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Abstract Silicon microring resonators very often exhibit res-
onance splitting due to backscattering. This effect is hard to
quantitatively and predicatively model. This paper presents a
behavioral circuit model for microrings that quantitatively ex-
plains the wide variations in resonance splitting observed in
experiments. The model is based on an in-depth analysis of
the contributions to backscattering by both the waveguides and
couplers. Backscattering transforms unidirectional microrings
into bidirectional circuits by coupling the clockwise and coun-
terclockwise circulating modes. In high-Q microrings, visible
resonance splitting will be induced, but, due to the stochas-
tic nature of backscattering, this splitting is different for each
resonance. Our model, based on temporal coupled mode the-
ory, and the associated fitting method, are both accurate and
robust, and can also explain asymmetrically split resonances.
The cause of asymmetric resonance splitting is identified as
the backcoupling in the couplers. This is experimentally con-
firmed and its dependency on gap and coupling length is fur-
ther analyzed. Moreover, the wide variation in resonance split-
ting of one spectrum is analyzed and successfully explained
by our circuit model that incorporates most linear parasitic ef-
fects in the microring. This analysis uncovers multi-cavity in-
terference within the microring as an important source of this
variation.
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1. Introduction

Microring resonators are extremely useful devices to cre-
ate compact wave-division-multiplexing (WDM) filters,
(bio)sensors, all-optical signal processing, optical switches,
optical wavelength converters, microwave photonics and
laser cavities [1–7]. The use of silicon gives a high
refractive-index contrast, allowing for ultra-compact rings
with a large free spectral range (FSR). In addition, the
material system is compatible with CMOS manufacturing
processes, offering a route towards large-scale integration
and mass manufacturing.

The basic operation principles of (silicon) microring
resonators have already been described extensively [8, 9].
Basically, an ideal add–drop ring filter operates as shown
in Fig. 1a. Light coupled from the in port circulates clock-
wise (CW) in the ring waveguide in one direction and gets
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extracted at the drop port when the wavelength is near the
resonance wavelength, or is coupled back to the pass port
at other wavelengths. The transmission spectra at the drop
and pass ports consist of a series of Lorentzian-shaped res-
onances, with no light coming out of the add and in ports,
as evident in Fig. 2a. In this unidirectional behavior the
counterclockwise (CCW) mode is never excited.

However, any non-ideality in the ring can lead to small
backscattering that can excite the CCW mode. Especially
near resonance, when the optical intensity in the ring waveg-
uide is high, backscattering can lead to a coherent build-up
of this reflected light, even if the individual reflections are
very weak. This excitation of the CCW mode results in
undesired power output at the add and in ports, and a per-
turbation of the ideal single-resonance state. The backscat-
tering couples the degenerate CW and CCW modes into two
new resonance states with a mixed CW/CCW nature and
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Figure 1 (a) Schematic of an ideal ring resonator without backscattering. Light coupled from the in port will circulate in the ring and
be extracted from the drop port near the resonance wavelength, or continue to the pass port at other wavelengths. (b) t-CMT model
for the ring with backscattering. Without backscattering, CCW and CW modes are degenerate in ring resonators; only one is excited
by its corresponding input. However, as long as backscattering rbs exists, the degeneracy is broken and they are coupled with each
other. The factors μx , μ′

x stand for the mutual coupling of the directional couplers. (c) A simplified schematic of a 2 × 2 directional
coupler. Ideally, the backcoupling k ′ and reflection r ′ are zero. (d) Illustration of the extra reflections caused by directional couplers. The
directional coupler in a ring resonator can be physically divided into three parts, two scattering centers at the beginning and ending
sections, and a distributed scatterer in the straight section due to extra coupling length. Scatterers will cause unwanted backcoupling
to an adjacent port as well as reflection to the in port, while coupling length will bring roughness-induced backscattering.

different resonance wavelengths. In rings with a very high
Q factor, i.e. sufficiently narrow bandwidth, a visible res-
onance splitting in the spectral response will be induced,
and the ring characteristics can be seriously deteriorated
compared to the ideal case [10]. The backscattering can
have many physical contributions, which means that it is
also wavelength dependent; therefore, the resonance split-
ting can vary from one resonance to the next. This is shown
in Fig. 2b, which is taken from a typical measurement of
silicon microring resonators, and in Fig. 3, which shows
the distributions of split ratios of six sets of ring resonators.
Each set contains seven rings with variable lengths. This
resonance splitting will cause problems for many ring res-
onator applications.

- In ring-resonator-based sensors, the shift of the reso-
nance wavelength might not be correctly detected [11].

- In ring-resonator-based tunable lasers, the reflection at
the in port as well as the distortion of the ring’s trans-
mission spectrum may cause laser instabilities.

- In ring-resonator-assisted loss characterization tech-
niques, wrong model parameters will be extracted from
an imperfect fitting of split resonances [12].

- Ring-resonator-based WDM filters will deviate from the
designed filter specifications, as the Q factor cannot be
fully controlled.

