
 

 

 

Photonic Integration in Indium-Phosphide Membranes on Silicon (IMOS)  

Jos van der Tol, Josselin Pello, Shrivatsa Bhat, Yuqing Jiao, Dominik Heiss, Gunther Roelkens, Huub Ambrosius and 

Meint Smit 

COBRA Research Institute, Eindhoven University of Technology (TUE), 

 

Abstract: A new photonic integration technique is presented, based on the use of an indium phosphide membrane 

on top of a silicon chip. This can provide electronic chips (CMOS) with an added optical layer (IMOS) for 

resolving the communication bottleneck. A major advantage of InP is the possibility to integrate passive and 

active components (SOAs, lasers) in a single membrane. In this paper we describe progress achieved in both the 

passive and active components. For the passive part of the circuit we succeeded to bring the propagation loss of 

our circuits close to the values obtained with silicon; we achieved propagation loss as low as 3.3 dB/cm through 

optimization of the lithography and the introduction of C60 (fullerene) in an electro resist. Further we report the 

smallest polarisation converter reported for membrane waveguides ( <10 μm) with low-loss (< 1 dB from 1520-

1550 nm),  > 95% polarisation conversion efficiency over the whole C-band and tolerant fabrication. We also 

demonstrate an InP-membrane wavelength demultiplexer with a loss of 2.8 dB, a crosstalk level of better than 18 

dB and a uniformity over the 8 channels of better than 1.2 dB. For the integration of active components we are 

testing a twin guide integration scheme. We present our design based on optical and electrical simulations and the 

fabrication techniques. 

Introduction: The IMOS platform is based on a high refractive index contrast InP membrane, which is optically very 

similar to a silicon membrane and suitable for the creation of high-density, low-power PICs. In the long term, we want 

the full functionality of classical InP-based PICs to be integrated in IMOS, using a set of standard building blocks. The 

strength of the IMOS concept resides in its inherent ability to integrate active and passive functions. We follow the same 

philosophy as the Generic Integration approach for in classical InP-based PICs [1] as illustrated in figure 1. With a 

limited set of basic building blocks and a generic process we are able to make a great variety of A(pplication) S(pecific) 

P(hotonic) I(ntegrated) C(ircuits. 
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Figure 1: Comparison of CMOS building blocks and Photonic building blocks and an impression of the basic 

building blocks in bulk InP 

Also in IMOS we want to develop a Generic Integration Process in which active and passive components can be 

integrated.  

Figure 2: Schematic composition of IMOS chip 

 

Figure 2 represents the typical dimensions and composition of an IMOS waveguide. InP (n = 3.17) is chosen as the high 

refractive index wave-guiding material, because of its ability to integrate lattice-matched active and passive materials. 

The low-refractive index (n = 1.5) polymer Benzo-Cyclo-Butene (BCB) is used as an adhesive to bond the InP 

membrane to a Silicon wafer. The thickness of the InP membrane is chosen as 250-300 nm to obtain 

a strong light confinement, while a bonding layer thickness of 1.9 μm enables to decouple the InP membrane from the 

high-refractive index silicon wafer both optically and thermally. The InP membrane can also contain an active layer for 

active components.  

This configuration brings a number of advantages. As demonstrated in the Generic Integration process for classical InP-

bsed PICS, the use of InP and related compounds as the guiding material simplifies the integration of passive and active 

functions on the platform. Thanks to the high vertical refractive index contrast created in IMOS, light is tightly confined 
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in the InP membrane. This allows for very compact photonic devices to be realized in the membrane. Consequently, 

circuits in IMOS can be made very dense, and with low power consumption. The basic building block for light guiding is 

a single-mode waveguide with a cross-section of 250 nm x 450 nm, more than one order of magnitude smaller than 

single-mode waveguides in classical InP based photonics. Furthermore, the use of BCB as the bonding material brings a 

relatively high degree of flexibility with regard to the carrier wafer composition and topology An important property of 

BCB is its low thermal conductivity, which is an advantage for future integration on CMOS circuits with dynamic hot 

spots. Here the low thermal conductivity of BCB allows for  good thermal decoupling between the InP and the CMOS 

layers, when double-sided cooling is applied.. In terms of integration of an IMOS optical interconnect on top of an 

electronic IC, this means that back-end processing can be used, limiting the interference with the CMOS fabrication to 

the connections between IMOS and CMOS devices using vias through the BCB layer. Once the platform architecture has 

been chosen, the next step is to design a set of basic building blocks, which can be combined to realize complex 

functions in PICs. Ultimately these building blocks should be brought together in a single generic integration process, 

optimized for providing high performance for all the building blocks.  

