining power in photonic circuits. Among them, DCs are
widely used for their simplicity in layout and easy-to-under-
stand operation. An advantage of DCs compared with other
2 × 2 couplers is that the coupling ratio can be continuously
adjusted by choosing the length of the coupling section.
Furthermore, DCs constitute the building blocks of many
larger photonic devices such as rings, MZIs, and so on.

A DC consists of two parallel waveguides and connecting
bend sections: the light in a single waveguide is mostly con-
fined in the silicon core, but an exponentially decaying field
extends into the cladding. When two waveguides are brought
in proximity, the modes of the two waveguides couple and
form two supermodes with opposite symmetry (an even and
an oddmode). The beating of these supermodes translates in a
sinusoidal power transfer from one waveguide to the next and
back along the propagation axis z. The power couplingK�z� in
a DC can be expressed as [23]

K�z� � sin2�κz� κ0�: (7)

The power coupling consists of two parts: the contribution
of the straight waveguide κz and of the bend section κ0. The
bend part will introduce an initial phase in the coupling term.
Usually, the bend contribution is fairly small, and the power
coupling is sinusoidally varying with the waveguide coupling
section length z.

The rate of coupling is defined as the field coupling co-
efficient κ, which is determined by the geometry of the coupler
cross section, such as the waveguide width, thickness, and
gap between the waveguide cores.

Let us assume that, for simplicity, the two waveguides in a
DC are identical. As a result, the straight section of the DC
layout is defined by three parameters: the waveguide width
w, thickness t, and gap g (Fig. 1). Furthermore, we assume
that, in the lithography process, the centers of the two wave-
guides are located at the designed position. It is a good
assumption for optical lithography techniques but might be
less accurate for e-beam written devices. With this assumption,
the sum of the gap g and 2× the half-waveguide width w is
constant, as shown in Fig. 1. Therefore, in our example, we
can describe the full geometry of the DC with only two param-
eters: w and t.

In this study, we will use the SC technique to find out how
geometry variability influences the DC performance, namely,
the coupling coefficient k. Indeed, due to the fabrication var-
iations, the fabricated linewidth w, thickness t, and gap g are
different on the value chosen during the design phase. To
prove the robustness and modeling power of the proposed

approach, we assume the width w and thickness t of the
DC as correlated random variables, rather than independent,
following the Gaussian distribution. It is not an unrealistic
assumption: thickness variations could induce over-etching
on the sidewalls.

It is good to note that the SCmethods can deal with random
variables with arbitrary distribution. It is therefore not neces-
sary that the t and w adhere to a Gaussian distribution.

B. Simulation Setup
According to the theory of supermodes, we can write the
coupling coefficient κ as [23]

κ � π

λ
�neff_o − neff_e�; (8)

where neff_o and neff_e are the effective index of asymmetrical
and symmetrical supermodes in DC. For our silicon photonics
devices, we assume the wavelength to λ � 1.55 μm. Next, the
nominal value of the width and thickness are w0 � 450 nm
and t0 � 220 nm, respectively, while we fix the sum of width
w and gap g at 650 nm.

To calculate κ of a given geometry, we define the DC struc-
ture accordingly and simulate neff_o and neff_e in the mode
solver Fimmwave using its film matching mode (FMM) solver.
For later performance comparisons, all simulations are per-
formed on a computer with an Intel Core i5 2500 quad-core
CPU clocked at 3.3 GHz and 8 GB of memory.

C. Problem Definition
As mentioned in Section 3.A, we considered the coupling
coefficient K of a DC as a stochastic process depending on
two correlated random variables with Gaussian PDFs: the
width w and thickness t. Hence, the joint PDF of the two ran-
dom variables considered is defined as

Fig. 1. Upper plot shows the perspective view of a symmetric DC.
Red arrows present the flow of light. Part of the light is coupled from
bottom waveguide to the above one. Cross section is amplified in the
lower plot. The mean width and thickness of the DC are w0 and t0,
respectively. The width w and thickness t of the fabricated DC are
indicated as dashed boxes. The refractive indexes are nsi � 3.44,
nSiO2