- Ring-assisted microwave detection circuits could fail to
get the correct peak power from a split resonance [6].

However, in some situations, the backscattering and
resonance splitting in ring resonators can be harnessed and
provide attractive benefits: for instance, the extinction ratio
of a filter can be strengthened [13].

In order to correctly deal with such split resonances, and
to either avoid or take advantage of backscattering, an accu-
rate and robust model of the ring resonator with backscatter-
ing is required. Existing models do not adequately describe
the observed features in optical measurements of micror-
ings. Current fitting models typically describe only sym-
metrically split resonances [12–15]. No published models
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Figure 2 Examples of spectra of ideal and real ring resonators,
respectively.

Figure 3 Histogram of split ratios of six sets of ring resonators;
each set contains seven rings with variable lengths but the same
coupling gap and coupling length (the total number of resonances
analyzed is around 1080). When a resonance splitting is larger
than half of the 3 dB bandwidth, it becomes visible.

can explain this asymmetry in a satisfactory manner. Still,
our experimental data shows that, in many cases, a sig-
nificant fraction of the split resonances are asymmetrically
split (see Fig. 4), making it necessary to build a fitting model
which could handle all kinds of resonances. Another dif-
ficulty is the experimental identification and quantification
of the different contributions to the backscattering and reso-
nance splitting. So far, analysis of measurements on silicon
microrings has attributed all backscattering to waveguide
roughness distributed along the waveguide [10, 16]. The
possible contribution to backreflection from the directional

Figure 4 A pie chart clearly shows the prevalence of asymmet-
ric ones among all of the splitting resonances from spectra of
252 measured rings (in total more than 550 resonances exhibit
splitting).

couplers has only been theoretically proposed [17], but
has not yet been experimentally verified and quantitatively
characterized. In this paper, we develop a fitting model
that can explain and reproduce all kinds of split and non-
split resonances, and identify the origin of asymmetrically
split resonances. Moreover, we propose and experimentally
prove that, besides waveguide roughness, the directional
couplers indeed contribute to backscattering in silicon mi-
crorings. The influence of the coupler’s gap as well as extra
coupling length on coupler-induced backscattering is also
investigated.

In the following section, the theoretical analysis and
the models for the individual contributions to backscat-
tering are introduced; so is the model based on temporal
coupled mode theory (t-CMT) for the ring with backscat-
tering, with which all resonances can be fitted in a satisfac-
tory manner. In section 3, the origin of asymmetry in most
split resonances is identified, which is the backcoupling of
couplers. Subsequently, the fitting results of measured ring
spectra and experimental characterization of backscattering
are presented in section 4, where the influences of coupler
gap, ring length and coupling length on backscattering are
also shown. We will then make our model more rigorous
and complete by revealing the reason why individual res-
onances within the same spectrum can be so significantly
different. In this section, the model will be improved by
fitting the ring circuit and its whole spectrum instead of
fitting the resonances one by one.

2. t-CMT model for a ring resonator

Temporal coupled-mode theory (t-CMT) is a very good
and useful model to analyze a single resonance of a ring
resonator [18]. The model presented in this paper improves
upon existing models in that it includes both distributed and
localized (lumped) backscattering: distributed backscatter-
ing is caused by waveguide sidewall roughness distributed
along the ring circumference, while lumped backscattering
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is caused by localized discontinuities in the ring. In most
rings, these discontinuities can be found in the coupler.

In this section, the t-CMT model for the ring circuit
with backscattering taken into consideration is first intro-
duced. After that, the models and analysis for the individual
contributions to backscattering, namely the directional cou-
plers (lumped) and waveguide roughness (distributed), are
discussed.

A perfect ring resonator supports two degenerate
modes, clockwise (CW) propagating and counterclockwise
(CCW) propagating, respectively. Ideally, only one of them
is excited by its corresponding input. However, due to
backscattering in the ring waveguide, these two modes can
become coupled with each other and thus excited simul-
taneously, as shown in Fig. 1b. By introducing a lumped
reflector with field reflectivity rbs to represent backscatter-
ing, t-CMT can also be used to analyze a non-ideal ring
resonator.

Equations (1)–(4) are based on our t-CMT model de-
scribing the two coupled resonance modes, and the trans-
mission at the drop and add ports, respectively (the equa-
tions for the in and pass ports are similar):

dαcw

dt
= j

(
ω0 + j

1

τtot

)
αcw − jμ12αccw − jμiSi, (1)

dαccw

dt
= j

(
ω0 + j

1

τtot

)
αccw − jμ21αcw − jμ′

iSi, (2)

Sd = − jμoαcw − jμ′
oαccw, (3)

Sa = − jμ′
oαcw − jμoαccw. (4)

Here

- αccw and αcw are the amplitudes of these two modes,
respectively [18].

- ω0 is the intrinsic resonant frequency of the ring, de-
pending on the ring’s physical parameters.

