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So far, Brillouin scattering and cavity optomechanics have been mostly disconnected branches of research,
although both deal with photon-phonon coupling. This begs for the development of a broader theory that
contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active
waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification
and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all
have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of
central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling
rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities,
and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects,
such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we
formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities,
and gain coefficients, thus reflecting the similarities in the underlying physics.
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I. INTRODUCTION

Brillouin scattering [1] and cavity optomechanics [2] have
been intensively studied in recent years. Both concern the
interaction between light and sound, but they were part of
separate traditions. Already in the early 1920s, diffraction
of light by sound was studied by Léon Brillouin. Therefore,
such inelastic scattering is called Brillouin scattering [3,4].
The effect is known as stimulated Brillouin scattering (SBS)
[5–7] when a strong intensity-modulated light field generates
the sound, often with classical applications such as spectral
purification [8] and microwave signal processing [9] in mind.
In contrast, cavity optomechanics arose from Braginsky’s
efforts to understand the limits of gravitational wave detectors
in the 1970s and has greatly expanded since the demonstration
of phonon lasing in microtoroids [10]. By and large, it aims to
control both optical and mechanical quantum states [11–13].

Historically, a number of important differences hindered
their merger. For instance, SBS generally dealt with high-
group-velocity and cavity optomechanics with low-group-
velocity acoustic phonons. In addition, bulk electrostrictive
forces usually dominated phonon generation in SBS, while
radiation pressure at the boundaries took this role in cavity op-
tomechanics. Further, cavity optomechanics typically studied
resonators with much lower phonon than photon dissipation,
whereas Brillouin lasers [8,14,15] operate in the reversed
regime [16]. Finally, SBS is often studied not in cavities but in
optically broadband waveguides [1]. Thus, particular physical
systems used to be firmly placed in either one or the other
research paradigm.

Lately, the idea that these are mostly superficial classi-
fications has been gaining traction. Indeed, in both cases
light generates motion and the motion phase-modulates light.
Next, this spatiotemporal phase modulation creates motional
sidebands, which interfere with those initially present. The
research fields share this essential feedback loop. Some
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FIG. 1. From circuit to cavity optomechanics. We explicitly
derive the physics of optomechanical cavities (right) from that of
Brillouin-active waveguides (left). Therefore, both traveling-wave
and cavity-based optomechanics can be cast in terms of vacuum
coupling rates (g̃0 and g0), cooperativities (C̃ and C), and gain
coefficients (G̃ and G).

connections have already been made. For instance, elec-
trostrictive forces were exploited for sideband cooling [17,18]
and induced transparency [19,20] while radiation pressure
contributed to SBS in dual-web fibers [21] and silicon
waveguides [22–25].

In this work, we derive the dynamics of optomechanical
cavities from that of Brillouin-active waveguides (Fig. 1).
The transition holds for both co- and counter-propagating
pump and Stokes waves, i.e., for “forward” and “back-
ward” scattering, and for optoacoustic coupling between
two different or two identical optical modal fields, i.e., for
“intermodal” [18,26–29] or “intramodal” [22,23,28,30–35]
scattering (Fig. 2). Hence, all flavors of photon-phonon
interaction are treated on the same footing. Moreover, this
spatially averaged cavity dynamics is found to be equivalent
to the standard Hamiltonian of cavity optomechanics [2], even
in the case of low-finesse phonons. It turns out that this cavity
dynamics can be mapped—by swapping space and time (z ↔
t)—on the steady-state spatial evolution of the optoacoustic
fields in the waveguide. The treatment describes Raman effects
as well.

This implies that the plethora of optomechanical effects,
such as stimulated Brillouin scattering [3,4,36], slow light
[37–39], optomechanically induced transparency [39,40],
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FIG. 2. Phase-matching diagrams. The optical dispersion relation
ω(k) shows phonon-mediated coupling between co- or counter-
propagating photons and between two identical (intramodal) or two
different (intermodal) optical modes. Therefore, there are generally
four types of optomechanics, of which three are indicated in this
diagram. The fourth is countercoupling between two different optical
modes.

ground-state cooling [11,41], etc., are different aspects of
the same feedback loop. The rigorous transition decisively
indicates that both fields are a subset of a larger theory of
photon-phonon interaction, which may be built on a single
Hamiltonian [42,43]. This is not to say that they are identical:
a Brillouin-active waveguide supports complex spatiotemporal
phenomena [44–46] and noise dynamics [47,48] not present
in a high-finesse optomechanical cavity. Nevertheless, in the
resulting picture (Fig. 3), both traveling-wave and cavity-based
photon-phonon interaction can be classified according to (1)
the damping hierarchy of the photons and phonons and (2)
the strength of the photon-phonon coupling with respect to the
largest dissipation channel. For weak coupling, the long-lived
particle species—either photons or phonons—triggers the
photon-phonon conversion. The short-lived particle species
cannot truly build up and is thus slaved to its long-lived partner;
it is merely created in short segments (of space or time) and
immediately decays afterwards.

All Brillouin-active waveguides so far exhibited far stronger
phononic than photonic propagation losses; in addition, the
coupling was always weak relative to this phononic damping.
Hence, there are two to date unexplored regimes of guided-
wave optomechanics: (1) photon-assisted amplification of
traveling phonons and (2) strong coupling between traveling
photons and phonons (Fig. 3). The strong-coupling regime pro-
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FIG. 3. Symmetry of circuit and cavity optomechanics. Each
temporal optomechanical effect has a spatial symmetry partner. Thus,
the description of these effects can be cast in terms of conceptually
similar figures of merit. The scheme assumes a red-detuned optical
probe; “gain” and “laser” should respectively be replaced by “loss”
and “cooling” for a blue-detuned optical probe. The meaning of the
figures of merit is discussed in the main text.

duces either traveling entangled photon-phonon pairs or state
swapping between light and sound along the waveguide, de-
pending on the details (e.g., probe detuning) of the experiment.
Although currently unobserved, both effects may be an asset in
future quantum phononic networks [13,49–52]. For instance,
in the strong-coupling regime the flying phonon—entangled
to its photonic partner—could be detected piezoelectrically or
optically and thereby enable Bell tests [53–55] between two
different particle species. Our back-of-the-envelope estimates
show that these regimes can be achieved in existing systems,
such as dual-web fibers and silicon nanowaveguides.

The transition (Fig. 1) assumes that the photonic and
phononic modes of the waveguide are not disturbed too
strongly by looping it into a cavity. This is justified in many
cases since cavity designs aim to minimize the losses (e.g., due
to bending) induced by any modal perturbations. Within this
approximation, it permits translations between circuit- and
cavity-oriented figures of merit. For instance, we identify a
connection between the Brillouin or Raman gain coefficient G̃
and the zero-point coupling rate g0. The former (G̃) quantifies
the pump power and waveguide length required to amplify a
Stokes seed appreciably [3,4]. The latter (g0) captures the
interaction strength between a single photon and a single
phonon in an optomechanical cavity [2]. The transition proves
that these figures of merit are inextricably linked by

vpvs
(�ωp)�m

4L

( G̃
Qm

)
= g2

0 (1)

with vp and vs the group velocities of the pump and Stokes
waves, �ωp the pump photon energy, �m

2π
the mechanical

resonance frequency, L the cavity round-trip length, and
Qm the waveguide’s mechanical quality factor. This link is
independent of the type of driving optical force and of the
relative photon and phonon damping. Similarly, we derive
connections between each of the circuit- and cavity-oriented
figures of merit: between the vacuum coupling rates [g̃0 and
g0; see (21)], the cooperativities [C̃ and C; see (34)], and the
gain coefficients [G̃ and G; see (36)].

Notably, this treatment goes beyond cavity optomechanical
systems that have a clear circuit equivalent (as in Fig. 1).
Indeed, the standard cavity Hamiltonian Ĥ = �ωc(x̂)â†â +
��mb̂†b̂ [2] also captures the temporal dynamics of cavity
optomechanics based on Bose-Einstein condensates [56,57]
or plasmonic Raman cavities [58]. The physics of all these
diverse systems can be understood in the scheme of Fig. 3. On
top of the similar dynamics, this means that the photon-phonon
interaction efficiency of a larger class of systems can now be
compared in a single framework. For instance, the gain coef-
ficient of a silicon nanowire can be converted to the vacuum
coupling rate of a hypothetical cavity [through (1)], which can
next be compared to that of any other cavity optomechanical
system. In reverse, the link enables the conversion of a vacuum
coupling rate of an actual cavity optomechanical system into a
hypothetical guided-wave coupling rate [through (21)], which
can next be compared to that of any other waveguide. We give
examples of such conversions, which can be tested empirically
in many cases, in Sec. V.

