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Abstract— Reservoir computing (RC) is a technique in machine
learning inspired by neural systems. RC has been used suc-
cessfully to solve complex problems such as signal classification
and signal generation. These systems are mainly implemented
in software, and thereby they are limited in speed and power
efficiency. Several optical and optoelectronic implementations
have been demonstrated, in which the system has signals with
an amplitude and phase. It is proven that these enrich the
dynamics of the system, which is beneficial for the performance.
In this paper, we introduce a novel optical architecture based on
nanophotonic crystal cavities. This allows us to integrate many
neurons on one chip, which, compared with other photonic solu-
tions, closest resembles a classical neural network. Furthermore,
the components are passive, which simplifies the design and
reduces the power consumption. To assess the performance of
this network, we train a photonic network to generate periodic
patterns, using an alternative online learning rule called first-
order reduced and corrected error. For this, we first train a
classical hyperbolic tangent reservoir, but then we vary some
of the properties to incorporate typical aspects of a photonics
reservoir, such as the use of continuous-time versus discrete-
time signals and the use of complex-valued versus real-valued
signals. Then, the nanophotonic reservoir is simulated and we
explore the role of relevant parameters such as the topology, the
phases between the resonators, the number of nodes that are
biased and the delay between the resonators. It is important
that these parameters are chosen such that no strong self-
oscillations occur. Finally, our results show that for a signal
generation task a complex-valued, continuous-time nanophotonic
reservoir outperforms a classical (i.e., discrete-time, real-valued)
leaky hyperbolic tangent reservoir (normalized root-mean-square
errors = 0.030 versus NRMSE = 0.127).

Index Terms— Integrated optics, optical neural network,
pattern generation, photonic reservoir computing, supervised
learning.
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I. INTRODUCTION

RESERVOIR computing (RC) is a recently proposed
methodology in the field of machine learning [1], [2].

Originally, it combined a recurrent neural network (RNN) with
a linear readout layer, trained on the neuron states. The RNN
itself, usually consisting of nonlinear neurons, is left untrained.
It transforms the input signal to a high-dimensional state space,
containing many linear and nonlinear transformations of the
input history. Only a few global parameters, such as the overall
gain in the system, the magnitude of the inputs, and the
network size are optimized to tune the reservoir dynamics
into an appropriate regime for the task at hand. RC performs
very well on a variety of tasks, e.g., speech recognition [3],
detection of epileptic seizures [4], robot localization [5], and
time series prediction [1], [6].

Typically, a reservoir is implemented as a sequential algo-
rithm in software. This obviously limits the speed of operation
of the reservoir. The inherent parallelism of the neural network
concept makes it a good candidate for parallel hardware imple-
mentations. In particular, analog hardware platforms in which
the nonlinearity is provided by the physics of the components
can be very efficient. A good overview of hardware implemen-
tations of RC can be found in [7]. In the electronic domain,
there are implementations such as an FPGA [3] and VLSI [8].
Recently, photonic and optoelectronic implementations of RC
have been demonstrated [9], [10]. An advantage of photonic
implementations is the fact that they can be operated in a
coherent regime, where all signals have both an amplitude and
a phase, which interact whenever signals are combined. This
increases the dimensionality of the state space. Even when
the number of observed signals remains unchanged (e.g., only
the magnitudes of the neuron states), it generally enriches the
realized projection of the input into the observed portion of
state space, yielding better reservoirs. Furthermore, the very
high carrier frequency of optical signals, which can be carried
over dielectrical materials with low loss, allows the system to
process signals faster, and potentially with lower power, than
electronic implementations.

Vandoorne et al. [10] demonstrated, through simulations,
that RC with an integrated circuit of semiconductor optical
amplifiers (SOAs) as a reservoir can solve a speech recogni-
tion task with state-of-the-art performance. These components
are, however, relatively large and, because they are active
amplifiers, the network consumes a lot of power. Here, we
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propose to use an integrated circuit of photonic crystal cavities
as alternative to the SOA network. These are passive compo-
nents, which drastically reduces the power budget, and they
are easier to fabricate because no postprocessing is involved
(no electrical pads, no additional bonding, and electrical
wiring).

In contrast to previous paper, we evaluate the proposed
physical reservoir in continuous time, i.e., without the external
clock determined by the sampling period. To fully evaluate
the potential of continuous-time reservoirs, we also used a
continuous-time task: the multiple superimposed oscillator
(MSO) problem [11], in which the reservoir is used to predict
the evolution of a superposition of two or more sinusoidal
waves with different frequencies.

The output weights are adjusted online during training,
using a technique called first-order reduced and corrected
error (FORCE) [12]. This online learning technique has two
distinct advantages. First, adjustments to the weights consider
the dynamics and the feedback of the network during training.
This is used to stabilize the reservoir. Especially for resonant
nonlinear cavities, in which it is usually difficult to control
the dynamics, this is a significant advantage. When trained
correctly, the system with feedback is very robust and stable,
even when the feedback has a considerable delay. Second, it
is an online training technique, in contrast to the traditional
offline learning techniques, which require the recording of long
time traces for all state variables before training. This, and the
fact that it does not depend on extensive matrix operations,
makes it a good candidate for future analog implementations
of the RC training stage.