� 1.45.
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W η �
1

2π det �C�1∕2 exp
�
−
1
2
�η − μ�TC−1�η − μ�

�
; (9)

where η � �wt�T is the vector of the correlated random vari-
ables considered, the vector μ � �w0t0�T contains the corre-
sponding nominal values (mean values) w0 and t0, and the
matrix C is the covariance matrix. The symbol det�·� repre-
sents the matrix determinant operator. The covariance matrix
is defined as

C �
�

�w0σw�2 ρw0σwt0σt
ρw0σwt0σt �t0σt�2

�
;

where the symbols σw and σt are the normalized standard
deviations of the w and t, while ρ is the correlation coefficient
of these two random variables. The correlation coefficient
jρj < 1 denotes the strength of correlation: the random varia-
bles considered are independent if ρ � 0 and strongly corre-
lated if jρj � 1. Note that, by describing this example in terms
of normalized standard deviations, we make further analysis
independent of the actual nominal values of our two random
variables.

To validate the robustness of the proposed method, σw and
σt are chosen equal to 2% and the correlation coefficient
ρ � 0.9, which is a challenging example to study because
the coupling coefficient is quite dynamic with respect to the
parameters considered (see Fig. 2). The proposed method is
discussed in detail in the following and summarized in Fig. 3.

D. Variable Transformation
Now, SC methods in the form of Eq. (1) deal with independent
random variables, as described in Section 2. Hence, to fit the
problem into the SC framework, first of all, it is necessary to
express the coupling coefficient in two independent Gaussian
random variables, starting from the correlated random varia-
bles η, defined by Eq. (9). As mentioned in Section 2, such
decorrelation can be obtained via a variable transformation.
Thanks to the Karhunen–Loéve expansion [21], it is possible
to express the vector of correlated Gaussian random variables
η in the vector of uncorrelated Gaussian random variables
with zero mean and unit variance ξ � �ξ1; ξ2�T as

η � μ� VE1∕2ξ; (10)

where E and V are the diagonal matrix of the eigenvalues and
the full matrix of the eigenvectors of the covariance matrix C,
respectively. Because uncorrelated Gaussian random varia-
bles are also independent, we have now expressed the cou-
pling coefficient as a stochastic process, which depends on
the pair of independent Gaussian random variables �ξ1; ξ2�.
An accurate description of the Karhunen–Loéve expansion
for Gaussian random variables is given in Appendix 5.A.

E. SC Model Computation
To compute an SC in the form of Eq. (1), the first step is choos-
ing the interpolation scheme: the Lagrange interpolation
scheme is adopted in this example for its modeling power
and ease of implementation. Next, a rule that guarantees a
good quality of the approximation must be used to choose
the collocation points for each random variable: ξ1 and ξ2.
In this example, the Clenshaw–Curtis rule is adopted [17]:
the collocation points for each random variable are the ex-
trema of the Chebyshev polynomials. Now, the total number
of nodes could be obtained using the full tensor products of
the nodes chosen for each random variable, but it would not
be efficient, as discussed in Section 2. Instead, the nodes are
chosen over a sparse grid based on the Smolyak algorithm.
Indeed, the adoption of the Smolyak algorithm allows building

Fig. 2. 2D contour plot of field coupling coefficient versus wave-
guide width and thickness. Fig. 3. Flow chart of the proposed technique.
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our SC model by using only a subset of all the collocation
points given by the full tensor product [17]. Furthermore,
the collocation points chosen by the Smolyak algorithm based
on the Clenshaw–Curtis rule are nested: if additional nodes
are required to accurately model the DC, the nodes already
computed are kept in the new sparse grid, thus reducing the
number of evaluation of the DC coupling coefficient. (See
Appendix 5.B for additional details on the Smolyak algo-
rithm.) As a result, only 65 collocation points (Fig. 4) are re-
quired to build the desired SC model, and the values of the
coupling coefficient at the interpolation nodes are computed
using the FMM solver Fimmwave.