The paper is organized as follows: In Sec. II we describe
a minimal model of traveling-wave optomechanics and frame

053828-2



UNIFYING BRILLOUIN SCATTERING AND CAVITY . . . PHYSICAL REVIEW A 93, 053828 (2016)

it in terms of a guided-wave vacuum coupling rate g̃0 and
cooperativity C̃. Next, we make the mean-field transition
to a cavity in Sec. III. At that point, we also discuss the
limitations of the analysis. The resulting dynamical effects
are treated in Sec. IV. The prospects for observing new effects
are considered in Sec. V and we conclude in Sec. VI.

II. CIRCUIT OPTOMECHANICS

In particular, we study the interaction between a pump
field with envelope ap(z,t) and a red-detuned Stokes field with
envelope as(z,t) mediated by an acoustic field with envelope
b(z,t). The envelopes contain only the slowly varying part
of the photonic-phononic fields; rapidly oscillating factors
ei(kz−ωt) were removed in each case. The guided optical modes
correspond to the points (ωp,kp) and (ωs,ks) in the optical
dispersion relation (Fig. 2). By energy and wave-momentum
[59] conservation, the excited phonon has an angular frequency
� = ωp − ωs and wave vector q = kp ∓ ks. The nature of the
optical modes (co/counter and fast/slow) and the acoustic
dispersion relation determine the wave vector q and group
velocity vm of the excited phonons (Figs. 2 and 4).

Traveling-wave photon-phonon coupling is governed by the
following dynamical evolution [42,48,60]:

v−1
p ∂tap + ∂zap = −ig̃0asb − χ̃−1

p ap,

v−1
s ∂tas ± ∂zas = −ig̃0b

†ap − χ̃−1
s as, (2)

v−1
m ∂tb + ∂zb = −ig̃0a

†
s ap − χ̃−1

m b.

Its derivation proceeds from Maxwell’s and the elasticity
equations on the assumption that the envelopes vary slowly in
space and time [42,48,60]. This starting point and the following
treatment holds quantum mechanically if one takes care to
treat the envelopes in (2) as operators [42,48] obeying the
equal-time commutator

[aγ (z,t),a†
γ ′(z′,t)] = √

vγ vγ ′δγ γ ′δ(z − z′) (3)

with “γ ” an index running over the pump “p”, Stokes “s”,
and mechanical wave “m”, vγ the group velocities, δγ γ ′ the
Kronecker delta, δ(z) the Dirac delta distribution, and am =
b for notational convenience. We flux-normalized the field
operators aγ such that 	p = a

†
pap, 	s = a

†
s as, and 	m = b†b

correspond to the number of pump photons, Stokes photons,
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FIG. 4. Example of phonon dispersion relation. (a) The frequency
�(q) of transversally trapped acoustic phonons has a Raman-like
cutoff �c for low q and approaches the bulk relation for large q. (b)
Thus, the phonon group velocity vm vanishes for low q and becomes
the bulk speed for large q.

and phonons passing through a cross section of the waveguide
per second. We will treat highly occupied (i.e., large mean flux
〈	γ 〉) modes as classical in the remainder of the paper, as is
standard [2,61–63]. Further, we denote g̃0 the traveling-wave
vacuum coupling rate (to be discussed further on), χ̃−1

γ =
αγ

2 − i�̃γ the susceptibilities, αγ the propagation losses, and
�̃γ the wave vector offsets between externally applied fields
and the intrinsic waveguide modes.

In some systems, e.g., for the Raman-like low-group-
velocity phonons (Fig. 4) associated with forward intramodal
scattering [22–24,28,30], the longitudinal phonon wavelength
2π
q

can be substantially larger than its decay length α−1
m , so

its slowly varying amplitude treatment breaks down. Then
the acoustic excitation is better treated as a localized series
of mechanical oscillators [23,30,60], essentially dealing with
each cross-sectional slice of the waveguide as an artificial
Raman-active molecule. The above dynamics (2), however,
contains these systems as well by letting the phonon decay
length α−1

m vanish. Further, the sign (±) in the Stokes equation
indicates the difference between forward (+) and backward
(−) photon-phonon coupling. Cascaded scattering [30,64] and
noise [47,48] can and should be added to this model in some
instances. In fact, (2) can be regarded as the unique, minimal
model for guided-wave Brillouin scattering [42,48,60]. We
discuss potential extensions in Sec. V; in the following, we
only need the minimal model (2); future extended versions
can be dealt with similarly.

The Manley-Rowe relations [3,65] guarantee that a single,
unique figure of merit g̃0 captures all conservative optical
forces and scattering. Indeed, in the lossless case (αγ = 0),
the rate of pump photon destruction must equal the rate of
Stokes photon and phonon creation:

−∂z	p = ±∂z	s = ∂z	m = −g̃0
(
ia†

s b
†ap + H.c.

)
. (4)

Similarly to g0 in a cavity [2], g̃0 quantifies the interaction
strength between a single photon and a single phonon, but in
this case flying along a waveguide instead of trapped in a cavity.
We take g̃0 real and positive without loss of generality. Briefly
specializing to forward intramodal scattering, the mean-field
transition of Sec. III will show that (see appendices)

g̃0 = −x̃ZPF
∂kp

∂x

∣∣∣∣
ωp

(5)

with

x̃ZPF = xZPF

√
δL

vm
=

√
�

2meffvm�m
(6)

the guided-wave zero-point motion and meff the effective
mass of the mechanical mode per unit length. Indeed, a
short waveguide section of length δL contains 〈nm〉 = δL

vm
〈	m〉

phonons with 〈	m〉 the mean phonon flux. As particle fluxes—
instead of numbers—are fundamental in the traveling-wave
Manley-Rowe relations (4), the zero-point motion is rescaled
by precisely this factor (δL/vm)1/2 relative to the actual
zero-point motion xZPF [2] of the δL section,

xZPF =
√

�

2meffδL�m
. (7)
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Therefore, the traveling-wave vacuum coupling rate g̃0 is
determined by the wave vector shift induced by mechanical
motion at fixed frequency, while the cavity vacuum coupling
rate g0 is determined by the frequency shift induced by
mechanical motion at fixed wave vector [2]. Notably, the
interpretation of g̃0 as the coupling strength between a single
traveling photon and phonon holds also for intermodal and
backward scattering (see appendices).

In steady state (∂t → 0) and for a constant, strong pump
[	p(z) = 	p(0)], the evolution (2) reduces to

∂zas = ∓ig̃0b
†ap ∓ χ̃−1

s as,
(8)

∂zb = −ig̃0a
†
s ap − χ̃−1

m b.

The phonon decay length α−1
m is generally largest for back-

ward scattering. Even then, it typically does not exceed
α−1

m ∼ 100 μm [3,66]. Therefore, the photon decay length
massively exceeds the phonon decay length in Brillouin-active
waveguides to date (αs 
 αm). A full solution of (8) exists but
yields little intuitive insight (see appendices). Therefore, we
initially focus on two subcases: the conventional (αs 
 αm)
and the reversed case (αm 
 αs), both in the weak-coupling
regime (g̃0

√
	p 
 αs + αm). These examples illustrate how

one can formulate guided-wave optomechanics, including the
classical stimulated Brillouin regime, in terms of the vacuum
coupling rate g̃0 and cooperativity C̃.

First, strongly damped phonons (αs 
 αm) act as a local-
ized slave wave (∂zb → 0) given by b = −iχ̃mg̃0a

†
s ap. On

resonance (�̃γ = 0), we thus have

∂zas = ∓(1 − C̃)
αs

2
as (9)

with

C̃ = 4g̃2
0	p

αsαm
= 4g̃2

αsαm
(10)

the guided-wave cooperativity and g̃ = g̃0
√

	p the pump-
enhanced spatial coupling rate. Therefore, C̃ = 1 is the
threshold for net phonon-assisted gain on flying photons. Since

Pp = �ωp	p is the pump power, we obtain C̃ = G̃Pp

αs
and

G̃ = 4g̃2
0

�ωpαm
(11)

the well-known Brillouin gain coefficient [3,4], here framed
in terms of a spatial coupling rate g̃0 and cooperativity C̃.
It characterizes the spatial exponential buildup of a Stokes
seed in the case of highly damped phonons (αs 
 αm). Since
〈	m〉 = αs

αm
C̃〈	s〉 
 〈	s〉, there are on average far fewer

phonons than photons flying along the waveguide in this
case. The system enters the strong-coupling regime as soon
as C̃ ∼ αm

αs
(see Sec. IV).