-

1

τtot
= 1

τl
+ 1

τi
+ 1

τo

is the total decay rate of the ring circuit, including the
intrinsic loss rate 1/τl and out- and in-coupling rates 1/τi
and 1/τo. We can assume that the last two are identical if
the two couplers are designed to be identical, as is often
the case. The relation between decay rate and mutual
coupling is [18]

μ2
x = 2

τx
. (5)

- μi and μo are the mutual forward couplings of two di-
rectional couplers, respectively; the dependency on the

power forward coupling coefficient in space K = k2 is
[18]

μ2
i = μ2

o = Ki
vg

L
= Ki

c

ngL
. (6)

Here
� vg is the group velocity in the ring circuit.
� L is the physical length of the ring.
� c is the light speed in vacuum.
� ng is the group index of the ring.

- μ12, μ21 refer to the mutual couplings of a lumped re-
flector inside the ring waveguide, which are used as a
model for the backscattering. Based on the fact that the
strength of the backscattering should be independent of
the propagation direction, μ12, μ21 are assumed to have
the same amplitudes. However, they might have different
phases due to the stochastic and distributed nature of the
backscattering which is captured in a lumped element:
the effective coupling positions for the two modes may
be different, as also discussed in depth in [19], where a
circuit model for backscattering that takes both ampli-
tude and phase stochastic features into consideration is
proposed. The dependency on field reflectivity rbs is

μ12 = rbs
vg

L
= rbs

c

ngL
. (7)

In the wavelength domain the field reflectivity rbs is also
reported to show a stochastic nature [16, 19]. However,
in our model, rbs within one resonance is considered to
be constant, due to the ultra-narrow bandwidth of a ring
resonance, which is measured to be around 10–40 pm.

- μ′
i and μ′

o are related to the backcouplings of the coupler.
Similarly to μi, the dependency on power backcoupling
coefficient K ′ = k′2 is

μ′2
i = μ′2

o = K ′ vg

L
= K ′ c

ngL
. (8)

For simplicity, a dimensionless factor f is introduced to
mathematically describe the backcoupling k ′ relative to
the forward coupling coefficient k:

k ′ = f k, μ′
i = f μi. (9)

Note that f can be complex, so there can be a phase
difference between forward coupling and backcoupling.

- Sx refers to the amplitude of the wave at each port. It is
normalized such that S2

x has the unit of power.

After solving equations (3) and (4), we get the ampli-
tudes at the drop port Sd and add port Sa as equations (10)
and (12). For comparison, the case without any backscat-
tering is given as equations (11) and (13):

Sd

Si
|bs = Ad

2

[
BW0

2 (1 − f )2

j(ω − ω1) + BW1
2

+
BW0

2 (1 + f )2

j(ω − ω2) + BW2
2

]
,

(10)
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Sd

Si
|ideal = A0

[
BW0

2

j(ω − ω0) + BW0
2

]
, (11)

Sa

Si
|bs = Aa

2

[
−

BW0
2 (1 − f )2

j(ω − ω1) + BW1
2

+
BW0

2 (1 + f )2

j(ω − ω2) + BW2
2

]
,

(12)

Sa

Si
|ideal = 0. (13)

Here

- Ax is a dimensionless factor, scaled by potential trans-
mission losses in the circuit. For ideal circuits, where no
extra loss is present, Ax = 1.

- BW0 is the 3 dB frequency bandwidth of the ring when
there is no backscattering at all, i.e. an ideal ring.

- (ω1, BW1) and (ω2, BW2) are the (central frequencies,
frequency bandwidths) of the CW resonance mode (αcw)
and CCW resonance mode (αccw), respectively.

Also

ω1 = ω0 + μ0 cos
φμ

2
, (14)

ω2 = ω0 − μ0 cos
φμ

2
, (15)

BW1 = BW0 + 2μ0 sin
φμ

2
, (16)

BW2 = BW0 − 2μ0 sin
φμ

2
. (17)

Here μ0 = |μ12μ21| and φμ = ∠μ12μ21. φμ depends on the
effective coupling position of the two circulating modes,
and our fitting results show that φμ is close to 0; this means
that φμ12 = −φμ21 : in other words, the positions where cou-
pling between these two modes effectively happens are
the same. What is more, this demonstrates that the cou-
pling between the two modes is conservative rather than
dissipative.

From equations (14)–(17), the distortion of the electric
field at the drop port and the emergence of light at the add
port, due to μ12 and f , are observed. Instead of a single res-
onance with a Lorentzian line shape, there are now two res-
onances with their own resonance frequency/wavelength,
bandwidth and peak power. When the separation between
the two resonance frequencies becomes sufficiently large
compared to their bandwidth, a visible peak splitting can
be observed.

Table 1 The detailed data of the above spectrum in Fig. 5. The
existence of f can be inferred from a comparison of the first and
third resonances. The peak with larger bandwidth has a higher
peak power; comparing the first and second resonances, the
relative difference in bandwidths of the first resonance is only
6.7%, whereas that in the second resonance is 31.6%, but the
first one shows an even larger difference in peak power (47.5%)
than the second one (42%); this decoupling of relative peak power
and bandwidth can only be explained with a non-zero f.