To summarize, we assess the performance of a continuous-
time low-power photonic crystal cavity reservoir, using
the FORCE learning technique, on a continuous-time task.
In several intermediate steps, we increase the complexity from
a discrete-time hyperbolic tangent reservoir to a continuous-
time complex-valued photonic crystal cavity reservoir. We
discuss the impact of the most relevant design parameters, e.g.,
the phase difference between connected resonator pairs, the
total number of nodes and the number of biased nodes and the
delay between the nodes, and identify the optimal parameter
ranges. We find that an optical reservoir performs particularly
well on the MSO task and even outperforms the classical
hyperbolic tangent reservoir. Finally, we link our results to the
total information processing capacity of the photonic crystal
cavity reservoir for the most relevant parameters, in which the
same trends are observed.

The rest of this paper is structured as follows. The RC setup
and training method are described in Section II, and the exper-
imental setup is briefly described in Section III. In Section IV,
we investigate the difference between a classical discrete-time
reservoir and a continuous-time reservoir. Then, we investigate
the benefits of using complex-valued states in Section V.
In Section VI, we present an optical reservoir on an integrated
photonics platform. Additional challenges are addressed, such
as the feedback loop, the readout layer, and the weight
recalculation. Finally, in Section VII, we show the results
of simulations for the optical reservoir using photonic crystal
cavities.

II. RC

A. Reservoir and the Readout Layer

Generally, a reservoir is simulated in discrete time.1 The
states of a reservoir of size N at time step k are then given by
x[k], k ∈ N. x[k] is a column vector with dimensions (N, 1).
The next state of the reservoir is calculated using the following
equation:

x[k + 1] = (1 − λ)x[k] + λf(Winu[k] + Wresx[k]) (1)

where Win (N, K ) is the weight matrix to feed K inputs to
the reservoir and Wres (N, N) is the connection matrix of
the reservoir with N neurons. f is the (usually nonlinear)
activation function. In echo state networks [1], one of the
most commonly used types of discrete-time reservoirs, f is
a sigmoidal or a hyperbolic tangent function.

For many tasks, it is beneficial that the reservoir operates
close to the edge of stability. The spectral radius, a measure for
the maximal gain in a reservoir, is often used as an indicator
for reservoir stability. It is defined as the largest eigenvalue of
the system’s Jacobian at its maximal gain state. For a reservoir
with hyperbolic tangent neurons, the maximal node gain equals
one, therefore the spectral radius can be simplified to

SR = max(|eig(Wres)|). (2)

In a nonlinear reservoir, the actual gain at each point in time
depends on the operating point. The stronger the nonlinearities
are driven, the smaller the actual gain.

B. Training

An RC system can be trained both online and offline. For
offline learning, all input is first fed to the reservoir, and the
states are recorded into a state matrix. The output weights are
then calculated so that the output matches a desired pattern,
usually using some form of regularized regression. The need
to record reservoir states and the mathematical operations
required for training make it difficult to implement offline
learning using analog hardware.

In contrast, in online learning, the output weights Wout
are modified during the training. At regular time intervals,
updates are computed from the observed error. Such learn-
ing schemes are more easily adaptable to analog hardware
implementations, which is why we decided to evaluate a recent
and very successful online learning technique, called FORCE
learning [12] for training our photonic reservoir architecture.
FORCE was proposed as a training technique for tasks in
which the system is required to autonomously generate some
kind of periodic pattern. Such tasks are particularly difficult,
because they require that the reservoir output is fed back into
the system. This implies that the system needs to be robust
against errors or noise that is being fed back. For such tasks,
the desired output is often fed into the system during training
(teacher forcing), with some noise added to achieve robustness
against noise. This robustness is, however, very limited.

1For the rest of this paper, the time variable for a discrete-time signal is
surrounded by square brackets. In a continuous-time signal, we will use round
brackets.
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Fig. 1. Reservoir with feedback. The reservoir states x[k] weighted by the
output weights Wout to produce the output y[k]. This output is then fed back
to the input. The purpose of this network is to autonomously generate periodic
patterns after training Wout using the rule described in [12].

The FORCE technique succeeds in training the system with
the actual output feedback in place. The readout weights are
adjusted online, e.g., using the recursive least squares (RLS)
modification rule. This way, the training considers the reservoir
dynamics and dynamic trajectories, including useful basins
of attraction, can be learned. This yields greater robustness
and stability, even when delay is present in the feedback
loop. This is particularly interesting for hardware implemen-
tations, as some delay is always present in the physical
systems.

The steps to perform learning are summarized as follows
(Fig. 1).

1) Simulate the reservoir from x[k] to x[k + 1].
2) Calculate the output y[k + 1] = Wout[k] x[k + 1].
3) Calculate the error with respect to the target signal

f : e[k + 1] = y[k + 1] − s[k + 1].
4) From this error, calculate the new weights Wout[k + 1]

using the RLS rule explained in [12].
5) Feedback the output y[k + 1] to the reservoir for the

next time step.

FORCE is usually applied to reservoirs, which initially
exhibit chaotic behavior. For the hyperbolic tangent ESNs, this
condition is usually met when the spectral radius is consid-
erably larger than one. The training stabilizes the dynamical
system consisting of the reservoir and the output feedback.

FORCE learning is typically used in a training and eval-
uation setup, and is shown in Fig. 2. To be able to scale
this learning approach to periodic signal generation tasks
with different time scales, the lengths of all training stages
are expressed as multiples of T1, the period of the slowest
frequency component in the signal that is to be generated.
Below, we summarize these steps.

1) Warm-Up (15T1): The initial state x[0] is chosen zero.
The input during the warm-up is noise, sampled from a
standard normal distribution with amplitude one.

2) Training (400T1): The output weights are adjusted using
the proposed RLS rule [12].

3) Free-Run (2000T1): The output weights are unmodi-
fied. If the training converges, the RC system with
feedback can now autonomously generate the desired
function s[k].