Second, when the phononic damping is lowest (αm 
 αs),
we similarly get a slaved Stokes wave (∂zas → 0) given by
as = −iχ̃sg̃0b

†ap resulting in (�̃γ = 0)

∂zb = −(1 − C̃)
αm

2
b (12)

such that C̃ = 1 also yields the threshold for net photon-
assisted gain on flying phonons. Since 〈	s〉 = αm

αs
C̃〈	m〉 


〈	m〉, there are far fewer photons than phonons flying along the
waveguide in this case. The system enters the strong-coupling
regime as soon as C̃ ∼ αs

αm
. By replacing the undepleted pump

with an undepleted, strong Stokes mode (g̃ = g̃0
√

	s), it
follows that an anti-Stokes seed sees larger loss by a factor
(1 + C̃) conventionally (αs 
 αm) and that a guided-wave
phonon channel can be cooled by a factor (1 + C̃) when it
has the lowest propagation loss (αm 
 αs). An undepleted,
strong phononic beam (g̃ = g̃0

√
	m) yields similar coupling

between the pump and Stokes wave.
The coupling rate g̃ and the cooperativity C̃ respect the

symmetry between flying photons and phonons, whereas the
gain coefficient G̃ (11) is most relevant in the case of stronger
phonon damping. Therefore, we regard g̃ and C̃ as more natural
and fundamental figures of merit. It is straightforward to extend
the above discussion for absorptive decay of the pump flux,
i.e., 	p(z) = 	p(0)e−αpz and nonzero wave vector detunings
�̃γ �= 0.

So far, we have discussed two subcases of guided-wave
Brillouin scattering. We treat the strong-coupling regime in
Sec. IV and the full solution in the appendices. Next, we move
on to cavity optomechanics via the mean-field transition.

III. BRIDGE TO CAVITY OPTOMECHANICS

In this section, we transition to an optical cavity—made
from a Brillouin-active waveguide—of round-trip length L

(Fig. 1). To do so, we introduce the mean-field envelope
operators

a(t) = 1

L

∫ L

0
a(z,t)dz (13)

for both the optical [ap/s(t)] and acoustic [b(t)] fields. Such
mean-field models have found early use in the treatment of
fluorescence [67] and recently also in the context of frequency
combs [68]. During round-trip propagation, each field obeys
dynamics of the form [see (2)]

v−1∂ta + ∂za = ζ − χ̃−1a (14)

with ζ the nonlinear interaction term. To describe the cavity
feedback (Fig. 1), we add the boundary condition

a(0,t) = √
1 − α′√1 − μ eiϕa(L,t) + √

μ s(t) (15)

with α′ the additional loss fraction along a round trip (on
top of α, such as bending losses), μ the fraction of photons or
phonons coupled to an input or output channel, ϕ the round-trip
phase shift, and s(t) the flux-normalized envelope of injected
photons or phonons. By Taylor expansion of (15), we get

a(L,t) − a(0,t) ≈
(

α′ + μ

2
− iϕ

)
a(t) − √

μ s(t) (16)

with higher-order terms negligible and a(L,t) ≈ a(t) in the
high-finesse limit. Low-finesse situations, particularly relevant
for phonons, are treated further on [see (24)]. We operate close
to the cavity resonance, such that ϕ 
 2π . Next, we let (13)
operate on (14) and use ∂ta = ȧ(t):

v−1ȧ(t) + L−1{a(L,t) − a(0,t)} = ζ (t) − χ̃−1a(t). (17)
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FIG. 5. Cavity description. The photonic and phononic density of states D(ω). The mean-field equations (20) describe coupling between
one phononic and either one (a) or two (b) photonic resonances. The latter case (b) is most power efficient, although hard to achieve in practice
[8].

We insert (16) in (17) and find

ȧ = vζ − χ−1a +
√

μ

T
s (18)

with χ−1 = κ
2 − i� the cavity’s photonic or phononic re-

sponse function (see Fig. 5), κ = κi + κc the total decay rate,
κi = α′+αL

T
the intrinsic decay rate, κc = μ

T
the coupling rate,

� = ϕ+�̃L

T
the detuning, and T = L

v
the round-trip time.

Next, we multiply (18) by
√

T and switch from flux- to
number-normalized fields (a → √

T a):

ȧ = v
√

T ζ − χ−1a + √
κcs. (19)

From here on, n = a†a represents the number of quanta
in the cavity, while s†s still corresponds to the injected
photon or phonon flux. The transition from (14) to (19) still
holds when we replace z → −z because condition (16) also
reverses. Therefore, potential dynamical differences between
forward and backward scattering disappear in a high-finesse
traveling-wave cavity—at least in the minimal model (2) of
guided-wave optomechanics. Comparing (2) to (14), we see
that ζ ∝ fg with f and g equal to ap/s or b. In the mean-field
approximation, we assume these envelopes vary little over
a round trip such that fg = f g holds (see appendices).
Finally, we apply the mean-field (14)-to-(19) transition to
(2). Hence, an optomechanical cavity—constructed from a
Brillouin-active waveguide—is governed by

ȧp = −ig0asb − χ−1
p ap + √

κcpsp,

ȧs = −ig0b
†
ap − χ−1

s as + √
κcsss, (20)

ḃ = −ig0a
†
sap − χ−1

m b + √
κcmsm,

with √
vpvsvm

L
g̃0 = g0 (21)

the well-known temporal zero-point coupling rate [2]. Indeed,
Eqs. (20) are equivalent (see appendices) to the Heisenberg
equations of motion resulting from the well-known Hamilto-
nian Ĥ = �ωc(x̂)â†â + ��mb̂†b̂ [2]. Remarkably, the equiv-
alence holds even for intermodal and backward scattering.
The connection (21) between the traveling-wave and the
cavity-based vacuum coupling rates g̃0 and g0 is at the heart
of this work: other links such as (1) are based on this result.

Further, the mean-field transition transforms the guided-wave
commutator (3) into

[aγ ,a
†
γ ′] =

√
vγ vγ ′

L2
δγ γ ′

∫ L

0

∫ L

0
dzdz′δ(z − z′) =

√
vγ vγ ′

L
δγγ ′

(22)

and through rescaling aγ by
√

Tγ into

[aγ ,a
†
γ ′] = δγ γ ′ , (23)

thus correctly retrieving the standard harmonic oscillator
commutators [2].

To derive (20), we made the same mean-field transition
for photons and phonons. In particular, this supposes a large
phonon finesse Fm = 2π

κmTm
� 1. Often there is only intrinsic

phonon loss such that κm = vmαm and thus this requires
2π

αmL
� 1. In many systems, the phonon decay length α−1

m
is much shorter than the round-trip length L. Then this
phonon high-finesse limit does not hold. However, we can
completely neglect phonon propagation (∂zb → 0 in (2)) if αm

is sufficiently large. The phonons’ envelope operator b then
obeys

v−1
m ∂tb = −ig̃0a

†
s ap − χ̃−1

m b.

Applying (13), multiplying by
√

Tm, and switching from flux-
to number-normalized envelopes results in

ḃ = −ig0a
†
sap − vmχ̃−1

m b (24)

where we used (21). Hence, this localized low-phonon-finesse
approach yields the same result as the previous high-finesse
limit with sm = 0 [see (20)]. Therefore, even low-finesse
phonons produce the same dynamics as is commonly studied
in cavity optomechanics [2].

Notably, the standard treatment of cavity optomechanics [2]
does not consider an explicit space variable: the Hamiltonian
Ĥ performs an implicit spatial average by describing the entire
object as single mechanical oscillator, in contrast to the explicit
spatial average (13) performed in this work. However, even the
implicit average in Ĥ requires low-loss acoustic excitations to
set up a global mechanical mode self-consistently, precisely
as in the high-finesse approximation leading to (20). In the
localized, low-finesse phonon approach that generates (24),
the spatial averaging can still be performed and yields the same
classical dynamics, but its meaning changes. Now (Fm < 1)
the acoustic wave is too lossy to set up a global mechanical
mode for the entire cavity. Instead, the cavity consists of an
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ensemble of independent Raman-like mechanical oscillators.
It is no longer possible to address phonons circulating in the
cavity.