Resonance 1 Resonance 2 Resonance 3

BW1/pm 16.7188 14.1098 21.0971

BW2/pm 15.6252 19.4137 22.5090
�BW
BW0

6.76% 31.6% 6.47%

P1 0.1447 0.1236 0.099

P2 0.0892 0.0807 0.110
�P
P0

47.5% 42.0% 10.5%

Obviously, μ12 is responsible for the separation of the
resonance frequencies, which is in agreement with models
formerly published in [20]. In terms of the relative power
in these two modes, there seems to be a dependency on
both the bandwidth and the backcoupling factor f . The
existence of backcoupling can thus be deduced from exper-
imental data. Table 1 shows the characteristics of different
split resonances from the same ring resonator. If there were
no backcoupling at all ( f = 0), the only reason that there
could be an asymmetry in the peak power of the two modes
is that their bandwidths are different, as can be seen in the
denominator of equation (10). As a consequence, a larger
bandwidth will lead to a lower peak power, and a large
difference between peak power should correspond with a
large difference in bandwidth. However, something differ-
ent is observed in the measured spectra shown in Table 1.
For the first and third resonances, the peak with the larger
bandwidth actually has a higher peak power. In addition,
when comparing the first and second resonances, we also
find a discrepancy: in the first resonance, the two peaks
have a much smaller difference in bandwidth (6.7%) than
in the second resonance (31.6%), but at the same time the
two peaks of the first resonance have a larger difference in
power (47.5%) than those of the second one (42%). It is
already explained that φμ is very close to 0, meaning that
the difference in bandwidth can be very small. All of these
phenomena reveal that, besides bandwidth, there must be
another factor introducing an asymmetry.

This observation has been confirmed with t-CMT sim-
ulations in the circuit simulator Caphe [21, 22] by Luceda
Photonics. When a ring resonator with backscattering, but
without backcoupling in the directional coupler, is sim-
ulated, only symmetrically split resonances are obtained.
After introducing backcoupling into the coupler model, the
asymmetry in split resonances starts to emerge, as shown
in Fig. 6.
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Figure 5 A measured spectrum with three split resonances.

Figure 6 A sweep of different f factors using circuit simulator
Caphe. When f = 0 and φμ = 0, the red line is generated, which
is a symmetric split resonance; when the magnitude of f is in-
creased, the degree of asymmetry increases accordingly.

3. Individual contributions to backscattering

A ring resonator consists of a circular waveguide and one or
two directional couplers. Each component can potentially
introduce unwanted reflection or scattering, contributing to
the total backscattering in the ring. These contributions will
be discussed in more detail.

3.1. Sidewall roughness-induced backscattering

For the ring waveguide itself, roughness-induced backscat-
tering is the only contribution to backscattering in the ring
that has been verified and analyzed in detail. Other poten-
tial contributions from the ring waveguide could include
the interface between a bend and a straight waveguide. In
[23], the bend radius of a ring resonator is chosen to be
as large as 20 μm. At such large radii, the transition be-
tween bend and straight waveguide is almost perfect in
silicon wire waveguides [24], which might explain why
only roughness-induced backscattering was observed. For
sharper bend radii, 5 μm or even smaller, the interface be-
tween bend and straight section can introduce additional
reflections.

According to [16], roughness-induced backscattering
can be considered as a statistical process, where the re-
flectivity’s spectral characteristics (mean value, standard

deviation and correlation length) depend on the waveg-
uide length. Using optical frequency-domain reflectometry
(OFDR), Morichetti [16,25] demonstrated a linear relation-
ship between reflected power Rw and waveguide length if
the waveguide is short compared to the decay length of the
propagation losses. For a ring resonator, the same technique
clearly shows how a coherent addition of the reflections for
each round trip in the ring increases the reflected power
around the resonance wavelength. This linear relationship
is

Rw = r2
w = Hw × Lw. (18)

Here Hw is a parameter dependent on waveguide dimension
and sidewall quality.

3.2. Coupler-induced backscattering

In addition to the waveguide roughness, the directional cou-
plers should also be considered as a source of backscatter-
ing. Ideally, a directional coupler shown in Fig. 1 c does
not have any reflection r ′ and backcoupling k ′, leaving only
forward coupling k and transmission t . But this is not al-
ways the case: the experimentally determined increase in
loss in coupling sections [26] indicates that this reflection
component can be non-negligible in microrings.

There can be two different types of backscattering as-
sociated to a directional coupler (Fig. 1 d).

1. The existence of an adjacent waveguide is actually a
perturbation to the effective index of the original waveg-
uide. So, the beginning and end interfaces of a direc-
tional coupler can behave like scatterers due to an abrupt
change in effective index. This scattering can couple to
the backward-propagating waveguide modes, i.e. an un-
wanted field backreflection r ′ to the input port and a
backcoupling k ′ to the adjacent port. The more abrupt
this transition from an isolated waveguide to a pair is, the
stronger the scattering can be. The abruptness increases
for a smaller gap, so we can expect a larger backscat-
tering of the coupling sections in rings with a smaller
gap.