Fig. 2. Simplified illustration of the learning sequence. T1 is the period
of the lowest frequency component of the signal that must be generated.
During warm-up, the input of the reservoir is noise, sampled from a uniform
distribution. During training, the output weights Wout are adjusted such that
the output (black solid line) follows the target signal (gray dashed line). The
output weights are unmodified during free-run. The output can have a slightly
different frequency than the target. The last samples ytest[k] are scrolled over a
window of the free-run output, each time calculating the NRMSE. The optimal
value of the NRMSE is used as performance for this learning sequence.

III. EXPERIMENTAL SETUP

A. Task Description

As this paper aims to evaluate a photonic reservoir
implementation—inherently operating in continuous time—
trained with FORCE learning, we selected the MSO task [11],
a pattern generation task defined in continuous time. This
academic task has previously been used to benchmark the
performance for the different types of reservoirs. The RC
system has to generate a superposition of sine waves with
harmonically unrelated frequencies

s(t) = sin(ω1t) + sin(ω2t). (3)

The pulsations of the signals are: ω1 = 0.2 /s for the lower
frequency and ω2 = 0.311 /s for the higher frequency. When
this task is used in a discrete-time setup, the target signal is
sampled at s[k] = s(k�t), k ∈ N. The period of the first signal
is T1 = 2π/ω1 � 31.42 s, the period of the second signal is
T2 = 2π/ω2 � 20.20. For a classical discrete-time reservoir,
�t = 1 s, and we continue using the notation s[k] = s(k ·1 s).
The period of the superimposed signal is very long, which
increases the challenge of learning the signal.

B. Simulation Software

All simulations were performed using a combination of
two software packages: 1) OGER and 2) Caphe. OGER, the
OrGanic Environment for RC [13], extends the Python MDP
toolbox [14], by providing extra functionality in the context
of RC. It is used to setup and postprocess RC experiments and
to initiate the reservoir simulations. Caphe [15], a simulation
framework for arbitrary nonlinear circuits, is used for the
actual continuous-time reservoir simulations.

C. Performance Measure

Reservoir performance is evaluated throughout this paper
by the normalized root-mean-square error (NRMSE) between
the output and the target function at the sampling times k�t .
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In signal generation tasks, an important aspect of performance
is the stability of the generated output over longer periods
of time. Therefore, after the training phase, we allow the
reservoir run for some time (2315T1) before calculating the
performance. In addition, for periodic signals, a small phase
shift between the actual and the desired output is usually
acceptable, but it strongly affects the NRMSE. We use the
approach of [16], where we calculate the NRMSE for windows
of the output signal ytest[k] = y[2315T1 + k], k ∈ [0, 100T1],
and sliding these windows over a sufficiently long section
(1000T1) of the free-run stage. Selecting the minimal value
across all window positions effectively evaluates the shape of
the desired output, largely cancelling out the impact of any
phase shifts. This is shown in Fig. 2. Although computationally
intensive, this calculation can be sped up using a convolution.

IV. CONTINUOUS-TIME RESERVOIR

The optical network is inherently a continuous-time system,
and the MSO task is inherently a continuous-time task, there-
fore as an intermediate step toward simulating a full photonic
reservoir, we initially investigate the performance of a leaky
hyperbolic tangent reservoir as a continuous-time system.

Traditional ESNs are defined in discrete time. We can,
however, view the neuron update equation (1) as the result
of applying Euler integration on ordinary differential equa-
tions (ODEs). To more closely resemble this form, we now
substitute λ by �t/τ0, where τ0 is the dominant time constant
of the neuron. In this case, we assume �t = 1 s. To simplify
the notation, we omit the explicit argument of f , and instead
we write f(v)

x(t + �t) =
(

1 − �t
1

τ0

)
x(t) + �t

1

τ0
f(v(t)).

Restructuring and taking the limit for �t → 0 yield
the equivalent continuous-time leaky hyperbolic tangent ODE
equations

d(x)

dt
= 1

τ0
(−x(t) + f(v(t))). (4)

Note that v(t) also needs to be adapted to explicitly include the
interconnection delays in the network. In a discrete-time RC
system there is inherently a delay of 1 s between the neurons.
To most closely resemble this classical case, all delays are in
this case equal to the original discrete time step of �t = 1 s

v(t) = Winu(t) + Wresx(t − �t).

In a more general setting, a delay on the input connections
can also be included.

Table I lists the parameters that are used throughout this
paper for the leaky hyperbolic tangent reservoirs. Any devi-
ations from these parameters will be explicitly mentioned.
We simulate the continuous-time hyperbolic tangent reservoir
using the Bulirsch–Stoer integration method with variable
step size �t ′, and using a relative accuracy of 10−8. The
feedback is also simulated in continuous time, but without
delay. Learning is still performed at discrete time steps of
�t = 1 s.

TABLE I

DEFAULT VALUES USED IN THE LEAKY HYPERBOLIC

TANGENT RESERVOIR

Fig. 3. NRMSE for different τ0 for the MSO task described in Section III-A.
The error bars show the sample standard deviation over 40 simulations
(NRMSE ± σNRMSE). Solid red line: the error for a standard discrete-time
reservoir, often used in the literature and in the practical applications. Dotted
green line: the performance of a reservoir simulated in continuous time, with
continuous-time feedback.