Finally, we combine (21) and (11). Using αmvm = �m/Qm,
we obtain result (1) immediately. Note that Qm is defined here
as the waveguide’s intrinsic phonon quality factor, which could
be different from the cavity’s phonon quality factor if there
were, e.g., non-negligible phonon coupling or bending losses.
In case of doubt, it is safe to alternatively write (1) as

vpvsvm
(�ωp)αm

4L
G̃ = g2

0 . (25)

Both G̃ and g0 are well established in the study of photon-
phonon interaction, but they operate on different levels. The
Planck constant � enters (1) because G̃ is classical while g0

is inherently quantum mechanical. In addition, G̃ quantifies
the combined action of forces and scattering and contains
the phonon loss, while g0 does not. Further, larger L yields
a smaller g0 while G̃ is length-independent. Therefore, g2

0 ∝
�

L
G̃

Qm
. This mean-field derivation is but one way to prove the

G̃ ↔ g0 conversion; other approaches yield the same result
(see appendices). This proof captures all reversible photon-
phonon coupling mechanisms.

IV. SYMMETRY BETWEEN CIRCUIT AND CAVITY
OPTOMECHANICAL EFFECTS

In this section, we describe both guided-wave and cavity-
based regimes of photon-phonon coupling. To begin with, we
recover and briefly review the known cavity-based regimes of
photon lasing, phonon lasing, and strong coupling. Next, we
map these regimes on the guided-wave spatial evolution of
the optoacoustic fields. The mapping unveils two unobserved
regimes of guided-wave Brillouin scattering. We pay particular
attention to the strong-coupling regime (g̃ � αs + αm).

Here, we assume zero photon and phonon input flux and an
undepleted pump. Then (20) reduces to

ȧs = −ig0b
†
ap − χ−1

s as,
(26)

ḃ = −ig0a
†
sap − χ−1

m b.

These equations treat the photons and phonons identically.
Therefore, every photonic phenomenon must have a phononic
counterpart and vice versa. Even more, the temporal cavity
dynamics (26) can be mapped (t → z) on the spatial steady-
state waveguide evolution (8). Each effect known from cavities
therefore has a waveguide counterpart (but not vice versa as
we will see). This also implies that the spatial figures of merit
have a temporal symmetry partner and vice versa; we prepared
for this at the end of Sec. II by defining a guided-wave vacuum
coupling rate g̃0 and cooperativity C̃. To clearly expose these
symmetries, we solve (26); keeping in mind that the very same
discussion holds spatially for (8). First, we decouple (26) and
get (

d

dt
+ χ−�

s

)(
d

dt
+ χ−1

m

)
b(t) = g2b(t). (27)

Here, we introduced the pump-enhanced coupling rate g =
g0

√
np. Next, we insert the ansatz b ∝ eγ t in (27) and find two

roots γ±

γ± = 1
2

{ − (
χ−�

s + χ−1
m

) ±
√(

χ−�
s − χ−1

m
)2 + 4g2

}
. (28)

In general, these roots strongly mix the photon and
phonon response: the photon-phonon pair forms a polariton
[12,57,62,69,70]. The guided-wave analog of (27) is

(∂z ± χ̃−�
s )

(
∂z + χ̃−1

m

)
b(z) = ±g̃2b(z) (29)

and it can be treated identically. The full spatial and temporal
dynamics is governed by the general solution (28) (see
appendices). However, it is more instructive to consider the
limiting cases of weak and strong photon-phonon interaction
relative to the system’s damping.

First, if the photon-phonon interaction is sufficiently weak,
i.e., g 
 |κs − κm|, the two roots in (28) disconnect. Usually,
the photon and phonon decay rates differ significantly. Then
there are two scenarios depending on the relative photonic
and phononic decay rates. Essentially, the dynamics of the
short-lived particle can be adiabatically eliminated, although it
may still strongly modify the response of its long-lived partner.

In particular, when the phonons decay slowly (κm 
 κs),
the photonic response is barely modified: ȧs → 0 and therefore

as = −iχsg0b
†
ap to a good approximation. However, the

phononic response can then dramatically change to χ−1
m −

g2χ�
s . Hence, we recover the spring effect (δ�m = g2Im χ�

s )
and phonon lasing (δκm = −2g2Re χ�

s ) [2]. At the photon
resonance (�s = 0), the phonon linewidth equals κm + δκm =
(1 − C)κm with C = 4g2

κsκm
the cooperativity. Therefore, the

threshold for mechanical lasing is C = 1. This instability was
first contemplated by Braginsky [71] and received further
study in systems ranging from gram-scale mirrors [72] to
optomechanical crystals [73,74]. Since 〈ns〉 = κm

κs
C〈nm〉 


〈nm〉, there are far fewer Stokes photons than phonons in the
cavity in this situation. The system enters the strong-coupling
regime as soon as C ∼ κs

κm
.

Similarly, when the photons decay slowly (κs 
 κm), the

phononic response is barely modified: ḃ → 0 and therefore
b = −iχmg0a

†
sap to a good approximation. However, the

photonic response can then dramatically change to χ−1
s −

g2χ�
m. Hence, we recover the cavity frequency pull (δωcs =

g2Im χ�
m) and photon lasing (δκs = −2g2Re χ�

m) [4,75]. At
the phonon resonance (�m = 0), the Stokes linewidth equals
κs + δκs = (1 − C)κs with C the same temporal cooperativity
as above. Therefore, the threshold for Brillouin lasing is also
C = 1. First realized in fibers [76], this case was recently
also studied in CaF2 resonators [14], silica disks [8], and
chalcogenide waveguides [15]. Such lasers are known for their
excellent spectral purity [75,77] and received attention for
quantum-limited amplification [16]. Since 〈nm〉 = κs

κm
C〈ns〉 


〈ns〉, there are far fewer phonons than Stokes photons in the
cavity in this situation. The system enters the strong-coupling
regime as soon as C ∼ κm

κs
.

Further, if the photon-phonon coupling rate is sufficiently

strong, (27) simplifies to b̈ = g2b. An identical derivation

yields b̈ = −g2b if the Stokes wave is considered undepleted.
Therefore, a red-detuned probe produces entangled photon-
phonon pair generation [b(t) ∝ e±gt ], whereas a blue-detuned
probe produces Rabi flopping between photons and phonons
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[b(t) ∝ e±igt ] [2]. A situation of equally strong optical and
mechanical damping (κs ≈ κm) invalidates the above weak-
coupling treatment even for small g. However, this is not
sufficient to see strong-coupling behavior. From the general
solution (see appendices), this requires g � κs + κm. Indeed,
in the strong-coupling regime the hybridized photon-phonon
polariton sees half the optical and half the mechanical damping
[12]. Therefore, the state-swap frequency g

π
must be high

compared to the average decay rate κs+κm
2 to observe an actual

Rabi swap before the population decreases by 1/e.
By comparing (26) and (8), we prove an analogy between

spatial and temporal optomechanical effects (Fig. 3): the above
cavity-based discussion still largely holds for guided-wave
optomechanics with the mapping g0 → g̃0, C → C̃, κs → αs,
κm → αm, and n → 	. In the case of all copropagating waves,
and in the absence of cascading [30,64] and noise [47,48],
the mapping of cavity optomechanics onto a Brillouin-active
waveguide in steady state is an exact equivalence. However,
when for instance one of the particles counterpropagates,
such as the Stokes photons in backward scattering, im-
portant differences arise that have no equivalent in cavity
optomechanics. Indeed, as proven in Sec. III, information
regarding the propagation direction of the waves disappears
in the mean-field transition. Instead comparing (27) and (29),
much can still be learned by instead mapping g2

0 → −g̃2
0 and

κs → −αs. Note that this particular difference disappears if
the counterpropagating particle species is undepleted: then it
vanishes from the dynamics and the situation is identical to
the copropagating case.

Thus, guided-wave weak coupling requires g̃ 
 |αs ∓ αm|
with g̃ = g̃0

√
	p the spatial coupling rate (see appendices).