Wafer bonding: As described above the IMOS technology is making use of wafer bonding using BCB to intimately 

combine CMOS electronics with III-V photonic functionalities. Below the process flow for the wafer bonding step is 

given. The first step in all fabrication schemes is the fabrication of an Epi wafer with the active and passive areas on the 

wafer created with one or more epitaxial growth steps. Here, the goal is to have a generic integration process in which all 

the building blocks can be made in an identical layer stack in which we can integrate active as well as passive 

components on one chip. In the case of a passive photonic chip the device layer stack consists only of a 250-300 nm 

thick InP layer on top of a thick InGaAs protection layer, used for selective substrate removal. A more detailed 

description of the integration of active devices in the platform will be given in section “Integration of Active 

Components”.  

Once the Epi wafer is ready, the processing of the IMOS chip can start, which is schematically illustrated in Figure 3.  
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Figure 4: Propagation loss in IMOS waveguides [2] 

Polarization converter. Polarization handling is a fundamental issue in photonic integrated circuits. Polarization can be 

taken advantage of, e.g. for light intensity modulation or polarization bit interleaving [5]. For all these applications, an 

efficient broadband polarization converter is the key component. Here we introduce a polarization converter in IMOS 

based on triangular waveguides for a short device, but optimized for high tolerance to fabrication errors. This device is 

the world’s smallest InP polarization converter made to date (0.4 μm × 0.8 μm × 7.5 μm). The device, depicted in fig. 5, 

consists of two triangular sections of about 2 µm long, realized by a combination of a wet etch, for the sloped side, and a 

reactive ion etch, for the straight side. Since the gratings used for input and output coupling are optimized for TE-

polarization the characterization has to be based on the transmission of the TE-polarized mode. This is done by including 

between the triangular sections a segment of a straight waveguide. Variation of the length of this segment results in 

constructive and destructive interference of the converted contributions of each triangular section, and thus in 

respectively full polarization conversion and zero polarization conversion. 

 

Figure 5: Designed (left) and realized (right) polarization converter structure [6, 7] 
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Measurement results for sets of devices with different straight waveguide segments are given in figure 6. Fitting an 

interferometric curve to these data yields the performance parameters of the polarization converter: conversion efficiency 

of 99.2 ±0.2%  (@λ=1530 nm), and an insertion loss below 1 dB. 

 

Figure 6: Transmission through polarization converters, as a function of the length Lrec of a straight segment 

between the triangular sections [7] 

Similar results are obtained with lengths of the triangular sections varying between 2.1 and 2.6 µm, which demonstrates 

the tolerance of these polarization converters. The bandwidth over which the conversion is >92% is 35 nm, which is 

sufficient for use over the whole C-band. By removing the rectangular section a bandwidth of 200 nm, with a 

conversion >98%, can be expected according to simulations. 

Wavelength demultiplex. One of the fundamental functions required is wavelength (de)multiplexing. Using 

demultiplexers, the different signals propagating in a given waveguide can be separated (demultiplexed) into different 

output waveguides according to their wavelength. Conversely, demultiplexers allow signals of different wavelengths 

propagating in different waveguides to be combined (multiplexed) into a single waveguide. Here we present a planar 

concave grating (PCG) wavelength demultiplexer realized in IMOS [8].  