We have compared the performance of discrete-time and
continuous-time reservoirs on the MSO task, as a function of
the neuron time constant τ0. For each value of τ0 and each
reservoir type, the NRMSE was averaged over 40 experiments
with randomized connection matrix, input noise in the warm-
up phase, and input weight matrix. To make a fair comparison
between discrete and continuous time, all simulations are
sampled at �tsample = 1 s, which means that the training
stage receives the same number of samples for each reservoir.
This also ensures that the learning rate α has the same effect
in each case.

The average NRMSE values are summarized in Fig. 3.
It shows that moving to continuous time yields a decrease of
the NRMSE over the full parameter range. This improvement
is partly related to the bandwidth: certain frequencies cannot
be captured in discrete time. A continuous-time system in
theory has unlimited bandwidth, but for simulations this is
limited by the �t ′. Because of the adaptive step-size algorithm,
the effective bandwidth varies during the simulation.

For both reservoir types, we can identify an optimal value
of the neuron time constant. For the discrete-time reservoir, we
find an optimal NRMSE of 0.127 at τ0 = 4.0 s, with a sample
standard deviation of 0.111. For the continuous-time reservoir,
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the best NRMSE in the interval considered (0.050 ± 0.022)
occurs at the minimal value of τ0 = 2.0 s. This shows
that, for signal generation tasks, a continuous-time hardware
reservoir can perform better than a discrete-time reservoir,
or equivalently: the same performance can be reached with
fewer neurons, which is an advantage when implementing a
hardware reservoir computer.

V. FROM REAL-VALUED TO COMPLEX VALUED

One of the advantages of using photonics for a hardware
reservoir is the fact that, when using coherent light sources, the
optical signals are complex valued, i.e., they have an amplitude
and phase. To understand how this gives an advantage, we now
extend the discrete-time leaky hyperbolic tangent reservoir
with complex-valued states and compare this with the original
real-valued reservoir. The input weights are also complex
valued. The readout layer splits the states x(t) into a real and
imaginary parts, before multiplying them with Wout.

Because the signals are now complex valued, we need to
define a new nonlinearity for the neuron. It is tempting to
replace the hyperbolic tangent function by f (z) = tanh(z),
z ∈ C. This function has, however, discontinuities at
f ( j (2k + 1)π/2), k ∈ Z which are generally not wanted. We
want to guarantee continuity and keep the tanh(x) behavior
with an image that is bound to [−1, 1]. We can do so by
preserving the phase of the signal and applying tanh on the
absolute value of the signal

f (z) = e− j � (z) tanh(|z|) (5)

where � (z) is the angle of z.
The state space of a complex-valued reservoir contains

twice as many variables as that of a real-valued reservoir.
In our experiments, this was exploited using the real and
imaginary parts of the signal in each node as state signals.
The performance of the complex-valued reservoir is similar
to the performance as a real-valued reservoir with twice as
many nodes. This can be observed in Fig. 4. Recall that
for the discrete-time case, the optimal NRMSE value was
0.127 ± 0.111. For �t = 1.0 s, the optimal value is found
for τ0 = 4.5 s. For the same network, but with complex-
valued states, the optimal value is found for τ0 = 3 s, and
the corresponding NRMSE equals 0.0546 ± 0.0238. We also
compare this to a real-valued network of 400 neurons, which
is double the size of the network, also shown in Fig. 4. The
performance is similar: the best NRMSE of 0.0514 ± 0.0233
is found for τ0 = 4 s. We can conclude that, for this task,
the performance of a coherent (i.e., complex valued) reservoir
approximates that of a real-valued reservoir with twice the
number of neurons.

VI. PHOTONICS: A HARDWARE RC IMPLEMENTATION

In [10], a network of coupled SOAs was used to solve a
speech recognition task. This network requires one electrical
input per component to pump the amplifiers, which causes
them to use a lot of power. Here, we propose a network
of photonic crystal cavities. This platform is promising for
a nanophotonic reservoir, because it is CMOS compatible,

Fig. 4. NRMSE for three reservoirs: standard leaky hyperbolic tangent
reservoir with 200 neurons (red, baseline), the same reservoir with complex-
valued states (green, dashed), and a standard reservoir with 400 neurons.
Clearly, the complex-valued reservoir performs better than the standard
reservoir. For most leak rates, the performance is similar to the system with
400 neurons.

which allows us to fabricate very large networks using the
mature silicon photonics technology. Because this is a planar
technology, there are several constraints on the topology, but
it has been proven previously that for rate-based systems the
performance is largely independent on the exact topology [17].
Instead of using the speech task, we now use a signal gen-
eration task. This task is especially relevant for optics, for
example, to create an optical signal generator.

Initially, we will explain the basic principles of a photonic
crystal and a photonic crystal cavity, and explain how we
model them using the coupled mode theory (CMT). Then,
we design a network of photonic crystal cavities and explain
what topology is used. In the last section of this paper, we
train the MSO task using the photonic crystal cavity reservoir
and compare our results to the performance of the hyperbolic
tangent reservoir.

A. Photonic Crystals, Waveguides, and Cavities

A photonic crystal is composed of a periodic nanostructure.
Because of this periodicity, light with certain frequencies
cannot propagate. The band in which propagation is not
allowed is called the photonic band gap. Typically, these
periodic structures are holes in a triangular lattice or rods
in a rectangular lattice, and the dimensions of one period
are approximately the same order of magnitude as the wave-
lengths, which are used. A photonic crystal waveguide is a
photonic crystal with one-line defect, as shown in Fig. 5(a).
Because light cannot propagate inside the photonic crystal, it
is forced to propagate through this line defect. We can then
introduce a cavity by inserting some holes inside this line,
Fig. 5(b). Using semiconductor on insulator technology and
optical lithography, photonic crystal waveguides have been
successfully fabricated and measured [18].