Under weak coupling, there are two cases depending on
the relative photon and phonon propagation losses. We have
touched upon these subcases at the end of Sec. II and briefly
consider them again here to show the similarity with cavity-
optomechanical effects. First, when the phonons propagate far
(αm 
 αs), the photonic loss αs barely changes. However, the
phononic response can then drastically change to χ̃−1

m − g̃2χ̃ �
s ,

which includes a shift in both the phononic propagation
loss (δαm = −2g̃2Re χ̃ �

s ) and group velocity (∝ Im χ̃ �
s ), i.e.,

traveling-phonon amplification and light-induced slowing
down of sound. In Sec. V, we show that this unobserved regime
can be achieved in existing systems.

Second, when the Stokes photons propagate far (αs 
 αm),
the phononic loss αm barely changes. However, the photonic
response can then drastically change to χ̃−1

s − g̃2χ̃ �
m. Hence,

we are back in the conventional domain of phonon-assisted
amplification of traveling photons (δαs = −2g̃2Re χ̃ �

m) and
sound-induced slowing down of light (∝ Im χ̃ �

m) [38]. At
resonance (�̃m = 0), the Stokes propagation loss is (1 − C̃)αs

as in (9).
If the coupling is sufficiently strong compared to the

propagation losses (g̃ � αs + αm), (29) simplifies to ∂2
z b =

±g̃2b (see appendices). In the forward (+) case, and with
boundary condition b(0) = 0, this yields

as(z) = as(0) cosh g̃z, b(z) = −ia†
s (0) sinh g̃z, (30)

such that 	s(z) = 	s(0) cosh2 g̃z and 	m(z) = 	s(0)
sinh2 g̃z. Therefore, 	s(z) − 	m(z) = 	s(0) and ∂z	s =

∂z	m as required by the Manley-Rowe relations (4). In the
backward (−) case, with L the waveguide length and boundary
condition b(0) = 0, the evolution along the waveguide has no
cavity-optomechanics counterpart. Specifically, we retrieve

as(z) = as(L)

cos g̃L
cos g̃z, b(z) = −i

a
†
s (L)

cos g̃L
sin g̃z, (31)

such that 	s(z) = 	s(L)
cos2 g̃L

cos2 g̃z and 	m(z) = 	s(L)
cos2 g̃L

sin2 g̃z.

Therefore, 	s(z) + 	m(z) = 	s(L)
cos2 g̃L

and −∂z	s = ∂z	m as
required by Manley-Rowe (4). The system has an instability
at g̃L = π

2 , which is reached before a full state swap between
light and sound can be completed. This situation is called
“contraflow Hermitian coupling” in classifications of coupled-
mode interactions [78,79]. In the case of anti-Stokes (instead
of Stokes) seeding in the strong-coupling regime, an identical
derivation leads to ∂2

z b = −g̃2b, which produces the same Rabi
oscillations for forward and backward scattering. Although
familiar in resonators [2], these strong-coupling effects have
not yet been observed in the field of guided-wave Brillouin
scattering; see Sec. V for the prospects.

We conclude this section by analyzing the relation between
the guided-wave and cavity-based cooperativities (C̃ and C)
and by introducing a gain coefficient (G) for an optomechanical
cavity. Note that the temporal cooperativity

C = 4g2

κsκm
(32)

is the ratio between the round-trip gain and loss: inserting
g2 = g2

0np, np = PpTp

�ωp
, and (21) in (32) indeed leads to

C = G̃Pp
κs
vs

vmαm

κm
= G̃PpL

κsTs

vmαm

κm
(33)

with Pp the intracavity pump power and vmαm
κm

a naturally
appearing correction factor that allows for higher phonon
losses, so effectively lower C, in the cavity than in the
waveguide. This directly shows that

C̃ � C (34)

given (33), κγ � vγ αγ , and C̃ = G̃Pp

αs
. Clearly, the guided-wave

cooperativity exceeds the cavity-based cooperativity since the
cavity has additional dissipation (e.g., coupling and bending
losses). Finally, we define a gain coefficient G for a cavity in
analogy to (11)

G = 4g2
0

�ωpκm
(35)

which characterizes the temporal exponential buildup of the
Stokes when the phonons are heavily damped. The gain
coefficients therefore obey

G̃ � L

vpvs
G (36)

given κm � vmαm and (21). Hence, the guided-wave and
cavity-based optomechanical figures of merit are now con-
ceptually similar and the relations between each of them were
given in (1), (21), (34), and (36).
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TABLE I. Translation between waveguides and cavities. The table contains four conversions from a gain coefficient to a vacuum coupling rate
and four in reverse. The right five columns contain the parameters necessary for the conversion through formula (1). These are order-of-magnitude
estimates. In some cases, indicated by a star (�), the conversion can be empirically tested. In other situations, the conversion is hypothetical:
e.g., an ultracold atom cloud in a Fabry-Pérot cavity has no obvious guided-wave equivalent.

G̃ (W−1 m−1) ←→
(1)

g0
2π

(Hz) �m
2π

(Hz) Qm L (μm) ng λ (μm)

Silicon nanowire [23,24] 104 �−→ 1.5×106√
L (μm)

1010 103 4.6 1.55

Silica standard fiber [4] 1
�−→ 70√

L (cm)
1010 500 1.45 1.55

Silica dual-web fiber [21] 4 × 106 �−→ 3×103√
L (cm)

6 × 106 4 × 104 1.7 1.55

Chalcogenide rib [80,81] 3 × 102 �−→ 7×105√
L (μm)

8 × 109 230 2.6 1.55

Silica microtoroid [12] 600 ←− 3 × 103 8 × 107 2 × 104 97 1.45 0.78

Silicon optomechanical crystal [74] 4 × 104 �←− 6 × 105 6 × 109 2 × 103 5 5 1.55
Rb ultracold atom cloud [56] 108 ←− 6 × 105 4 × 104 42 400 1 0.78
GaAs optomechanical disk [82] 5 × 104 ←− 3 × 105 109 2 × 103 8 4 1.55

V. PROSPECTS

In this section, we first give a couple of examples of how
the G̃ ↔ g0 connection (1) can be implemented, including
several systems in which it can be tested empirically. Next,
we move on to the prospects for observing new regimes of
guided-wave optomechanics, simultaneously illustrating the
application of our framework. Finally, we briefly discuss
potential extensions to the minimal model (2) of traveling-
wave Brillouin scattering.

Table I presents four implementations of the conversion
from the gain coefficient G̃ to the vacuum coupling rate g0

(G̃ → g0) and four in reverse (G̃ ← g0). The systems range
from silicon nanowires and dual-web fibers to ultracold atom
clouds and GaAs disks. In five cases, such as for silicon
nanowires, the conversion can clearly be tested empirically by
measuring G̃ and g0 through independent, established methods
[2,23]. In three cases, the conversion is hypothetical but
still allows for comparison of the photon-phonon interaction
strengths. For instance, an ultracold atom cloud in a Fabry-
Pérot cavity [56] has no obvious traveling-wave equivalent.
Nevertheless, its hypothetical waveguide partner would have
a large gain coefficient of ∼108 W−1 m−1, which compares
favorably to optomechanical waveguides realized to date.

So far, all Brillouin-active waveguides had far lower
phonon than photon propagation lengths (α−1

m 
 α−1
s ).

Cavity-optomechanical systems, by contrast, more often than
not had far lower phonon than photon damping rates (κm 
 κs)
[2]. Only uniquely high-optical-quality [8,14,15,75,83,84]
systems succeed at reversing the latter hierarchy (κm � κs).
The common reversal of this damping hierarchy (going from
waveguides to cavities) stems from the small phonon group
velocities (vm 
 vs).

The question naturally arises whether waveguides with
larger phonon than photon propagation length (α−1

m � α−1
s )

can be made, while still keeping high cooperativities C̃ =
4g̃2

αsαm
∼ 1. Currently, the largest phonon decay lengths are

of the order α−1
m ∼ 100 μm in backward Brillouin scattering

[23,66]. To realize larger phonon propagation lengths, one
must look for waveguides with large acoustic group velocities
vm and small linewidths κm. Thus, one promising approach
uses low-frequency flexural modes (� ∝ q2) in backward

mode (large q) at low temperatures (large Qm). Indeed, then we
have both large vm ∝ q and small κm = �m

Qm
∼ 107

104 Hz = 1 kHz

[12,85,86]. Since α−1
m = vm

κm
in a waveguide (where there

is only propagation loss), we find that decay lengths up
to α−1

m ∼ 10 m are feasible given vm ∼ 104 m/s and κm ∼
1 kHz. Such a small phonon propagation loss would strongly
boost the cooperativity C̃, which could compensate for a
potentially lower coupling rate g̃ in backward mode. Clearly,
nothing intrinsically forbids amplification of traveling phonons
in systems such as the dual-web fiber [21], where α−1

s ∼
10 cm. Besides its scientific interest, such a traveling-phonon
amplifier may be useful in phonon networks [13,49,50,87,88].