F. Directional Coupler Variability Analysis
Finally, the variability analysis for the coupling coefficient of
the DC under study is performed using an SC model depend-
ing on the pair of independent Gaussian random variables
�ξ1; ξ2� and the results obtained are validated through com-
parison with an MC analysis based on the Fimmwave FMM
solver on the DC cross section for the couple of correlated
random variables �w; t�. To compare the performance of
the two methods, the same set of 10000 samples for the pair
of correlated random variables �w; t� (see Fig. 5). The corre-
sponding values for the independent random variables �ξ1; ξ2�
are used to estimate the device variability features.

The proposed method shows an excellent accuracy com-
pared with the classical MC analysis, as shown in Table 1,
Figs. 6 and 7. In particular, the mean and the standard
deviation of the coupling coefficient obtained employing the
two methods are reported in Table 1: the relative error in the
estimation of the mean and the standard deviation is only 9.0 ×
10−5 and 5.6 × 10−3, respectively. Apart from stochastic mo-
ments, more complicated functions of the stochastic process
under study can be estimated: the probability density and cu-
mulative distribution function (CDF) of κ obtained utilizing
the two methods considered are in excellent agreement, as
shown in Fig. 7.

From the field coupling coefficient, we can also easily de-
rive performance parameters of a DC such as 3 dB coupling
length from
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Fig. 4. Top: the red exes �×� represent the interpolation nodes for the
normalized independent random variables ξ1 and ξ2 used to build the
SC model. Bottom: the blue circles �°� are the corresponding values
for the correlated random variables w and t used to compute the cou-
pling coefficients in Fimmwave.
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Fig. 5. Sampling points used to perform the MC analysis through
direct Fimmwave simulations for the correlated random variables
�w; t�. The corresponding values for the independent random varia-
bles �ξ1; ξ2� are used to evaluate the SC model computed.

Table 1. Performance Summary of SC and
MC Simulation

MC SC

Mean value 65,160 65,166
S.t.d value 2616.9 2631.4

MC Samples
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Fig. 6. Blue circles �°�: coupling coefficient computed via the MC
analysis for the 10000 �w; t� samples shown in Fig. 5. Red �×�-markers:
corresponding values obtained by evaluating the SC model.
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l3 dB � arcsin�sqrt�0.5��∕κ: (11)

As shown in Fig. 8, the proposed method shows excellent
modeling accuracy and a good estimation of the PDF and
the CDF of the 3 dB coupling length l3 dB.

Furthermore, as presented in Table 2, the SC method has
dramatically saved computational cost. Note that the SC
method took a two-step procedure to perform the same vari-
ability analysis. Initially, SC required 65 simulations to

compute the coupling coefficient at the collocation points.
Next, we used the SC model over 10000 samples of the
independent random variables in the MC method. Hence,
the total computational time of the SC method is 8 min and
59 s, which represents a speed-up of a factor 146× with re-
spect to the MC analysis performed in Fimmwave for the cou-
ple of correlated random variables �w; t�, which required 21 h
53 min 14 s.

4. CONCLUSION
This paper has presented the application of a novel technique
for the efficient variability analysis of photonic devices, such
as DCs. It is based on the use of SC methods. Thanks to the
flexibility in the choice of the interpolation schemes and the
efficiency of sparse grid sampling to choose the collocation
nodes for multiple dimension, the proposed approach is flex-
ible and can be applied to study a broad range of photonic
devices. The accuracy and efficiency of the proposed tech-
nique have been verified using comparison with the classic
MC analysis for a pertinent numerical example, achieving a
simulation speed-up of 146×.

Appendix A
KARHUNEN–LOÉVE EXPANSION AND CORRELATED
GAUSSIAN RANDOM VARIABLES
Let us assume that the correlation matrixCN×N for the random
variables η under study is symmetric and positive-definite.
Then, C and can be diagonalized as

C � VEVT �A1�

Thanks to Eq. (A1), Eq. (9) becomes

W η �
1

2π det �E�1∕2 exp
�
−
1
2
�η − μ�TVE−1VT �η − μ�

�
: (A2)

Hence, the Karhunen–Loéve expansion is a simple change of
variables for correlated Gaussian random variables following
the nondegenerate multivariate normal distribution in Eq. (9).
Furthermore, it is possible to express the joint PDF Eq. (A2)
with respect to a vector of independent Gaussian random var-
iable x, with zero mean and variance equal to �Eii�Ni�1, as

Wx �
1

2π det �E�1∕2 exp
�
−
1
2
xTE−1x

�
; (A3)

x � VT �η − μ�. (A4)

Finally, the vector x can be written as

x � E1∕2ξ; (A5)

Fig. 7. PDF and CDF of the coupling coefficient for λ � 1.55 μm. The
blue solid and red dashed line are PDF and CDF obtained by means of
the SC model, respectively, while the blue circles and red squares re-
present the same quantities computed by means of the MC analysis.