2. For directional couplers with a long (straight) coupling
section, the power is exchanged back and forth between
the two waveguides, increasing the local field intensity
at the internal walls, which is verified by a commercial
finite-difference time-domain (FDTD) simulator pro-
vided by Lumerical, as illustrated in Fig. 7. Therefore,
for the same waveguide length, there can be significantly
higher backscattering by sidewall roughness compared
to a single waveguide. The coupler roughness-induced
backscattering is indicated as rc. Similar to waveguides
(equation (18)), the total reflected power Rc = r2

c has a
form of

Rc = Hc × Lc, where Hc > Hw. (19)
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Figure 7 FDTD simulations of mode profiles of directional cou-
plers with 200 nm gap (blue) and 300 nm gap (green), as well as
single-mode waveguide (red). Clearly, the electric field magnitude
at the sidewall of a directional coupler is stronger than that of a
waveguide.

3.3. Separation of distributed and lumped
backscattering

In our t-CMT model for a ring resonator, both backscat-
tering rbs and backcoupling k ′ are included. The backscat-
tering rbs consists of distributed backscattering caused by
waveguide roughness (rw), whose power reflectivity has a
linear dependence on ring length L , and lumped reflection
introduced by couplers (r ′ and rc), whose power reflectiv-
ity should be independent of ring length, but dependent on
couplers’ parameters, for instance, gap and coupling length.
Based on this knowledge, assuming a low average total re-
flectivity during one round trip, only first-order reflection
contributions are taken into account. When the ring length
L << 1/(2αloss). we propose for low-field reflectivity rbs a
simple linear approximation of power reflectivity Rbs = r2

bs:

Rbs = H0L + C0. (20)

Here H0L refers to the distributed backscattering caused by
roughness and C0 covers the contribution from the couplers.

4. Experimental results

A set of rounded rectangular add–drop microrings (fixed
6.5 μm coupling length and 4.5 μm bend radius) with
seven different total ring lengths (150–1000 μm) and six
different coupling gaps (150–400 nm) were measured in
order to verify the model proposed in equation (20). With
this, we intend to verify that the sources of backscattering
include circular waveguide roughness as well as directional
couplers. All resonances between 1520 nm and 1560 nm
are analyzed, using a 1 pm resolution wavelength scan with
a continuous-wave tunable laser and a power meter in a
vertical coupling setup. The devices were designed with
the IPKISS framework [27] and fabricated at IMEC in a
passive silicon photonics technology [28]. The waveguide

Figure 8 Comparison of fitting results using three different mod-
els. Measured data is shown in blue solid line; in green dashed
line data it is fitted with traditional Lorentzian model. The black
dashed line gives the fitting with the t-CMT model but with-
out backcoupling factor f. Clearly, only symmetrically split res-
onances are correctly handled. The fitting results of the complete
t-CMT model with f is shown in red dashed line, which closely
matches the measurements.

dimensions are 450 nm × 220 nm, embedded in oxide and
excited with TE polarization using fiber grating couplers.

4.1. Fitting

First of all, our model is verified by testing its capability to
fit all the peaks of different ring resonators. Equation (10)
is implemented into our Python modeling code and the pa-
rameters are fitted to the resonance spectrum of the drop
port using a least-square algorithm. With small modifica-
tions, the same procedure can be applied to the pass port
spectrum. The free parameters in the frequency domain are
[Pp, ω0, BW0|ω, μ0, f , φμ], or similarly in the wavelength
domain [Pp, λ0, BW0|λ, μ0, f , φμ], which correspond to
[peak power, central frequency, 3 dB bandwidth, amplitude
of backscattering, backcoupling factor, phase of backscat-
tering], respectively. The values of Pp, ω0 and BW0|ω
correspond to the resonance of the ideal ring as if there was
no backscattering present, while the other parameters μ0, f
and φμ describe the perturbation due to the backscattering.

Figure 8 gives examples of three different ring mod-
els. The green line is the result of a traditional Lorentzian
model. It fails to fit resonances with even a small amount
of splitting. The black line fits the resonances with a t-
CMT model with backscattering, but without backcoupling
( f = 0). Only symmetrically split resonances can be han-
dled by this model, and it performs poorly for asymmetric
peaks. Our improved t-CMT model with a non-zero back-
coupling factor f is plotted in the red dashed line. It accu-
rately fits non-split, symmetrically split and asymmetrically
split resonances.

Figure 9 plots the f factor for a typical example of
measured rings. The amplitude of the f factor varies from
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Figure 9 A measured spectrum with fitted amplitude of f fac-
tor at each resonance. Similarly in other measured spectra, the
amplitude of f is in the range of 0 to 0.4.

0 to 0.4, which means that there can be as much as 40% of
the cross-coupled field (16% of the power) coupled back
to the adjacent port of the in port. Such a large value ex-
plains the significant difference in peak power in some split
resonances.