Next, we look into achieving the strong-coupling regime in
the typical situation of high acoustic loss (αm � αs). To see
traveling-wave Rabi flopping, entangled photon-phonon pair
production, or contraflow Hermitian coupling (see Sec. IV),
one must obtain g̃ > αm or equivalently C̃ > αm

αs
. In optical

fibers, in backward mode, and given α−1
s ∼ 10 km and α−1

m ∼
100 μm, this requires C̃ > 108. This necessitates an unrealistic
continuous-wave pump power of Pp > 108 αs

G̃ = 10 kW with

G̃ ∼ 1 W−1 m−1.
In contrast, silicon chips can produce significantly lower

αm
αs

ratios and therefore ease the condition on C̃ for strong
coupling. One can expect phonon propagation distances up
to α−1

m ∼ 1 mm, as these are readily achieved in surface-
acoustic-wave devices [89]. Together with α−1

s ∼ 1 cm [23],
this yields C̃ > 10 as the strong-coupling condition, which
requires a reasonable pump power of Pp > 10αs

G̃ = 100 mW

with G̃ ∼ 104 W−1 m−1 [23,24]. Indeed, current nanoscale
silicon systems have already demonstrated C̃ ≈ 2 [24,64].
Hence, taking into account the rapid progress in state-of-the-art
devices [1,23,24,64], we expect demonstrations of traveling-
phonon amplification and guided-wave strong-coupling in the
coming years. Such observations would open up entirely new
realms of optomechanics.

Finally, this work can be extended on several fronts.
First, the mean-field transition can be applied to the noise
models of [47,48]. Second, the regime of “nonlinear
quantum optomechanics” [2,90–92] should be transferred to
waveguides. This requires that strong coupling is reached
for merely one pump photon (	p → 1 s−1): g̃ = g̃0

√
	p =
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g̃0 > αs + αm. As αm � αs usually, traveling-wave nonlinear
quantum optomechanics is achieved when g̃0 > αm. Third,
the coupling between the phononic mode and the thermal bath
[47,48] must be treated carefully to obtain truly quantum-
coherent [12] coupling. And fourth, we focused mainly on the
dynamics that optomechanical waveguides and cavities have
in common, but wisdom may be found in the differences as
well. We gave the example of contraflow strong coupling in
Sec. IV. In addition, the cavity has input fluxes that have no
equivalent in a typical guided-wave setup, while the waveguide
can display spatiotemporal effects [both ∂z and ∂t in (2)] that
are absent in a cavity [only ∂t in (20)]. On top of this, the
cavity breaks the symmetry between Stokes and anti-Stokes
scattering, whereas this symmetry prevents exponential
buildup of noise in low-dispersion forward intramodal
scattering [48]. It has also yet to be determined whether
different cavity dynamics results in the medium-finesse case,
as Sec. III was limited to a low or high finesse.

With slight modifications, (2) also captures Raman effects
[4,6,93]. For instance, the phonon frequency is much larger so
an optical phase mismatch can arise. Further, the thousandfold
higher optical phonon frequency puts most Raman modes
in the ground state at room temperature. This breaks the
symmetry between Stokes and anti-Stokes scattering, such that
thermally seeded exponential buildup may be seen even in the
forward intramodal case [48]. Some parameters introduced
here—such as the spatial vacuum coupling g̃0—lose elegance
in the Raman case: the impossibility of significant optical
phonon transport undermines their symmetric definitions.
Mathematically, expressions such as (5) diverge as vm and α−1

m
vanish. Then one must resort to the broken-symmetry Raman
gain coefficient, which nevertheless obeys (1). Therefore,
the core of this work also applies to guided-wave [4,94–
96], cavity-based [97–100], and surface-enhanced Raman
scattering [58].

VI. CONCLUSION

In conclusion, we unveiled a connection between Brillouin-
active waveguides and optomechanical cavities. The link
between the Brillouin gain coefficient G̃ and the zero-point
coupling rate g0 was derived in a platform-independent way.
As illustrated for silicon nanowires and ultracold atom clouds,
it significantly expands the variety of systems whose photon-
phonon interaction efficiency can be compared. Through the
mean-field transition, we derived the dynamics of optome-
chanical cavities from that of Brillouin-active waveguides. We
framed the behavior of both systems in terms of cooperativities
and vacuum coupling rates. Next, we showed that phenomena
familiar from cavity optomechanics all have guided-wave
partners, but not the other way around. The broader theory
predicts that several novel regimes, such as guided-wave strong
coupling, will be accessible in state-of-the-art systems in the
coming years. Hence, we showed that Brillouin scattering
and cavity optomechanics are subsets of a larger realm of
photon-phonon interaction.
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APPENDIX A: LINK TO CAVITY HAMILTONIAN

With the mean-field transition derived in the main text,
we take a step beyond the G̃ ↔ g0 link. As we show in this
appendix, the mean-field equations are equivalent to the cavity
Langevin equations in the resolved-sideband limit (κ 
 �m).
In the case of coupling between one mechanical and one
optical resonance [Fig. 2(a)], the usual theory [2] starts from
the Hamiltonian

Ĥ = �ωcâ
†â + ��mb̂†b̂ + Ĥint

with

Ĥint = �g0â
†â(b̂ + b̂†)

the interaction Hamiltonian, x̂ = xZPF(b̂ + b̂†) the mechanical
oscillator’s position, xZPF the zero-point motion, â and b̂

ladder operators for the optical and mechanical oscillator, and
g0 = xZPF

∂ωc
∂x

the zero-point coupling rate. When the pump
is undepleted, the interaction Hamiltonian can be linearized:
â = α + δâ with δâ a small fluctuation. Then we have

Ĥ(lin)
int = �g0α(δâ + δâ†)(b̂ + b̂†).

Using the equation of motion ˙̂a = − i
�

[â,Ĥ] and the commu-
tator [â,â†] = 1 (the same for b̂), this linearized Hamiltonian
leads straight to the coupled equations [2]

δ ˙̂a = −
(κ

2
− i�

)
δâ − ig0α(b̂ + b̂†),

˙̂b = −
(κm

2
− i�m

)
b̂ − ig0α(δâ + δâ†),

with � = ωp − ωc. Next, we consider a blue-detuned pump in
the resolved-sideband regime (κ 
 �m). Then we can write
the ladder operators as δâ → âse

i�t and b̂ → b̂e−i�t , with âs

and b̂ now slowly varying. We neglect the b̂ term in the optical
equation and the δâ term in the mechanical equation because
they are off-resonant. This is the rotating-wave approximation,
which corresponds to the classical slowly varying envelope
approximation [3,4]. Hence, the above equations reduce to

˙̂as = −ig0αb̂† − χ−1
s âs,

(A1)
˙̂b = −ig0αâ†

s − χ−1
m b̂,

and we find that Eqs. (A1) are identical to Eqs. (16) given
âs → as and b̂ → b. Remarkably, the equivalence holds even
though the pump and Stokes could be counterpropagating or
in different optical modes. In the unresolved-sideband limit
(�m 
 κ), anti-Stokes generation and cascading must be
added for forward intramodal but not necessarily for backward
or intermodal Brillouin scattering. Indeed, comb generation is
usually not accessible by backward or intermodal coupling
because of the phase mismatch (Fig. 2). This assumption can
be violated in Fabry-Pérot cavities [101] or when the first-order
Stokes becomes sufficiently strong to pump a second-order
Stokes wave [9].
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APPENDIX B: MANLEY-ROWE RELATIONS

In this section, we prove that the Manley-Rowe relations
guarantee the existence of a single real, positive photon-
phonon coupling coefficient in waveguides (g̃0) and in cavities
(g0). In waveguides, the Manley-Rowe relations are formulated
at the level of photon and phonon fluxes 	. In cavities, they are
written down in terms of the total photon and phonon numbers
n.