0.0002

C
D

F

Fig. 8. PDF and CDF of the 3 dB-coupling length for λ � 1.55 μm.
The blue solid and red dashed line are PDF and CDF obtained by
means of the SC model, respectively, while the blue circles and
red squares represent the same quantities computed by means of
the MC analysis.

Table 2. Computation Time of SC and MC Simulation

Variability Analysis Technique Simulator Number of Points Computation Time

MC Fimmwave FMM Solver 10000 21 h 53 min 14 s

SC
Stochastic modeling Fimmwave FMM Solver 65 8 min 32 s

MC using stochastic model SC stochastic model 10000 27 s
Total time 8 min 59 s
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where ξ is a vector of normalized Gaussian random variables
with zero mean and unitary variance. Equation (10) can be
obtained by combining Eqs. (A4) and (A5).

SMOLYAK ALGORITHM
Let us express a stochastic process Y depending on one ran-
dom variable ξ bymeans of the Lagrange interpolation scheme
as [16]

U�ξ� �
XQ
i�1

Y�ξi�Li�ξ�; (A6)

where Li is given by Eq. (2). The Q nodes can be chosen from
a node distribution, which guarantees a good quality of the
approximation (i.e., the extrema of the Chebyshev polyno-
mials). Extending Eq. (A6) to the case of multiple random var-
iables can be performed via tensor product, as has been
shown in Section 2, and Eq. (A6) becomes

Y�ξ; � � Uk1 ⊗ � � � ⊗ UkN

�
XQk1

i1�1

� � �
XQkN

iN�1

Y�ξk1i1 ;…; ξkNiN ��L
k1
i1
⊗ � � � ⊗ LkN

iN
�; (A7)

where Ukj represents the interpolation scheme in the form
Eq. (A6) with respect to the random variable ξj , and N is
the number of random parameters considered. The total num-
ber of nodes required to compute Eq. (A7) is given by the
product of the nodes used for each random parameter, as
shown in Eq. (4). Clearly, the required number of nodes grows
quickly with respect to the number of parameters considered.
Indeed, if only two nodes are used for each random variable,
the total number of points required for a full-tensor product
interpolation is Q � 2N .

The Smolyak algorithm allows us to build multidimensional
interpolation functions based on a minimal number of
nodes by expressing the desired interpolation as a linear com-
bination of tensor products. In particular, the property
of the 1D interpolation is conserved for higher dimensions.
Indeed, the sparse interpolant Aq;N given by the Smolyak
algorithm is

Aq;N �ξ� �
X

q−N�1≤jkj≤q
�−1�q−jkj

�
N − 1
q − k

�
�Uk1 ⊗ � � � ⊗ UkN �;

(A8)

where q − N is the order of interpolation, AN−1;N � 0 and k �
�k1;…; kN � with jkj � k1 � � � � � kN . Hence, the interpolation
function is built by adding a combination of 1D interpolant
of order kj with the constraint that the total sum jkj across
all parameters is between q − N � 1 and q. Note that kj can
be considered as the interpolation level along the j-th direction.

Let us denote Θ as the set of points utilized in the 1D func-
tion interpolation. According to Eq. (A8), the stochastic proc-
ess Y must be computed at the nodes of the sparse grid Hq;N

given by

Hq;N � ⋃
q−N�1≤jkj≤q

Θk1
1 × � � � × ΘkN

N : (A9)

It is important to note that, by choosing a suitable node dis-
tribution, such as Chebyshev or Gauss–Lobatto points, the
sets of collocation pointsΘk are nested. Hence, the sparse grid
of order q contains all the nodes computed for the sparse grid
of order q − 1, and the stochastic process Ymust be evaluated
only on few new collocation points.
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