Extensive theoretical [19], [20] and experimental [21], [22]
studies have been performed on these devices. The component
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Fig. 5. Photonic crystals are periodic structures, made by, e.g., etching holes
in a silicon layer. For certain wavelengths, the light cannot propagate through
the periodic structure. Because of this property we can fabricate very small
devices that manipulate light. For example, we can (a) guide light by bending
it or (b) capture it in a very small volume. The latter is called a photonic crystal
cavity, which is the building block we will use to construct a reservoir. (a)
Photonic crystal waveguide with a bend. Light propagates through the line
defect, and very small bends can be realized [18]. (b) 2-D finite-difference
time-domain simulation of a photonic crystal cavity. Light tunnels to the small
volume in the center and is trapped, which creates an optical resonator. This
cavity is the basic building block for a nanophotonic reservoir.

is a resonator, which means that for certain wavelengths, light
is trapped inside the cavity and the power inside the resonator
is greatly enhanced. Furthermore, when the materials used to
build the resonator are optically nonlinear, there are conditions
for which the resonator becomes bistable. Similarly from [19]
and [20], the nonlinearity, we use in this photonic crystal
cavity is the Kerr effect. It is a second-order nonlinearity, i.e.,
the refractive index changes proportionally to the intensity of
the waves: n = n0 + n2 I . The Kerr effect is very fast, in the
order of a few femtosecond.

There are many ways to model these optical resonators.
The most accurate way to simulate them is by using finite
difference time domain (FDTD) simulations in which the
Maxwell equations, which describe light propagation, are
discretized directly. The physical layout of the device is
transformed to a 3-D grid and this system is then solved in
the time domain. These simulations are computationally very
intensive. In addition, because the structure is a resonator, light
bounces back and forth in the cavity multiple times, and as
such a lot of time steps are needed to model the buildup
of energy in such a component. Typically, a simulation of
one resonator in 2-D takes more than 10 h to complete on
an eight-core 3-GHz processor. For example, Fig. 5(b) was
rendered by performing a 2-D FDTD simulation in Meep [23].
In contrast, the approximate CMT is computationally much

Fig. 6. Output versus input power of a single nonlinear optical resonator
(shown in inset) with a detuning δ = −2. The resonator has a bistability (the
dotted region is an unstable solution). Input light whose wavelength is close
to the resonance wavelength is trapped inside the cavity, leading to energy
accumulation. Nonlinear effects, which depend on the intensity of the field, are
thereby greatly enhanced, leading to the observed bistability. The typical time
scale for energy accumulation/dissipation because of the optical resonance is
τ ≈ 1 ps.

faster and consumes much less memory. The simulation time
for the same system is now less than 1 ms. In CMT, the
behavior of the resonator is fully described by only one
variable: the complex amplitude of the resonator a j (more
complex models also include the temperature, the amount of
free carriers or even multiple modes). It has been shown that
the correspondence between FDTD and CMT is very good for
a system of two resonators [19]. To decrease the computational
footprint of the simulations while still keeping a good level
of accuracy, we use the CMT to simulate the nanophotonic
reservoir. Each resonator is governed by the following CMT
equations (the time dependency is omitted, for simplicity):

da j

dt
=

[
i
(
(ωr − ω0) + δω j

) − 1

τ

]
a j (6)

+ds j,in,0 + ds j,in,1

s j,out,0 = exp(iφ j )s j,in,0 + da j (7)

s j,out,1 = exp(iφ j )s j ;in,1 + da j . (8)

Here, φ j is a phase that depends on the resonator mirror
reflection properties (also shown in the inset of Fig. 6). The
nonlinear frequency shift is δω j = −|a j |2/(P0τ

2), with P0
the characteristic nonlinear power of the cavity [20], which is
directly related to the nonlinear coefficient n2 (Kerr effect).
d = iexp(iφ j/2)/

√
τ , where τ is the lifetime of the cavity.

The detuning of the cavity is defined as δ = τ (ω0 − ωr ). ωr is
the resonance frequency of the cavity and ω0 is the frequency
of the input signal.

The input–output behavior of this resonator is shown in
Fig. 6. Here, we normalized the power with respect to P0.
The small-signal power gain at Pin = 0W is 1, 0.5, 0.2 for a
detuning of δ 0, −1, −2, respectively. The onset of bistability
occurs for δ < −√

3.

B. Network Topology and Hardware Challenges

A hardware implementation implies certain restrictions on
the topology. In photonics these constraints are associated
with the fact that the chip is planar, crossings induce loss
and large fan-in/out increases complexity. It has been proven
in [17] that for an analog reservoir (i.e., using rate equations)
the performance is largely independent of the sparsity of the
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Fig. 7. Proposed topology for the photonic crystal cavity reservoir.
A regular mesh topology minimizes the fan-in and crossings, while keeping a
good connectivity. An important design parameter is the splitting ratio S, the
amount of power that enters/leaves the network through the source/detector.
(a) Because of hardware restrictions, it is difficult to use a random topology.
Especially, the fan-in should be minimized, because large fan-in means
increasing process variations and design complexity. The mesh topology has
very good performance for optical components, can be easily designed, and
minimizes the amount of fan-in and fan-out. (b) Typical splitting ratios in
a fully connected node in the mesh topology. The fan-in and fan-out have
been minimized to three. The splitting ratio S is the fraction of power that
enters the network from the source, and the fraction of power that goes to the
detector.

network or the exact topology. Thus, we can safely implement
the required topology constraints without expecting a large
impact on the final performance.