1. Manley-Rowe in waveguides

A Brillouin-active waveguide in steady state (∂t → 0)
obeys [see (2)]

∂zap = −iκ̃mopasb − χ̃−1
p ap,

±∂zas = −iκ̃mosb
†ap − χ̃−1

s as, (B1)

∂zb = −iκ̃oma†
s ap − χ̃−1

m b,

with arbitrary normalizations of the pump, Stokes, and acoustic
envelope such that generally κ̃mop �= κ̃mos �= κ̃om are different
complex numbers. Using ∂z(a†a) = (∂za

†)a + a†(∂za), we
find

∂z	p = −αp	p + (iκ̃�
mopa

†
s b

†ap + H.c.),

±∂z	s = −αs	s − (iκ̃mosa
†
s b

†ap + H.c.), (B2)

∂z	m = −αm	m − (iκ̃oma†
s b

†ap + H.c.).

Suppose now that the envelopes are flux normalized such
that 	p = a

†
pap, 	s = a

†
s as, and 	m = b†b correspond to

the number of pump photons, Stokes photons, and phonons
passing through a cross section of the waveguide per second.
Then we demand that, in the lossless case (αj = 0), the rate of
pump photon destruction equals the rate of Stokes photon and
phonon creation:

−∂z	p = ±∂z	s = ∂z	m. (B3)

These are the Manley-Rowe relations [3,79] for a Brillouin
waveguide. We deduce from (B2) and (B3) that

κ̃�
mop = κ̃mos = κ̃om. (B4)

This proves the existence of a single coupling coefficient that
captures all reversible optical forces and scattering. Note that
(B4) also guarantees power conservation since

∂z(�ωp	p ± �ωs	s + ��	m) = 0

leads with (B2) in the lossless case to

−ωpκ̃
�
mop + ωsκ̃mos + �κ̃om = 0, (B5)

which is true given (B4) and ωp = ωs + �. Next, we show that
this coefficient (B4) can be taken real and positive without loss
of generality. Renormalizing the envelopes to cpap, csas, and
cmb yields new coupling coefficients

cp

cscm
κ̃mop,

cs

cpc�
m

κ̃mos,
cm

cpc�
s

κ̃om, (B6)

as can be seen from (B1). Suppose that κ̃om = g̃0e
iϕ is complex

with g̃0 real and positive. Then we take cp = cs = cm = e−iϕ .

Using (B4) and (B6), it follows that the renormalized coupling
coefficients are real and positive:

κ̃mop = κ̃mos = κ̃om = g̃0. (B7)

This unique coupling coefficient quantifies the coupling
strength between a single photon and a single phonon prop-
agating along a waveguide. Indeed, suppose that ap = as =
b → 1 s−1/2 such that 	p = 	s = 	m → 1 s−1 at a certain
point along the waveguide. In the lossless case, (B2) then
becomes

∂z	p = −2g̃0,

±∂z	s = 2g̃0, (B8)

∂z	m = 2g̃0.

So 2g̃0 gives the rate (per meter) at which the pump flux
decreases and the Stokes and phonon flux increase at a point
along waveguide through which one pump photon, one Stokes
photon, and one phonon are passing.

The waveguide coupling coefficient g̃0 can also be inter-
preted in terms of a zero-point motion. As shown in (14), we
have

g̃0 =
√

L

vpvsvm
g0. (B9)

For forward intramodal scattering (vp = vs = vg)

g0 = xZPF
∂ωp

∂x

∣∣∣∣
kp

(B10)

is defined in terms of the zero-point motion and the cavity
frequency pull at fixed wave vector [2]. Combining (B9),
(B10), and (D9), we obtain

g̃0 = −ωp

c
x̃ZPF

∂neff

∂x

∣∣∣∣
ωp

= −x̃ZPF
∂kp

∂x

∣∣∣∣
ωp

(B11)

with

x̃ZPF = xZPF

√
L

vm
=

√
�

2meffvm�m
(B12)

the waveguide “zero-point motion” and meff the effective mass
per unit length. Indeed, a waveguide section of length L

contains on average 〈nm〉 = L
vm

〈	m〉 phonons with 〈	m〉 the
mean phonon flux. As fluxes—instead of numbers—are the
fundamental quantities in waveguides, the zero-point motion

is corrected by precisely a factor
√

L
vm

in (B12).

Often the optical envelopes are power normalized and
the acoustic envelope displacement normalized. Starting from
flux-normalized envelopes, one can switch to such normaliza-
tions through

cp =
√

�ωp, cs =
√

�ωs, cm =
√

2��m

keffvm
= 2x̃ZPF,

(B13)
with keff the effective stiffness per unit length and by applying
(B6).
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2. Manley-Rowe in cavities

Here, we apply the discussion of the previous section
to the mean-field cavity equations. With arbitrary envelope
normalizations and without input, Eqs. (13) are

ȧp = −iκmopasb − χ−1
p ap,

ȧs = −iκmosb
†
ap − χ−1

s as, (B14)

ḃ = −iκoma†
sap − χ−1

m b,

with generally κmop �= κmos �= κom. Applying d
dt

(a†a) =
( d
dt

a†)a + a†( d
dt

a) to (B14), we find

d

dt
np = −κpnp + (iκ�

mopa
†
sb

†
ap + H.c.),

d

dt
ns = −κsns − (iκmosa

†
sb

†
ap + H.c.), (B15)

d

dt
nm = −κmnm − (iκoma†

sb
†
ap + H.c.).

Suppose now that the envelopes are number normalized such

that np = a†
pap, ns = a†

sas, and nm = b
†
b correspond to the

number of pump photons, Stokes photons, and phonons in the
cavity. We demand that, in the lossless case (κj = 0), the rate
of pump photon destruction equals the rate of Stokes photon
and phonon creation

−ṅp = ṅs = ṅm. (B16)

These are the Manley-Rowe equations for an optomechanical
cavity. We deduce from (B15) and (B16) that

κ�
mop = κmos = κom. (B17)

This proves the existence of a single coupling coefficient that
captures all conservative optical forces and scattering. Note
that (B17) also guarantees energy-conservation since

d

dt

(
�ωpnp + �ωsns + ��nm

) = 0

leads with (B15) in the lossless case to

−ωpκ
�
mop + ωsκmos + �κom = 0 (B18)

which holds given (B17) and ωp = ωs + �. As in the previous
section, one can show that this coupling coefficient can be
chosen real and positive. This unique coupling coefficient must
then be the well-known g0. It quantifies the interaction strength
between a single photon and a single phonon trapped in a
cavity. Indeed, suppose that ap = as = b → 1 such that np =
ns = nm → 1 at a certain point in time. In the lossless case,
(B15) then becomes

ṅp = −2g0,

ṅs = 2g0, (B19)

ṅm = 2g0.

So 2g0 gives the rate (per second) at which the number of
pump photons decreases and the number of Stokes photons
and phonons increases when there is one pump photon, one
Stokes photon, and one phonon in the cavity.

Often the optical envelopes are energy normalized and
the acoustic envelope displacement normalized. Starting from

number-normalized envelopes, one can switch to such normal-
izations through

cp =
√

�ωp, cs =
√

�ωs, cm =
√

2��m

keffL
= 2xZPF,

(B20)

with xZPF the zero-point motion and by applying (B6).

APPENDIX C: MEAN-FIELD APPROXIMATION

Justification of f g = f g

We denote f (z,t) and g(z,t) two operators that vary slowly
on a length scale L. The mean-field operators are defined as
f (t) = 1

L

∫ L

0 f (z,t)dz. Clearly, when f (z,t) = f (0,t) and
g(z,t) = g(0,t) are constants then fg(t) = f (0,t)g(0,t) =
f (t)g(t). Let us assume now that the amplitudes vary
slowly enough such that they can be Taylor expanded as
f (z,t) = f (0,t) + f ′z with f ′ = ∂zf (0,t) and the same for
g. Then we have

f = 1

L

(
f (0)L + f ′(0)

L2

2

)
, g = 1

L

(
g(0)L + g′(0)

L2

2

)
,

where we dropped the time dependence. Thus, we have

f g = f (0)g(0) + [f ′g(0) + f (0)g′]
L

2
+ f ′g′ L

2

4
.

Similarly,

fg = 1

L

∫ L

0
{f (0)g(0) + [f ′g(0) + f (0)g′]z + f ′g′z2}dz

= f (0)g(0) + [f ′g(0) + f (0)g′]
L

2
+ f ′g′ L

2

3
.

