Fabrication of high-Q silicon nitride microdisk resonator coupled with on-chip waveguide

W. Xie and D. Van Thourhout
Photonics Research Group, Department of Information Technology (INTEC), Ghent University-IMEC,
Gent B-9000, Belgium.

We designed and fabricated free-standing SiN microdisk resonators vertically coupled with on-chip SiN waveguides. During the full process the temperature is kept below 270°. We experimentally demonstrated an intrinsic quality factor of 1.4×10^{5} and a large free spectral range of $\sim 10 \mathrm{~nm}$ in a microdisk operating near 1310 nm . We also showed that the coupling strength between the disk resonator and the bus waveguide can be readily changed by tuning the parameters of the geometric configuration. In the same way, we realized selective coupling to the different radial modes of the disk. These devices are promising for the SiN photonic community.

Introduction

Silicon nitride (SiN) has gained increasing interest recently in various photonic applications including integrated photonic circuits [1], nonlinear optics [2], optomechanics [3], and on-chip biosensing [4], due to its transparency from the visible to the infrared wavelength range and a moderate optical index (~ 2.0). These unique properties enable making low-loss SiN optical components over a broad wavelength range. Moreover the platform is compatible with fabrication using the same tools as those used for making complementary metal-oxide-semiconductor (CMOS) electronics. However, compared with a high optical index material like silicon, integrated SiN devices have larger footprints to offer sufficient optical confinement and therated SiN loss optical components. In particular, SiN resonators are building blocks in SiN photonic community, yet to achieve considered as essential high quality factor (Q) but a compact sizity, yet to achieve such a SiN resonator with a SiN ring or disk resonators integrated still remains a challenge. For instance, high- Q footprint, potentially preventing their larg on chip typically needs a more than $50 \mu \mathrm{~m}$ In this paper, we show the their large-scale integration on chip. resonators vertically coupled waccessful fabrication of free-standing SiN microdisk developed at a relatively low temo-chip SiN waveguides in a lab-built SiN platform intrinsic Q factor of 1.4×10^{5} together with of 270°. We experimentally demonstrate an with only $30 \mu \mathrm{~m}$ diameter coupling strength between the disk near 1310 nm . Furthermore, it is shown that the changed by tuning the parameters of the gator and the bus waveguide can be readily can control the coupling between the geometric configuration. We also show that we disk resonator by taking the adya the bus waveguide and different radial modes of the

Design and Fabrication

The design of the SiN disk-waveguide vertical coupling configuration is shown in Fig. 1 (a). The design begins with a silicon wafer with a $3 \mu \mathrm{~m}$ thermal SiO_{2} layer as the optical insulator. The bus SiN waveguide is buried in a SiO_{2} cladding with a smooth top surface
and the vertical coupling gap between the SiN disk and waveguide is determined by the thickness of an amorphous silicon (a-Si) pillar, as shown in Fig. 1(a). The top SiN disk coupled to the bus waveguide is suspended on the a-Si pillar. The horizontal offset is defined as the relative distance of the center of the bus waveguide with respect to the edge of the disk and varies from -450 nm to +450 nm as the bus waveguide moves towards the disk as schematically indicated in Fig. 1(a). Following finite-difference time-domain (FDTD) simulations, we choose a thickness of $\sim 400 \mathrm{~nm}$ for both the waveguide and the disk layers, guaranteeing a fundamental transverse electric (TE) mode with a low loss at $\sim 1310 \mathrm{~nm}$. The width of the bus waveguide as well as the diameter of the SiN disk are changed to study the coupling behavior under a fixed vertical coupling gap of $\sim 500 \mathrm{~nm}$. The undercut distance d as shown in Fig. 1(a) should be sufficiently deep to eliminate leakage of the TE mode to the a-Si pillar. We performed a simulation of the Q factor as a function of the undereut distance for the disk with a $30 \mu \mathrm{~m}$ diameter, as shown in Fig. 1(b), from which it can be seen that the a-Si pillar has negligible influence on the Q of modes in the disk when the undercut distance is above $2.5 \mu \mathrm{~m}$.

Fig. I. (a) Cross-sectional view of SiN disk-waveguide vertical coupling configuration. (b) Simulated Q factor of the first order TE mode around 1300 nm for different undercut etch distance, d. The inset shows the structure in simulation with a fixed gap and a diameter of $30 \mu \mathrm{~m}$ for the disk.