4.2. Extracting the backscattering

With an accurate peak-fitting model we can now look deeper
into the actual backscattering in silicon on insulator (SOI)
microrings. First of all, the strength of the backscattering
will be mathematically extracted from measured spectra.
By analyzing the transmission spectra at the drop port and
the add port, the field backreflectivity rbs for each individ-
ual resonance can be calculated. As the rbs variation with
wavelength has a strong stochastic component, we look at
the mean and standard deviation of rbs over the different
resonances within the transmission spectrum of a single
ring. For resonances that are visibly split, rbs is calculated
as

Rbs = r2
bs = μ2

0

ngL

c
= μ2

0
λ2

0

c × F S Rλ

, (21)

where F S Rλ is the free spectral range in the wavelength
domain and λ0 is the central wavelength of the fitted reso-
nance. All of these parameters, λ0, F S Rλ and μ0, can be
directly extracted from the fit of the peak. From equations
(14) and (15), equation (22) can be generated:

�ωbs = ω1 − ω2 = 2μ0 cos
φμ

2
= 2πc

λ2
0

�λbs. (22)

And, as discussed in section 2, φμ is always very close to
0, it is further simplified as

μ0 = πc

λ2
0

�λbs. (23)

Now, in combination with equation (7), equation (24) can
be generated:

�λbs

BWλ

= Frbs

π
. (24)

Here �λbs refers to the wavelength spacing between
the two peaks of a split resonance. F = F S Rλ/BWλ is the
finesse of the ring, where F/2π is the number of round
trips light makes during the cavity lifetime. This equation
mathematically describes the coherent addition of the back-
reflection contribution for each of the F/2π round trips.

However, for non-split peaks, the fitted parameter μ0 is
not always reliable, as the effect of the envelope shape on
the properties of the individual peaks can be ambiguous:
there are often multiple solutions for the resonance modes
αcw and αccw. Instead, the relative peak intensity at the add
and drop ports can be used to calculate rbs. After some
transformations of equations (10) and (12), we get

PA

PD
=

(
�λbs
BWλ

)2

1 + (
�λbs
BWλ

)2 =
(Frbs

π

)2

1 + (Frbs
π

)2 . (25)

Similar to equation (24), the dependency on Frbs reflects
the coherent addition of reflection per round trip at reso-
nance.

4.3. Separating distributed and lumped
backscattering

In equation (20), the total backscattering is separated into
contributions by lumped scatterers (C0) and by distributed
scatterers (H0), like sidewall roughness. H0 depends on
the electric field strengths at the sidewalls and the quality
of the sidewalls. A lower value of H0 can be obtained by
using a better etch process, broader waveguides or the TM
polarization [25, 29].

We applied our model and extraction procedures to rings
with different round-trip lengths and coupling gaps. The
propagation losses in the measured waveguides are of the
order of < 2 dB/cm [8]. This makes, even if the additional
losses in the coupling sections of small-gap resonators are
considered, the linear approximation in equation (20) a
valid assumption.

The power reflectivity Rbs is plotted in Fig. 10, which
confirms that the highest power reflection Rbs per round trip
is of the order of 0.01, and therefore higher order reflection
contributions can indeed be safely neglected in equation
(20).

It is clearly observable that that the reflected power in-
creases linearly with the ring length, confirming the length-
dependent model from equation (20). It is also shown that
for a larger coupler gap, the curve shifts down. This con-
firms that the directional coupler plays an important role in
the lumped scattering contribution C0, and that smaller gaps
will lead to stronger discontinuities and backscattering.
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Figure 10 Power backscattering per round trip for rings with dif-
ferent round-trip lengths and different directional coupler gaps. A
linear increase of the backscattering for longer rings is observed,
which corresponds to the distributed scattering H0. A decrease in
backscattering for larger coupler gaps is also shown, correspond-
ing to the lumped scattering C0 in the directional couplers.

Figure 11 Fitted parameters H0 and C0 versus coupler gap. H0

remains constant for different gaps, as it only depends on the
ring waveguide roughness. And, the value is well matched with
the formerly reported value. C0 decreases for increasing gap, as
the larger the gap is, the smaller the influence of the directional
coupler will be.

This is again confirmed in Fig. 11, where dependences
of C0 and H0 on the coupler gap are plotted. For all gaps, H0
is quite stable around 6–8 m−1, which corresponds well with
the value reported in [16]. As H0 represents the backscatter-
ing caused by sidewall roughness, it is indeed expected to
be independent of the gap. In terms of C0, it is clearly shown
in the same figure that rings with larger gap have smaller
C0, meaning less backscattering induced by the couplers.

4.4. Coupler-induced backscattering

C0 is more complicated to understand than H0. In reality,
besides couplers the bend/straight transition might also in-
troduce extra lumped reflections. These reflections could
add a small contribution to C0 that is independent of the
coupling parameters. For simplicity, we assume that the
lumped contributions to backscattering solely originate in
the directional couplers. The effect of the couplers is investi-
gated by measuring another set of rings with a fixed coupler
gap (200 nm), seven different ring round-trip lengths (150–
1000 μm) and six different coupling lengths (5–15 μm).