Therefore fg − f g = f ′g′ L2

12 , which can be neglected if L

is sufficiently small compared to the length scale on which
f (z,t) and g(z,t) vary.

APPENDIX D: ALTERNATIVE PROOFS OF THE G̃ ↔ g0

LINK

In this section, we describe two other approaches to derive
the link

g2
0 = v2

g
(�ωp)�m

4L

( G̃
Qm

)
. (D1)

1. From independent full-vectorial definitions

Here, we derive Eq. (D1) from the full-vectorial definitions
of G̃ and g0, specializing to intramodal forward scattering.
We focus on the moving boundary contribution. From the
perturbation theory of Maxwell’s equations with respect to
moving boundaries [102], the cavity frequency shift ∂ωc

∂x
can

be expressed as

∂ωc

∂x
= ωp

2

∮
dA(u · n̂)(�ε|E‖|2 − �ε−1|D⊥|2)∫

dV ε|E|2
with u the normalized [max(|u|) = 1] acoustic field, n̂ the unit
normal pointing from material 1 to material 2, �ε = ε1 − ε2,
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and �ε−1 = ε−1
1 − ε−1

2 . The upper integral is over the entire
surface area of the cavity, the lower integral across the cavity
volume. Further, E‖ is the electric field parallel to the
boundary and D⊥ the displacement field perpendicular to the
boundary. For a longitudinally invariant cavity, the surface
integral can be reduced to a line integral and the volume
integral to a surface integral:

∂ωc

∂x
= ωp

2

∮
dl(u · n̂)(�ε|E‖|2 − �ε−1|D⊥|2)∫

dAε|E|2 . (D2)

Further, the gain coefficient G̃ is given by [23,25,103]

G̃ = ωp
Qm

2keff
|〈f,u〉|2 (D3)

with f the power-normalized optical force density and 〈f,u〉 =∫
f∗ · u dA. Note that keff is the effective stiffness per unit

length. In the case of radiation pressure forces frp we have [103]

frp = 1
2 (�ε|e‖|2 − �ε−1|d⊥|2)n̂δ(r − rboundary)

with δ(r − rboundary) a spatial delta distribution at the waveg-
uide boundaries. The fields e and d are power normalized.
Here we already assumed that the Stokes and pump field
profiles are nearly identical, which holds for intramodal SBS
given the small frequency shifts. Hence, we get

〈frp,u〉 = 1

2

∮
dl(u · n̂)(�ε|e‖|2 − �ε−1|d⊥|2). (D4)

Additionally, the guided optical power P is given by

P = vg

2
〈E,εE〉 = vg

2

∫
dAε|E|2. (D5)

Combining Eqs. (D2), (D4), and (D5), we find

∂ωc

∂x
= vgωp

2
〈frp,u〉.

A similar derivation can be done for the strained bulk, so we
have

∂ωc

∂x
= vgωp

2
〈f,u〉 ⇒ 〈f,u〉 = 2

vgωp

∂ωc

∂x
(D6)

with f = frp + fes and fes the electrostrictive force density.
Substituting Eq. (D6) in (D3) yields

G̃ = 2Qm

ωpv2
gkeff

(
∂ωc

∂x

)2

. (D7)

Finally, we use the definition of the zero-point coupling rate

g0 = xZPF
∂ωc
∂x

and the zero-point motion xZPF =
√

�

2meffL�m

with meff the effective mass per unit length. Inserting these in
(D7) yields

G̃ = 2Qm

ωpv2
gkeff

2meffL�m

�
g2

0 = Qm
4L

(�ωp)�m

g2
0

v2
g

(D8)

and (D8) is identical to (D1). In this derivation, we started from
full-vectorial definitions that are only valid for intramodal
forward scattering. In contrast, the mean-field transition
shows that this result remains true with vg → √

vpvs for
intermodal coupling.

2. From independent derivative definitions

The cavity resonance condition is kpL = 2πm with m an
integer. Given kp = ωpneff

c
and c the speed of light, this implies

that

∂ωp

∂x

∣∣∣∣
kp

= − ωp

neff

∂neff

∂x

∣∣∣∣
kp

.

This can be recast in terms of the index sensitivity at fixed
frequency by

∂neff

∂x

∣∣∣∣
kp

= neff

ng

∂neff

∂x

∣∣∣∣
ωp

with vph = c
neff

the phase velocity and ng = c
vg

the group index.
Thus we have

∂ωp

∂x

∣∣∣∣
kp

= −ωp

ng

∂neff

∂x

∣∣∣∣
ωp

. (D9)

The cavity frequency pull must be calculated at fixed wave
vector (g0 = xZPF

∂ωp

∂x
|kp ), so this yields(

∂neff

∂x

∣∣∣∣
ωp

)2

= g2
0

(
xZPF

ωp

ng

)−2

. (D10)

Previously [23], we showed that

G̃ = 2ωp
Qm

keff

(
1

c

∂neff

∂x

∣∣∣∣
ωp

)2

. (D11)

Substitution of (D10) in (D11) with xZPF =
√

�

2meffL�m
results

in

G̃ = 4LQm

�ωpv2
g�m

g2
0

or the other way around

g2
0 = v2

g

(�ωp)�m

4L

( G̃
Qm

)
. (D12)

This proof only holds for forward intramodal scattering,
whereas the mean-field transition applies to backward and
intermodal scattering as well.

APPENDIX E: FULL SOLUTION OF GUIDED-WAVE
EVOLUTION

In this section, we give the full solution of the traveling-
wave spatial dynamics (8) in the constant pump approximation
[	p(z) = 	p(0)] where the pump is strong enough to be treated
classically. From this solution, one can derive the regimes
treated in Sec. IV as limiting cases. In addition, this solution
can directly be mapped on the cavity-based temporal dynamics
(26). Thus, we start from

∂zas = ∓ig̃0b
†ap ∓ χ̃−1

s as,
(E1)

∂zb = −ig̃0a
†
s ap − χ̃−1

m b,

which immediately yields

(∂z + χ̃−�
m )

(
∂z ± χ̃−1

s

)
as(z) = ±g̃2as(z), (E2)
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where ± stands for forward (+) and backward (−) scattering.
Inserting the ansatz as(z) ∝ eγ z leads to

γ 2 + (
χ̃−�

m ± χ̃−1
s

)
γ ± (

χ̃−�
m χ̃−1

s − g̃2) = 0. (E3)

Its solution is

γ1 = 1
2

{ − (
χ̃−�

m ± χ̃−1
s

) +
√(

χ̃−�
m ∓ χ̃−1

s
)2 + 4g̃2

}
,

(E4)

γ2 = 1
2

{ − (
χ̃−�

m ± χ̃−1
s

) −
√(

χ̃−�
m ∓ χ̃−1

s
)2 + 4g̃2

}
.

Given these two roots, one can determine the exact evo-
lution of the photon-phonon fields along the waveguide if
the correct boundary conditions are known. The boundary
condition b(0) = 0 and fixed probe flux 	s(0) = a

†
s (0)as(0)

are appropriate for forward scattering such that

as(z) = as(0)

γ2 − γ1

{(
γ2 + χ̃−1

s

)
eγ1z − (

γ1 + χ̃−1
s

)
eγ2z

}
,

(E5)

b†(z) = i
as(0)

g̃

(
γ2 + χ̃−1

s

)(
γ1 + χ̃−1

s

)
γ2 − γ1

{eγ1z − eγ2z}.

The backward case [fixed 	s(L) with L the waveguide
length] can be solved similarly. This full solution contains
the important regimes discussed in Sec. IV. For instance, in
the strong-coupling regime (g̃ � αs + αm) and at resonance
(�̃j = 0) one can show that

γ1 ≈ −αm + αs

4
+ g̃

large g̃−→ g̃,

(E6)

γ2 ≈ −αm + αs

4
− g̃ −→ −g̃.

Therefore, the spatial coupling rate g̃ must overcome the
average photonic and phononic propagation loss before actual
photon-phonon pair generation can be seen. The photons
and phonons indeed equally share the total propagation loss
αm + αs in this regime, as in cavity settings [12]. The spatial
evolution (E5) then becomes identical to (30). The weak-
coupling regimes of stimulated photon (αs 
 αm) and phonon
(αm 
 αs) emission can equally well be obtained from the full
solution (E5). This solution also contains acoustic (αs 
 αm)
[66] and optical (αm 
 αs) buildup effects.
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