In photonics, we need to design optical splitters to distribute
the light. Splitters with more ports have an increased design
complexity and they are more susceptible to process variations.
For these reasons, we limit the fan-in of one photonic crystal
cavity to three: 1) one input signal and 2) two inputs coming
from neighboring cavities. Similarly for the fan-out, one output
signal goes to a detector and two outputs go to other cavities.
In addition, as the photonic chip is implemented on a planar
surface, too many optical crossings should be avoided if
possible because these cause additional loss and cross talk.
Recent improvements in crossing strategies reduce the loss to
only 0.17 dB [24] per crossing, which means that restrictions
on the topology are now less stringent. The topology, inspired
by [10], is still a regular 2-D mesh of photonic crystal cavities,
in which the cavities are connected to close neighbors. This is
shown in Fig. 7. Note that the interconnections between two
nodes are bidirectional.

When moving to a future hardware implementation, there
are two extra challenges to be solved: 1) the feedback loop

and 2) the readout. Conceptually, it is very easy to make the
feedback loop all-optical: the output weights can be modified
externally, for example, using a Mach Zehnder Interferometer
and applying a voltage in one of the arms. This causes
constructive/destructive interference, which allows us to mod-
ify the readout weight. An amplifier is needed to amplify
the output before feeding it back to the input. This can be
implemented by designing an SOA in the feedback loop.
For example, the amplifier from [25] can be used, which is
demonstrated on the same silicon photonics platform.

Another challenge is reading out the states and recalculating
the weights: the outputs have to be read out, fed to a computer
to calculate the weight adjustment, and then the output weights
have to be modulated. Other learning techniques can simplify
the calculations, such as a more simple delta-type rule in which
we do not need to perform complex matrix operations (also
shown in [12]), or using Hebbian learning [26], where the
exact error signal is not explicitly needed.

In the used CMT models, which builds upon the results
of [19] and [20], free carrier effects (in the order of a few
nanosecond) and temperature effects (∼ 0.100 μs) have not
been considered. The CMT equations and steady-state curves
for these type of dynamical effects are, however, very similar,
which means that similar conclusions should hold there too.

Depending on the specific design parameters and the mate-
rial system, some of the effects will be more important than
other effects: because of the nonlinear two photon absorption,
the free carrier effects in silicon on insulator at λ = 1.55 μm
are not negligible. In addition, because of the high powers
inside the cavities, the temperature will have a significant
effect, albeit on a slow time scale compared with the fast Kerr
effect. Moving to different material systems, using techniques
to reduce the lifetime of the free carriers, or using different
wavelengths can change these conditions.

VII. PHOTONICS: SIMULATION RESULTS

In this section, we will discuss the results of the MSO task
in the optical domain. The reservoir parameters are listed in
Table II. The target signal is again given by the sum of two
sines

s(t) = sin(2π f1t) + sin(2π f2t). (9)

Here, f1 = 0.3/τ0 � 216G H z and f2 = 0.311/0.2 f1, so the
same ratio of frequencies is preserved. This fast frequency is
based on the lifetime of the cavity (which is in the order of
1.4 ps), to fully exploit the internal dynamics of the nodes.

We will discuss the influence of several important design
parameters for the photonic crystal cavity reservoir, such as
the phase between the resonators, the delay in the waveguides
connecting the cavities, the splitting ratio S [Fig. 7(b)] and
the network size. To interpret the results physically, it will be
useful to draw the comparison with a system of two coupled
cavities.

A. Phase Reflection of the Resonator

The phase reflection φ j strongly influences the dynamics
of the optical resonator. We keep the phase between the
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TABLE II

DEFAULT VALUES USED IN THE PHOTONIC CRYSTAL CAVITY RESERVOIR

resonators (which is determined by the waveguide between the
resonators) fixed, which is a realistic assumption if engineered
correctly.

For a dynamical system, a linear stability analysis reveals
whether the system is stable or not. This is done by examining
the eigenvalues of the Jacobian of the system. If all eigenvalues
have a negative real part, the system is stable. In some
cases, an unstable fixed point implies chaos or self-pulsation.
To distinguish between both, we can calculate the maximal
Lyapunov exponent of the system. If the maximal Lyapunov
exponent is larger than zero, the system is chaotic. For a stable
periodic solution, the maximal Lyapunov exponent is zero.

This is elaborated in detailed in [19]. For example, a series
of two resonators will self-pulsate when φ j � 0.2π , Pin � P0,
and δ = −2. For larger circuits with arbitrary topology, it
becomes very cumbersome to evaluate the Jacobian and calcu-
late the largest Lyapunov exponent. Numerical simulations of
an optical reservoir (with parameters used from Table II) show
that there is a region where self-pulsation occurs, and that the
condition for the phase is similar for the case of two coupled
resonators. We chose φ = 0.2π and feed input power to a
fraction (BF in Table II) of the cavities. When this fraction is
sufficiently large (>10%), enough power arrives in the cavities
and self-pulsation occurs. Under these conditions, the training
and/or free-run are disturbed severely and most of the time,
training does not converge.

This shows that preferentially, there should be no self-
pulsation or strong synchronized interaction between the cav-
ities. To understand this behavior more quantitatively, we
change the phase reflection to φ j = 0.2π + φrε, where
ε ∼ N (0, 1) is sampled from a Gaussian random variable
with zero mean and one variance. Physically, this can be
done by changing the length of the interconnection between
the different cavities. When increasing φr , we move out of
the self-pulsing regime for the case of two cavities, which
is an indication that the interaction between the cavities is
less synchronized. Indeed, the reservoir performance improves.
This can be observed in Fig. 8, where we simulate for different
fractions of the bias input, and sweep φr between 0 and 2. With
no bias and randomized phases, the best NRMSE is found and
equals 0.030 ± 0.021.