Proc. of SPIE Vol. 8988  89880M-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/06/2014 Terms of Use: http://spiedl.org/terms



Outputs

r

FPR
.1"` PCG

InputE-

 

 

 

Figure 7: Layout of an IMOS-PCG demultiplexer [8] 

A PCG demultiplexer (also referred to as Echelle grating, or etched diffraction grating) functions by combining the high 

dispersion of a large period grating, with the focusing power of a concave mirror. As shown in Fig.7, the light coming 

from the input waveguide spreads in an un-etched free-propagation region (FPR) and reaches the PCG, where it is 

simultaneously reflected and diffracted by the grating corrugation, and re-focused by its curvature. Due to the inherent 

dispersion of the grating, different wavelengths are diffracted in different directions, and can therefore be collected 

separately by several output waveguides placed on the so-called Rowland circle (see [9] for more detail on the design 

and behavior of PCG demultiplexers). An eight-channel PCG demultiplexer was designed for TE-polarized light, with a 

central wavelength of 1550 nm, and a channel spacing of 4.0 nm.  

 

Figure 8: Measured spectrum of an IMOS-PCG demultiplexer [8] 

Fig.8 shows the measured transmission spectra of the device. The channel spacing of the device (3.96 nm) is close to the 

design value of 4.0 nm. The spectrum is blue-shifted by 4.1 nm with respect to the designed spectrum, and the insertion 

losses (2.8 dB) are higher than the value predicted in simulation (0.2 dB). The shift is caused by a deviation of the 

membrane thickness from the design value. The extra insertion loss arises due to fabrication imperfections in the PCG’s 
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DBRs. The sidelobes beside the main channels originate from the phase noise created by membrane thickness non-

uniformity, and by fabrication imperfections. However, their transmission level does not exceed -21.3 dB, meaning that 

the cross-talk figure for the device is better than -18 dB. Finally, the power non-uniformity between the transmission of 

the different channels is below 1.2 dB. 

Optically pumped laser 

So far a number of passive devices realized on an InP-membrane are presented. Active devices are however needed to 

develop a full platform. To test the quality of processing and materials a DFB-laser structure is developed (see fig.9). 

This device was realized in a membrane containing a compressively strained quantum well. 

This laser was done with pumping from the top in a DFB-type of structure, with the grating etched on top of the 

waveguide. 

 

Figure 9: SEM picture of the optically pumped IMOS-POLIS DFB laser. Insets: layer stack and detail of the DFB 

grating.[11] 

With this structure the first laser emission from an IMOS laser is obtained. Figure 10 shows the laser peak and the input-

output characteristic, clearly indicating the laser behavior.  
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Figure 10: Measured spectrum of an optically pumped IMOS-POLIS laser (left),  

and the input-output relation (right). [11] 

After correction for losses in the optical path for the pump light it is found that the threshold pumping power is 6 mW. 

The next step will be to develop an electrical pumped laser. Based on the results of the optically pumped laser structure a 

threshold current of 2.5 mA can be expected there. 

To combine active and passive structures an integration concept is being developed, which will be presented in the next 

section. 

Integration of Active Components 

A key functionality for almost any photonic integration platform is the generation, amplification and detection of light. 

Devices which perform these functions are so-called active devices, and their integration with passive devices is at the 

heart of the integration platform. For the integration of active components we develop a scheme based on a twin-guide 

active waveguide structure. In the following we present the device design based on optical and electrical simulations, as 

well as details on the device fabrication.  

Semiconductor Optical Amplifier in twin guide structure.  The twin-guide approach consists of two vertically 

stacked layer sequences for the active and the passive functions, which are schematically represented in in Figure 11a). 

After bonding the layer stack is as follows starting from the lowest layer: (1)  300 nm thick InP passive waveguiding 

layer on top of the BCB/SiO2 bonding layer; (2) 100 nm thick n-contact layer formed by a n+-doped quaternary layer 

(Q1.25) and a n-doped InP layer; (3) bulk active region formed by 250 nm thick nominally undoped Q1.58 ; (4) p-doped 

InP cladding layer; (5) contact region formed by quaternary spacer layers and highly p+-doped InGaAs. In the passive 

regions, layers (2)-(5) are removed by a combination of dry and wet etching leaving a high quality surface for the 

definition of low loss waveguide structures. To define an amplifier 700 nm wide ridges are defined in layers (3)-(5), as 

sketched in Figure 11a). The p-side of the diode structure is contacted using a Ti/Pt/Au metallization on top of the ridge, 
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