Figure 12 Power backscattering as a function of ring round-
trip length for different coupling lengths Lc. The backscattering
increases with larger round-trip lengths and with larger coupling
lengths.

Figure 13 Fitted backscattering contributions H0 and C0 for dif-
ferent coupling lengths Lc. C0 increases with increasing Lc, in-
dicating more backscattering caused by directional couplers. H0

remains in the expected range of 6–8 m−1.

Figure 12 again plots Rbs as a function of ring length,
but now for directional couplers with three different coupler
lengths. The curves with the longer coupling lengths Lc
show a higher backscattering. Figure 13 quantifies how C0
increases with coupling length Lc. H0 also shows a slight
increase, but less pronounced, and still within the range
reported in [16]. The change in H0 can also be due to a
secondary effect: longer coupler lengths increase the ring
linewidth, which affects the quality of the fit due to the
existence of noise in the spectrum.

All of the data shown tell us that the coupler sections in-
deed introduce considerable reflections, and the strength of
those reflections depends on both gap and coupling length.

5. Wavelength-dependent model for
full-spectrum fitting

With the model discussed in the previous section, we could
accurately fit every individual resonance separately.

However, in reality, there should be a constant set of
parameters for the ring circuit instead of a unique set of
parameters for each resonance. Though, by claiming that
each resonance has different parameters, i.e. backcoupling
and backscattering, the differences between resonances in a
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single spectrum could be explained. The question of how to
physically explain the differences between these parameters
still remains.

Back to our former analysis, we remind ourselves that
there are two individual contributions: roughness-induced
backscattering and directional couplers. It has already been
reported in [16] that the roughness-induced backscattering
exhibits a degree of randomness, which might be a reason
for the different shapes of resonances in a single spectrum.
However, our analysis and measurement results in previous
sections reveal that the strength of backscattering only in-
fluences the spectral separation of the two split peaks. In
other words, the large differences in peak powers of each
split resonance cannot be explained by the randomness in
backscattering.

When the layout of the system is considered, we see
that for an add–drop filter, there are two couplers, so four
scatterers in total. These four scatterers plus backscatter-
ing will form a complicated multi-cavity system in the ring
circuit, which will show a certain wavelength dependency.
In order to verify this, the circuit simulator Caphe with a
detailed model for the ring circuit is used to fit the mea-
sured data. The fitting algorithm used is differential evolu-
tion[30], which is much more time consuming but rigorous
than other simple algorithms like least square. The wave-
length span of the fitting procedure as well as the measured
spectrum is chosen to be 20 nm with a 1 pm resolution, in
order to incorporate enough resonances and include ade-
quate data points within a single resonance. In this model, a
basic directional coupler contains two independent ‘waveg-
uides’ corresponding with the even and odd supermodes.
The effective indexes are simulated using FIMMWAVE.
The scatterers at the input and output stages of a directional
coupler couple the individual waveguide mode to the super-
modes, and also add parasitic reflection and backcoupling.
Thus, the parameters to be fitted include:

- coefficients of a third-order polynomial equation de-
scribing the effective index of the ring waveguide versus
wavelength;

- coefficients of two second-order polynomial equations
for the effective indexes of the two supermode waveg-
uides;

- reflection and backcoupling of these scatterers. They are
assumed to be constant among all of these scatterers;

- roughness-induced backscattering strength.

Moreover, for the sake of both accuracy and efficiency,
we would prefer to implement a multi-stage fit, rather than
a single fitting procedure that is fed with all parameters
simultaneously. In detail, the effective index of the ring
waveguide is first fitted to find the correct positions of the
resonances. Then the effective indexes of the supermode
waveguides are fitted to get the proper coupling strength of
the directional couplers. Subsequently comes the fitting of
these parasitics, including backscattering of the waveguide
as well as backreflection and backcoupling of the scatterers.

Figures 14 and 15 show the fitting of two relatively
short rings. Due to the limited number of resonances in the

Figure 14 Fitting of a 75 μm long ring; here the circuit simulator
Caphe is used to fit a ring circuit: in other words, the complete
spectrum is fitted instead of individual resonances.

Figure 15 Fitting of a 100 μm long ring; the good matching
shows the reproducibility of this circuit fitting model.

spectrum, the randomness of the backscattering does not
play a significant role. Even if in our model backscattering
is considered to be wavelength independent, a relatively
good match between simulation and measured data can still
be achieved, and the fitted parameters are consistent with
previously fitting results or simulated values. For example,
the power coupling ratio is of the order of 1 × 10−3, sim-
ilar to the value simulated by Lumerical FDTD Solutions,
which is 3.6 × 10−3. The fitted value of backcoupling of
the directional coupler is of the order of 10−5, in good cor-
respondence with the previously reported f factor for the
electric field, which is from 0 to 0.3, i.e. from 0 to 0.09 for
power.