On the silicon photonics platform [27], the phase errors
produced by propagation over a photonic wire are very small.

Fig. 8. Error (NRMSE) after training an optical network of photonic crystal
cavities for the MSO task. The phase between the resonators is described by
φ j = 0.2π +φr ε, ε ∼ N (0, 1). This is done for different fraction of cavities
that receive bias. The more cavities that receive bias, the more the reservoir
dynamics are disturbed by strong interactions between the resonators (e.g.,
self-pulsation), which causes the network to be unable to generate the signal
autonomously. Increasing the randomness in the phase reduces the amount of
self-pulsation.

Over a few 100 μm, the phase error for two identically
designed waveguides is less than 0.1π [28], with the tech-
nology improving fast. By changing the length or width of
the waveguide, we can change this relative phase.

Variations caused by fabrication imperfections also cause
the resonance frequencies of optical resonators to be different
from one device to the other. This shift can be up to 1 nm [27].
For our simulations, we used a variation on the resonance of
0.2 nm (Table II). Above 0.3 nm, some of the simulations
do not converge, and above 0.4 nm, no reservoir succeeds
at reproducing the MSO signal. As the technology improves,
this resonance shift because of fabrication errors is becom-
ing increasingly smaller. Conceptually, we can compensate
the individual resonances either by trimming the individual
devices [29] or adjusting the temperature of each device with
heaters [30], [31]. But, also an alternative designs can relax the
requirements on the variability of the system. For example, a
slower cavity lifetime means the resonance is less pronounced,
making it less susceptible to process variations, but requiring
higher input powers and faster readout mechanisms.

B. Delays

Although the phase and the delay of a waveguide with
length L both scale linearly with L, it is more convenient to
investigate the effects separately. This is justified by the fact
that we only need 0.05 μm length to rotate the phase by 0.1π ,
while we need at least 50 μm of waveguide length to observe
a significant delay (of approx. 0.1 pm). Again, we first look
at the dynamics of a sequence of two coupled cavities. The
response for different delays is shown in Fig. 9. Here, the delay
is very important for the condition for self-pulsation and the
shape of the output signal. For φ = 0.2π , Pin = 1.30P0, and
δ = −2, and for a delay larger than 2.5 ps (which corresponds
to approximately 310 μm on-chip), the self-pulsation is lost
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Fig. 9. Dynamics for a sequence of two coupled resonators (shown in
inset). For increasing delay, the dynamics change from self-pulsation to chaos.
A delay of 0.1 ps corresponds to approximately 10 μm on-chip. Although for
two resonators the dynamics change significantly, it has a negligible effect on
the training properties of a large reservoir.

Fig. 10. Error (NRMSE) of the photonic reservoir for the MSO task. As
shown in Fig. 8, training fails in certain conditions when the phases are not
randomized. By increasing the delay (100-ps delay is approximately 12.5 μm
on-chip), the self-pulsation in a series of two cavities is lost (Fig. 9), and
this conclusion can be extrapolated to larger circuits where training improves
when the self-pulsation locking is no longer present.

and the output becomes chaotic. The influence of the delay for
the MSO task is shown in Fig. 10. Where the resonators were
initially locked in a self-pulsing regime (which caused learning
to fail), increasing the delay now improves the ability to learn.
We only simulate up to 1.0 ps as the trend does not change
anymore after this delay. If the system was initially capable of
learning (e.g., when the phases were randomized), increasing
the delay has almost no influence on the performance of the
reservoir. For 0.8 ps and a bias fraction of 10% the NRMSE
is 0.024 ± 0.028.

C. Splitters

For all simulations until now, the splitting ratio S [Fig. 7(b)]
was neglected, and we measured the power of the cavities
without disturbing the system. In addition, the input was
fed to the cavities without introducing extra loss. In prac-
tice, however, when feeding power to a cavity, this has the

Fig. 11. Dynamics of a series of two coupled resonators for increasing
attenuation of the waveguide between the cavities. For a power attenuation of
20%, the self-pulsation is lost.

drawback that power also leaks away through the same port.
For example, a splitting ratio of 10/90 (S = 0.10) means that
10% of the source power reaches the cavity, but it also means
that 10 % of the cavity power leaks away through this channel.
90% of the power circulates to other cavities. To be able to
draw meaningful comparisons between different values of S,
the input signal amplitude and feedback strength have been
scaled by 1/

√
S. The splitting ratio should be kept small to

ensure enough power circulates in the reservoir.
Again, studying the dynamics of a system of two coupled

resonators gives insight about the behavior of the reservoir.
In this case, we increase the attenuation of the waveguide
between the two resonators, which has the same effect as
splitting some of the power in the full reservoir. For example,
when the splitting ratio S of Fig. 7(b) equals 0.1, this is equal
to 1 − 0.92 = 19% power attenuation in the waveguide (two
splitters are passed between two resonators). For this attenua-
tion, the interaction between two cavities reduces considerably.
In Fig. 11, we can clearly observe that the self-pulsation is lost
when the attenuation becomes bigger.

The influence of the splitter ratio on the training is shown
in Fig. 12. When initially the training fails because the bias
fraction is large causing strong unwanted interactions between
the cavities (for example, self-pulsation), increasing the split-
ting ratio will decrease these strong interactions between the
neurons, which improves the results. In the other case, where
the bias fraction is low (and initially the training converges),
there is no significant influence of this splitting ratio on the
training (although the error increases slightly for larger S).
Of course, the bias input powers and the feedback strength
need to be scaled accordingly by a factor of 1/

√
S. A larger

S means that less external power needs to be added (bias) or
amplified (feedback connection).

