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ABSTRACT   

Polymer has been considered to be an ideal material option for integrated photonics devices. To measure these devices, 
normally the route of horizontal coupling is chosen to couple the light into or out of the polymer waveguide. Due to the 
relatively low refractive index, implementing the surface grating coupler in this material system remains to be a 
challenge. In this paper, we present a polymer based surface grating coupler. Rather than expensive CMOS fabrication, 
the device is fabricated through a simple and fast UV based soft imprint technique utilizing self-developed low loss 
polymer material. The coupling efficiency is enhanced by embedding a thin Si3N4 layer between the waveguide core and 
under cladding layer. Around -19.8dB insertion loss from single-mode fiber (SMF) to single-mode fiber is obtained for a 
straight waveguide with grating coupler at each end. If collected with multi-mode fiber (MMF), it can be reduced to 
around -17.3dB. The 3dB bandwidth is 32nm centered at 1550nm. The proposed surface grating coupler and its easy 
fabrication method would be attractive for practical applications.     
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1. INTRODUCTION  
Recently, biological and chemical sensors have attracted lots of attention due to their vast applications in the fields 

of food safety and environmental monitoring, point-of-care diagnostics, drug discovery and so on. Among these different 
types of sensors, planar integrated photonic biosensors own distinct advantages. By using photonic biosensors as 
transducer and detecting their output optical signal, label-free and real time monitoring of the dynamics of molecules’ 
reactions is made possible. The sensor can be designed as a planar cavity structure, a ring or disk resonator for example, 
to reduce the footprint but greatly enhance the sensitivity [1, 2]. Fabricating photonic biosensors with mature techniques 
such as CMOS based processes or novel nanoimprint lithography further reduces the chip cost with high volume 
production [3, 4]. 

Besides the advantages mentioned above, compact sized photonic biosensors with different functionalized surfaces 
can be accommodated onto a single chip, which makes multiplexed sensing possible. This has been realized within the 
SOI platform through the well known surface grating coupler [5]. The output signals from different channels during 
sensing are vertically coupled into free space and collected by an infrared camera. Besides the SOI platform, polymer has 
also been considered to be an ideal material platform for photonic biosensors, with the advantages such as extremely low 
cost, biocompatibility and so on [6, 7]. The polymer based photonic biosensors can perform as well as their counterparts 
in SOI with similar design structures [8-11]. However, a surface grating coupler is difficult to be implemented in this 
material platform because of the low refractive index contrast [12, 13], which limits the application of photonic 
biosensors based on polymer for multiplexed sensing. In contrast, the route of horizontal coupling is usually chosen in 
order to couple the light into or out of the polymer waveguide, in which case the requirement for good waveguide facets 
is high [14]. Another problem for horizontal coupling is small tolerance on the alignment. For single mode polymer 
waveguides, the measured power could fall dramatically with a few micrometers fiber drift. In order to circumvent these 
problems, we propose a grating coupler built on the polymer platform. Rather than expensive CMOS fabrication, the 
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around 2000mJ/cm2, the soft mold is peeled from the substrate, leaving the grating and waveguide patterns on the under 
cladding layer. 2 hours of 180˚C thermal curing is used to fully cure this layer. In order to realize the selectively Si3N4 
embedded structure, at first the previously obtained sample is deposited with Si3N4 through PECVD. This step needs to 
be optimized because our polymer cannot resist too high temperature (above 200˚C) during deposition. While using too 
low temperature will be detrimental to this dielectric layer, especially its refractive index will drop dramatically. By 
experimenting, the deposition temperature was chosen to be 150˚C. Around 17min time was used to achieve the targeted 
200nm layer thickness. Rather than dry etching, a simple wet etching method was used to completely remove the Si3N4 
layer out of the waveguide region, leaving only the grating area covered by the Si3N4. After the spin coating and curing of 
the core layer PSQ-LH, the proposed surface grating coupler structure was realized. The fabrication process is shown in 
Fig. 5. The microscope and SEM images are shown in Fig. 6a and Fig. 6b.        

   
Fig. 5 The fabricating process of UV soft imprint lithography combined 

with wet etching to realize the proposed structure. 

 

    
(a)                                                                                  (b) 

Fig. 6 The microscope (a) and SEM (b) picture of the fabricated surface grating coupler with 
Si3N4 layer imbedded between the core and under cladding layer. 
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4. MEASUREMENT RESULTS 
The straight waveguide with two surface grating couplers at each end is measured with vertical setup. A cleaved single 
mode fiber connected to a tunable laser through the polarization controller was used to launch the light. The light 
diffracted by the surface grating coupler at the output was collected by a single-mode fiber (SMF) or a multi-mode fiber 
(MMF), which is connected to a power meter. The measurements result is shown in Fig. 7. The optimal coupling angle 
was found to be 40˚. Under this measuring angle, around -19.8dB insertion loss (SMF to SMF) is obtained. We measured 
the straight waveguide loss with the similar inverted-rib structure through Fabry-Perot resonance method before and it 
was found to be 1.7dB/cm. In this case the length of the straight and tapered waveguide connected two surface grating 
couplers is 5mm, resulting in an estimated transmitting loss of 0.85dB. The link loss is measured to be 0.42dB at 
1550nm wavelength. Thus the coupling efficiency for each surface grating coupler can be determined to be -9.27dB 
(nearly 12%) conservatively. There are another two factors we still haven’t taken into account because they are difficult 
to be predicted currently. One is the junction loss from the grating coupler to the waveguide and the other is the surface 
reflection loss. Considering this, the resulting coupling efficiency can be even higher. The 3dB bandwidth is 32nm 
centered at 1550nm. MMF was also used to receive the output power. Because of the large aperture of the MMF, the 
total insertion loss (SMF to MMF) was reduced by 2.5dB, which is -17.3dB.  

 
Fig. 7 The measured fiber to fiber transmission of the straight waveguide with two grating couplers at each end. 

In order to find out that how the energy is distributed within the first order of the proposed surface grating coupler, we 
carefully tune the angle of the output SMF while keeping that of the input SMF at 40˚. The measured result is shown in 
Fig. 8. The 3dB angle bandwidth is around 7˚. This result confirms that the first order is the main order of such grating 
coupler. The small energy distributed angle also shows the possibility of imaging the output light onto an infrared 
camera in the far field.     
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Fig. 8 The measured fiber to fiber transmission of the straight waveguide with two grating couplers at each end. 

5. CONCLUSION 
In this paper, a surface grating coupler based on polymer platform is proposed. A high refractive index layer of Si3N4 is 
embedded between the under cladding and waveguide layer to obtain good directionality and higher coupling efficiency 
with the fiber. Rather than expensive CMOS fabrication, the device is fabricated through a simple UV based soft imprint 
technique utilizing self-developed low loss polymer material. Around 12% of the coupling efficiency with the single 
mode fiber is obtained. The 3dB bandwidth centered at 1550nm is 32nm. The proposed structure would be very 
attractive in the applications where out of plane coupling or multiplexed signal processing is needed.  
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