Figure 16 shows the fitting result of a longer ring,
with more than 10 resonances. Due to the large number
of resonances here, the randomness of the backscattering
can become quite influential and will have an impact on
the fitting quality. As expected, the fitting mismatch in-
creases, which can actually be considered as a measure for
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Figure 16 Fitting of a 300 μm long ring; larger mismatch is ex-
pected, due to the randomness of roughness-induced backscat-
tering, which is not included in this circuit model. However, there
is still a good match and it clearly shows the variety in split reso-
nance shapes caused by multi-scatterers in the ring circuit.

randomness of the distributed backscattering. Still, we can
extract trends from this fitting.

In summary, we identify two reasons in order to explain
why individual resonances in the same ring can be quite
different, not only in split ratio, but also in asymmetry and
bandwidth. The first one is due to the previously reported
randomness in waveguide-roughness-induced backscatter-
ing, and this will affect the split ratio of the resonances.
The second contribution is from the complicated directional
couplers, which contain not only lumped multi-scatterers
that introduce extra reflection and backcoupling but also
distributed backscattering due to the sidewall roughness of
the extra coupling length.

6. Methods to suppress resonance splitting

After understanding the origin of the resonance splitting, a
number of techniques to reduce or avoid resonance split-
ting can be suggested. Generally, the methods to suppress
resonance splitting can be classified into four categories.

1. Improving the lithography and etching technology to
reduce the sidewall roughness [25].

2. Using TM polarization or rib waveguides so that the
sidewall sees a weaker electric field [25, 29].

3. Lowering the Q factor, i.e. strengthening the coupling
coefficient of the directional coupler(s). Among the six
measured sets of rings with gaps from 0.15 μm to
0.4 μm, there is a clear observable trend that resonance
splitting is very rare in rings with a gap of 0.15 μm. On
the other hand, rings with a gap larger than 0.25 μm
almost invariably exhibit severe resonance splitting due
to a narrower bandwidth/higher Q factor, as illustrated
in Fig. 3.

4. Design optimization: either the backscattering rbs or
the backcoupling ( f factor) of the whole ring circuit
could be tailored. The former method relies on an

intentional reflector inside the ring, whose reflectivity
as well as phase could be tuned, to compensate the para-
sitic backscattering rbs. As a consequence, the total ring
circuit can be made to suffer no backscattering at all.
The second method tunes the f factor to be 1, so that
the input wave contributes equally to CW and CCW
modes. As in equation (10), when f = 1, one peak of a
split resonance disappears. In such a case, the parasitic
backscattering as well as the resonance splitting still
occurs, but one peak is suppressed at the output.

7. Conclusions and outlook

This paper explains quantitatively the wide variation of
resonance splitting in ring resonators. For this, a compre-
hensive and in-depth analysis of backscattering, one of the
most severe as well as frequently observable problems in
silicon microring resonators, is performed. It is based on
measurements of abundant devices fabricated in mature
CMOS technology. This quantitative analysis demonstrated
the high probability of resonance splitting and the domi-
nance of asymmetric ones in those resonance splittings. It
also illustrated the problem of wide variations in resonance
splitting of a single ring’s spectrum.

In order to explain and model the resonance splitting
(especially the asymmetric ones, which was hitherto im-
possible to model accurately), a model based on tempo-
ral coupled-mode theory is developed, which incorporates
the parasitic processes of backscattering (distributed and
lumped) as well as backcoupling in the coupler sections.
The model is able to fit a wide variety of observed features,
including single resonances and symmetrically and asym-
metrically split resonances. Theoretical and experimental
evidence that the origin of the asymmetry in split reso-
nances is the backcoupling in the directional couplers are
also presented. This model enabled us to get a deeper under-
standing of the mechanisms that contribute to backscatter-
ing in SOI microrings. The measurement results confirmed
our hypothesis that backscattering is not only caused by
sidewall roughness but also by the directional couplers.
The relative influences of the coupler’s gap and coupling
length are also characterized in detail.

After successfully characterizing the splitting in a sin-
gle ring resonance, our behavioral model is improved to
explain the wide variations in resonance splitting within
one spectrum. In this improved model, the directional cou-
pler is modeled in a more rigorous way by decomposing
it into multiple sections: two scatterers at the beginning
and end sections that can introduce lumped reflection and
backcoupling, and ‘waveguides’ with backscattering corre-
sponding to the two supermodes in the directional coupler.
The satisfying fitting results confirm that the very diverse
cases of resonance splitting within one spectrum are indeed
caused by the complicated multi-cavity system.

These models and characterization results will be
valuable to improve the performance of silicon micror-
ing resonators and suppress the resonance splitting. Based
on the work described here, future work will develop
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different methods to suppress the resonance splitting or
even the fundamental backscattering. Moreover, the model
can also help to use the parasitic backscattering and reso-
nance splitting for more useful purposes. Some work has
already been done to utilize resonance splitting to design
novel components or circuits, including integrated sensors,
single-mode ring resonators, dual-wavelength laser cavities
and even high-speed modulators.
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