D. Network Size

For the final MSO experiment, we measure the performance
of the network as a function of the network size for two
slightly different topologies (a square mesh versus a rectangu-
lar mesh). From Fig. 13, we can conclude that for the chosen
target signal s(t) (9), using more than 70 resonators does not



FIERS et al.: NANOPHOTONIC RC WITH PHOTONIC CRYSTAL CAVITIES 353

Fig. 12. Influence of the splitter ratio S [Fig. 7(b) and inset in this figure].
By increasing the splitting ratio, the interaction between two neighboring
cavities is decreased. This is advantageous for learning, because the strong
self-pulsation which disrupts training disappear (Fig. 11. Parameters: phases
random, Pbias = 1.3P0/

√
S, F B = 1.0/

√
S).

Fig. 13. Influence of the network size on the performance. We have simulated
two variations on the mesh topology, once with a square topology and once
with a rectangular topology. Clearly, the influence of this slight topology
change is negligible. It also shows that, for this specific task, 70 resonators
are sufficient, and there is no performance gain using more resonators.

further improve the performance.2 Furthermore, the difference
between a rectangular and square topology is negligible for
this task.

E. Information Processing Capacity

In [32], the (linear) memory capacity of reservoirs was
introduced. It quantifies a reservoir’s capacity to reproduce
past input samples in a task-independent way. For many tasks,
a larger linear memory capacity will result in better perfor-
mance of the reservoir. In [33], this concept was generalized
to the total information processing capacity. This measure
quantifies the total capacity of a dynamical system to compute
transformations, both linear and nonlinear, of its input history.

2In classical RC, the network size is usually around 1000 neurons. As this
is clearly not realistic for a first hardware implementation, we compared the
hyperbolic tangent and nanophotonic reservoir for 200 neurons.

Fig. 14. Total information processing capacity of a 5 × 5 photonic crystal
cavity network. The region with low phase randomness and high input powers
correspond with self-pulsation regions. These regions are better avoided to
increase the total capacity, and hence the performance of the system. This
conclusion is in line with previous experiments.

This total capacity is bounded by the number of observed
state variables. In our photonic reservoir, this is the number of
resonators in the system. This maximal capacity is effectively
reached for dynamical systems with fading memory, i.e., that
are asymptotically stable during their entire driven operation.
Although the experimental quantification of the total capacity
can be a bit tedious, reasonable approximations of the total
capacity can often be achieved within an acceptable computa-
tion time. In practice, the useable capacity decreases rapidly
in the presence of noise if the responses of the reservoir states
to the input are very similar. To perform well as a reservoir,
a dynamical system should first achieve close to its maximal
capacity, i.e., be stable and have sufficient variability in its
responses to the input signals.

We will now apply this knowledge to a small reservoir
of 25 photonic crystal cavities, and consider two important
parameters: 1) the input scaling and 2) the phase randomness.
The amount of nonlinearity is determined by the power inside
a cavity (and hence by the input scaling), so this will have a
large influence on the dynamics of the network. In addition,
the phase randomness in the phase reflection φr will greatly
influence the performance (as we observe in Fig. 8). The
other reservoir parameters are fixed, and are taken from
Table II. In this experiment, we have used the magnitude of the
output of the neurons instead of using the real and imaginary
parts separately. As can be observed from Fig. 14, the total
information processing capacity (with a maximum of 25) drops
dramatically when the input scaling increases and there are no
random phases. This again corresponds to the self-pulsation
regime, which we encountered in the previous sections. This
means that for typical RC tasks, the performance will be better
when not in a self-pulsing regime.

VIII. CONCLUSION

In this paper, we have studied different reservoir archi-
tectures for the generation of periodic patterns. The output
weights are trained using an online technique called FORCE.
The standard benchmark task we used is the MSO task,
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TABLE III

SUMMARY OF THE NRMSE CALCULATED IN THIS PAPER FOR THE

DIFFERENT ARCHITECTURES

and the performance is measured by the NRMSE. Table III
summarizes the result of all simulations performed in this
paper.

Unlike standard RC, where a discrete-time system is used,
we use advanced integration routines to simulate a reservoir
in continuous time, and find that the reservoir performs better
for the MSO task, which is inherently a continuous-time task.
In addition, using a complex-valued reservoir improves the
general performance because of the increased richness of the
internal state space.

We have presented a hardware implementation for RC using
photonic crystal cavities. These resonators exhibit bistability
because of the Kerr nonlinearity, and they are modeled using
CMT. There are several important design parameters such as
the topology, the phase difference between the cavities and
the delay between the cavities. We show that it is important
not to drive the cavities in a self-pulsating regime, because
strong interaction between neighboring resonators disturbs the
training process and decreases the final performance. After
optimizing the parameters of the optical reservoir, we find that
it outperforms the classical hyperbolic tangent reservoir: the
average NRMSE is 0.03 compared with a NRMSE of 0.127
for the hyperbolic tangent reservoir. This conceptual study
shows that photonic crystal cavities are a good candidate for
generating periodic patterns in the optical domain. There are,
however, some challenges to overcome to create an all-optical
hardware implementation: the readout needs to be computed
fast enough, many data signals need to be provided on-chip,
the variation on the resonance frequencies of the photonic
crystal cavities should be small enough, and the feedback
signal needs to be strong enough.
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