In Fig. 2(a-f), we schematically show the fabrication flow of the designed SiN diskwaveguide coupling devices. Firstly, a 400 nm thick SiN is deposited onto a wafer with a $3 \mu \mathrm{~m}$ thermal SiO_{2} box layer by using an optimized plasma enhanced chemical vapor deposition (PECVD) process performed at a temperature of 270°, and then the bus waveguide is patterned by using contact lithography and subsequently transferred onto SiN layer by using reactive ion etching (RIE) to form a strip waveguide as shown in Fig. 2(a). Here both the contact lithography and the RIE processes were optimized to be able to define a single mode waveguide with a $\sim 600 \mathrm{~nm}$ resolution and to have smooth and steep sidewalls of the etched SiN . After waveguide fabrication, a $1.2 \mu \mathrm{~m} \mathrm{PECVD} \mathrm{SiO}_{2}$ cladding is deposited (in Fig. 2(b)) and then a chemical mechanical planarization step is applied to flatten the surface with a local roughness below 10 nm (in Fig. 2(c)). Next, a gap layer of $\sim 500 \mathrm{~nm}$ PECVD a-Si and disk layer of 400 nm SiN are successively deposited on the planarized substrate, and then the top disk is fabricated, aligned with respect to the buried bus waveguide, as shown in Fig. 2(d) and (e). Finally an alkaline based wet etching is carried out to undercut the a-Si and realize a frec-standing SiN disk supported on the a-Si pedestal as drawn in Fig. 2(f). We show one fabricated result in Fig. 3(a) and (b) and obviously the designed configuration of the device is well realized, demonstrating the suitability of our fabrication process to accomplish this on-chip vertical coupling devices.

Fig. 2. (a-f) Schematics of the fabrication flow of SiN free-standing microdisk vertically coupled to onchip waveguide.

Fig. 3. (a) Optical and (b) scanning electron microscope images of the top view of fabricated device with $30 \mu \mathrm{~m}$ diameter disk.

Measurement Results

The fabricated devices were characterized by taking transmission spectra from 1260 to 1360 nm by coupling a tunable laser source to the cleaved facets of the bus waveguide. In Fig. 4 we show the transmission of the disk with diameter of $30 \mu \mathrm{~m}$ at different offsets of $-210 \mathrm{~nm},+120 \mathrm{~nm},+450 \mathrm{~nm}$, and +620 nm , as previously defined. From the FDTD simulation of the TE modes in the disk, we found that the higher order TE mode families have relatively larger free spectral ranges (FSR) and hence we can designate the two sets of resonant modes in the transmission spectra as the first and second TE mode families with some selected modes denoted with red and blue arrows, respectively in Fig. 4. It is obvious that when increasing the offset from -210 nm to +120 nm the first TE mode family evolves from an undercoupled to the nearly critical coupled regime, with a measured loaded Q decreasing from 47200 to 35300 for the mode around 1310 nm . The intrinsic $Q_{\text {int }}$ can be calculated by $Q_{\text {int }}=2 Q_{\text {load }} /\left(1+\sqrt{T_{0}}\right)$, where T_{0} is the normalized transmission at the resonance [5]. Thus we achieve an intrinsic quality factor of $\sim 0.6 \times 10^{5}$ together with a FSR of $\sim 10 \mathrm{~nm}$ near the wavelength of 1310 nm . When the offset further increases, the coupling moves into the overcoupling regime for the first order modes as shown in Fig. 4 for the offsets of +450 nm and +620 nm . On the other hand, the transmission depth of the second order modes gradually increases when moving the waveguide closer to the disk, which indicates an increasing coupling strength for this mode family. For the offset of +620 nm , the second order modes reach nearly critical coupling with a loaded Q of 17500 around 1310 nm . By comparing the transmission spectra with the offsets of +120 nm and +620 nm in Fig. 4, it is obvious that the critical coupling condition occurs for very different configurations for both mode families. This stems from the separated spatial distribution of the different radial order modes and is a clear advantage of the vertical coupling configuration. Finally, it should
be added that we readily achieved an intrinsic Q of -1.4×10^{5} around 1310 nm by further improving on the fabrication process.

Fig. 4. Normalized transmission spectra of the disk with $30 \mu \mathrm{~m}$ diameter at different offsets of -210 nm , $+120 \mathrm{~nm},+450 \mathrm{~nm}$, and +620 nm . Red and blue arrows designate the first and second order TE modes respectively.

Conclusions

We fabricated SiN microdisks coupled with on-chip waveguides with high Q and compact footprint on a lab-built SiN platform. A controllable coupling for different order modes in the disk was also demonstrated by modifying structural parameters of the devicc. Since the present design and fabrication of SiN microdisks can also be scaled down to the visible wavelength range, it is believed that these on-chip integrated SiN building blocks provide opportunities for promising applications.

Acknowledgements

This work is supported by the EU-commission through the ERC-starting grant ULPPIC and the Belgian Science Policy Office (IAP P7/35). The authors would like to thank the technical staff in clean room of Photonics Research Group of Ghent University.

References

[1] Q. Li, A. A. Eftekhar, M. Sodagat, Z. X. Xia, A. H. Atabaki, and A. Adibi, "Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform," Optics Express, vol. 21, pp. 18236-18248, Jul 292013.
[2] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature Photonics, vol. 7, pp. 597-607, Aug 2013.
[3] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometrescale photonic-crystal optomechanical cavity," Nature, vol. 459, pp, 550-U79, May 282009.
[4] X. G. Tu, J. F. Song, T. Y, Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, "Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity," Optics Express, vol. 20, pp. 2640-2648, Jan 302012.
[5] P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Optics Express, vol. 13, pp. 801-820, Feb 72005.

