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Abstract: We report the first observation of a hypersonic mode of a
small-core silicon wire. In particular, we achieve record 4.4 dB on/off
continuous-wave Brillouin gain at 1550 nm. The wire is supported by a tiny
oxide pillar to block the path for external phonon leakage.

1. Introduction
Stimulated Brillouin scattering (SBS) is a third-order nonlinear process that couples light to hy-
persound [1]. Although best known for limiting the optical power in fiber communication links,
it has applications ranging from slow light [2] for lidar [3] to tunable RF notch filters [4], mi-
crowave synthesis [5] and spectrally pure lasers [6]. Fundamentally, it is a portal between the
fields of photonics and phononics [7]. It can also be seen as the travelling-wave complement to
cavity optomechanics [8], extending work on megahertz-optomechanics [9, 10] to the gigahertz
domain. In guided-wave systems, SBS comes in two varieties: forward and backward SBS, in case
the pump and Stokes wave either co- or counterpropagate. The process has been studied in a
multitude of platforms [11, 12], but proved elusive in silicon wires. It was hypothesized that the
elastic waves rapidly leak away to the substrate in a typical silicon-on-insulator wire [13], reduc-
ing the SBS gain coefficient drastically.

We confirm this experimentally by partially releasing a silicon wire (fig. 1) from its oxide sub-
strate with hydrofluoric acid. By carefully controlling the etching speed, a narrow (≈ 10 nm)
oxide pillar is left underneath the wire. This largely blocks the external path for phonon loss,
while keeping the benefits of rigidity and scalability to long interaction lengths. Finite-element
simulations, based on the model of [13, 14], predict that this wire-on-a-pillar supports a mechan-
ical mode (fig. 1) that has a large overlap with the optical forces given TE-input in the forward
SBS configuration. This elastic mode can be understood as the fundamental λ/2-mode of a Fabry-
Pérot cavity for hypersonic waves, formed by the silicon-air boundaries. Further, forward SBS is
the acoustic equivalent of phase-matched stimulated Raman scattering. Therefore it is qualita-
tively different from backward SBS, allowing for comb generation even without a cavity [15].

Forward SBS in silicon was shown for the first time in a completely suspended hybrid sili-
con/silicon nitride waveguide [16]. However, short interaction lengths limited the on/off gain
in this structure to 0.4 dB (10%) while high optical losses of 7 dB/cm precluded net gain. Here
we observed gain of 2.3 dB/cm in a wire with 2.6 dB/cm linear loss. This represents a ninefold
improvement in the gain-to-loss ratio.

2. Findings
We investigate straight and low-footprint spiral waveguides with a 450 nm × 220 nm cross-
section and lengths from 1.4 mm to 4 cm. We couple 1550 nm TE-light to the waveguides through
curved grating couplers and perform both cross-phase modulation and gain experiments.

First, we calibrate the mechanical nonlinearity with respect to the Kerr effect by cross-phase
modulation. The experiments yield a distinct Fano signature at 9.2 GHz (fig. 2) caused by in-
terference between the resonant Brillouin and the non-resonant Kerr response. From this Fano
resonance we extract the ratio γSBS/γKerr ≈ 2.5 and a linewidth of ≈ 35 MHz. The center fre-
quency is highly tunable (20 MHz/nm) by changing the waveguide width. The experiments also
show that the linewidth increases strongly with pillar size. The quality factor of ≈ 260 is con-
sistent with a finite-element model of phonon leakage through the pillar. Remarkably, there is
no large increase in the linewidth even in the long 4 cm spirals. Therefore there is, if at all, only
limited line broadening caused by inhomogeneities in the waveguide width.



(1) A drawing, SEM-image and mechanical mode profile of the silicon wire on an oxide pillar. The color of
the mechanical mode indicates the horizontal displacement (red: +, blue: −). The energy diagram and
phase-matching condition of forward SBS are depicted on the right.
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(2) Fano signature obtained from the cross-
phase modulation experiment.
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(3) Lorentzian gain profile on a Stokes line. Inset:
depletion profile on an anti-Stokes line.

Next, we perform a gain experiment by monitoring the power in a Stokes line as a function of
frequency spacing with a pump wave. We obtained the highest on/off gain of 4.4 dB in a 4 cm
long spiral waveguide (fig. 3). The experiments yield similar values for on/off loss on an anti-
Stokes line. In a 2.7 mm long straight wire with 0.7 dB linear loss, we find up to 0.6 dB on/off
gain with an estimated 22 mW c.w. pump power landed on the chip. This corresponds to gain
coefficients of ≈ 2500W−1m−1, which is confirmed by the cross-phase modulation experiment. At
higher pump powers nonlinear absorption prevents a further increase in gain-to-loss ratio.

In conclusion, we demonstrated efficient forward SBS in a partially suspended silicon wire.
Further improvements in optical or mechanical losses may bring this structure firmly into the
realm of net amplification.
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