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Abstract—For certain input power and wavelength set-
tings, high Q-factor silicon-on-insulator rings self-pulsate.
Thereby, they seem suited to emulate the behaviour of
spiking neurons on a photonic chip. To gain insight in the
possible excitation mechanisms a phase-plane analysis is
needed. In this paper, we develop the theory needed to
construct such phase portraits for a coupled mode theory
description of the microring.
For some wavelengths, when changing the input power,
the microring undergoes a subcritical Andronov-Hopf
bifurcation at the self-pulsation onset. As a consequence
the system is class II excitable.

1. Introduction

1.1. Photonic Reservoir Computing

On chip optical computation can outperform electronics
in speed, bandwidth and power use, especially during the
transfer of data between the different processing devices.
However, nonlinear photonic components still do not reach
the high yield standards of their electronic analogon, the
transistor. One way of circumventing this problem, is shift-
ing the computational paradigm. Instead of using a pho-
tonic version of the standard Von Neumann architecture,
one can e.g. try to emulate neural networks on chip.
Moreover, if these neural networks are designed using the
Reservoir Computing (RC) concept [1, 2], the specifica-
tions for the nonlinear components mimicking the neurons,
are probably less stringent than for a photonic Von Neu-
mann architecture. In RC the network is subdivided in a
fixed, untrained recurrent network, the reservoir, and an
easy trainable, mostly linear, feedforward readout layer. As
the reservoir does not need to be trained and can be initial-
ized in a random way, fabrication errors are potentially less
problematic.
In Photonic Reservoir Computing (PRC) one tries to design
photonic circuits which can serve as a hardware emulation
of these kind of neural networks [3, 4, 5]. The topology
restrictions on chip can hopefully be circumvented by the
rich variety in dynamics of nonlinear optical components.

Most attention of the current research is now on the choice
of these nonlinear components.

1.2. Silicon On Insulator microrings

In this paper, we will focus on a simple Silicon On In-
sulator (SOI) microring. When the wavelength of the in-
put signal is close to the resonance of the cavity, for high
enough input powers, due to heating and the thermo-optic
effect, bistable behaviour is obtained. High Q-factor rings
can even start to self-pulsate, as light will generate free car-
riers which will change the refractive index [6]. As the mi-
crorings can be bistable and self-pulsate they seem suited
to imitate the behaviour of spiking neurons.
In literature the mechanism behind this excitability in mi-
crorings, microdisks and similar passive cavities is often
explained using Coupled Mode Theory (CMT). Timedo-
main simulations in this formalism show a good correspon-
dence with experiment [7, 8]. Moreover, the steady-state
equations are still analytically solvable, both for varying
power and wavelength of the input light. For SOI mi-
crodisks no hysteresis in the threshold of the input wave-
length for the onset of oscillations is found, which indicates
a super-critical Andronov-Hopf bifurcation1 [8].
Moreover, the CMT-equations can be rewritten in the
mean-field model used in [9]. Using the steady-state
curves and corresponding 2D projections of nullclines of
this model, the class II excitability of a 2D Indium Phos-
phide (InP) Photonic Crystal (PhC) can be explained [9].
There as well, a sweep of the input wavelength indicates
a Andronov-Hopf bifurcation, the observed excitability of
the PhC indicates that it is sub-critical. Similar behaviour
appears in PhC nanocavities [10].

2. Microring: nonlinear behaviour

Optical bistability and self-pulsation in a SOI-microring
has experimentally been demonstrated [6]. The bistability
is caused by the thermo-optic effect in which absorption
heats the microring cavity resulting in a redshift in the

1Although the author of that paper indicates that further examination
might be worthwhile.



resonance wavelength. In bulk Silicon two photon absorp-
tion (TPA) generates free carriers. These free carriers are
able to absorb light by free carrier absorption (FCA). In
addition, the presence of free carriers causes a blueshift
in the wavelength by free carrier dispersion (FCD). In
SOI microrings also (linear) surface state absorption at the
Silicon-Silica interface is present [6].
When the backscattering in the microring is neglected, the
dynamics of the ring can be described in CMT with one
complex variable (the mode amplitude a = |a|ejφ, with
|a|2 the energy in the cavity and φ the phase), and two real
variables (the mode-averaged temperature difference with
the surroundings ∆T and the amount of free carriers N ).
In this paper, we study an all-pass filter with one input:
a single ring coupled with only one bus waveguide. The
CMT-equations are then [8]:
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, (3)

sout = ejφcsin + κa, (4)

with sin the amplitude of the input light (input power
Pin = |sin|2), sout the amplitude of the output light
(output power Pout = |sout|2), φc the phase propagation
in the bus waveguide, κ the coupling from waveguide to
ring, ωr = 2πc

λr
the resonance frequency of the cavity and

ω = 2πc
λ the frequency of the input light. τth and τfc are

the relaxation times for resp. the temperature and the free
carriers. βSi is the constant governing TPA, cp,Si the ther-
mal capacity, ρSi the density of Silicon and ng is the group
index. We also use the effective volumes V... and confine-
ments Γ... defined in [8]. In Eqs. 1 and 2 γloss and γabs are
resp. the total loss and absorption loss in the cavity, with:

γloss = γcoup + γrad + γabs, (5)

where we have introduced the coupling loss into the waveg-

uide γcoup (with κ = j
√

γcoup

2 ejφc ) and the radiation loss
γrad. In the ring we have absorption by linear surface ab-
sorption, TPA and FCA :

γabs = γabs,lin + ΓTPA
βSic

2|a|2

n2
gVTPA

+ ΓFCA
σSic

ng
N, (6)

σSi is the absorption cross section of FCA and γabs,lin the
linear absorption constant. In [6] one measures ηlin =

γabs,lin

γabs,lin+γrad
≈ 0.4, we use this value throughout the pa-

per. The thermo-optic effect and FCD both cause a shift in
the resonance frequency ωr. In this case, the Kerr-effect is
negligible. This gives in first order perturbation theory:

∆ωnl

ωr
= − 1

nSi

(
dnSi

dT
∆T +

dnSi

dN
N

)
, (7)

with nSi the refractive index of bulk Silicon. Setting the
derivatives to zero in Eqs. 1-3 results in the steady-state
equations. These can be solved analytically. In very high
Q-rings TPA generates enough free carriers to make FCD
prominent for high enough input powers. We will illustrate
the concepts of this paper for such a SOI 4µm-radius mi-
croring with 540 nm × 220 nm cross section waveguides.
This ring has a resonance width λ3dB = 25pm at the reso-
nance wavelength λr = 1552.770 nm. We consider a criti-
cally coupled ring with γcoup = γabs,lin + γrad.
The analytic steady-state Pout(Pin)-curve is bistable, due
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Figure 1: For detuning λ − λr = 62pm, Pout(Pin) is
bistable (left side figure), for Pin higher then ≈ 190µW
the lower Pout-branch gets unstable, which is an in-
dication of self-pulsation. For Pin = 600µW and
(a,∆T,N)(t=0)=(0, 0.7, 0) this gives the self-pulsation
timetrace on the right.

to thermal and free carrier nonlinearities (Fig. 1, left). As
the light energy both heats up the cavity and generates free
carriers, and the thermo-optic and FCD have an opposite
influence on the effective resonance wavelength (and thus
the amount of light coupled into the cavity), self-pulsation
is possible with a mostly asymmetric pulse shape, caused
by the difference in timescale between the fast free carrier
generation and absorption of optical power and the slow
relaxation of the temperature in the cavity. For higher in-
put powers there are no stable fixed points and the ring
will always self-pulsate. For lower input powers there can
be two stable fixpoints in combination with an unstable
one (if Pin = 167 − 191µW) or one stable fixpoint to-
gether with a stable limit cycle and two unstable fixpoints
(if Pin > 191µW).

3. Phase-plane analysis

To gain more insight in the bifurcation mechanism we
now project the time-traces for a given input power and
wavelength on the (∆T ,N )-plane. Moreover, we cal-
culate the d(∆T,N)/dt = 0, d(∆T, a)/dt = 0 and
d(N, a)/dt = 0 nullclines. Where the three curves in-
tersect we have steady-state points. d(N, a)/dt = 0 and
d(∆T, a)/dt = 0 only intersect in the (∆T ,N )-plane in
those fixpoints (Fig. 2). This can be intuitively understood
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Figure 2: On the phase portrait for Pin = 600µW and a
62 pm detuning, the d(N, a)/dt = 0, d(∆T, a)/dt = 0
nullclines only intersect at the three fixed points (orange
circles). In correspondence with Fig. 1 two of those fix-
points are unstables (open circle), while one is stable (filled
circle). The example timetrace from Fig. 1 (black line)
clearly follows both the d(∆T,N)/dt directions on the
da/dt = 0-surface (grey arrows) and the corresponding
direction changes indicated by the nullclines. Moreover,
(grey) contour lines of da/dt = 0 for |a|2 = 1 fJ − 31 fJ
are elliptic and do not overlap.

by considering the projection of the da/dt = 0 surface on
the (∆T ,N )-plane. It can be proven that the contour line
for a given |a|-value is an ellipse. The orientation of the
principal axes is independent of |a|. However, the center
of this ellipse and the global scaling factor of the axes both
are monotically |a|-dependent, the size of the ellipse e.g.
shrinks for higher |a|2. In the case of our ring, this de-
pendence is in such a way that ellipses corresponding with
different |a|-values do not overlap. This has as a conse-
quence that the projection of the da/dt = 0 surface on the
(∆T ,N )-plane is a bijection. Both d(∆T, a)/dt = 0 and
d(∆N, a)/dt = 0 lie on the da/dt = 0 surface and only
intersect in the fixpoints, the intersections of their projec-
tions thus uniquely correspond with those fixpoints. Al-
though we do not yet have a general proof that this unique
correspondence is always valid, we hereby constructed a
visual manner to check this: as long as the ellipses cor-
responding with different |a|-values do not overlap we can
identify the fixpoints only by looking at the intersections of
d(∆N, a)/dt = 0 and d(∆T, a)/dt = 0 in the (∆T ,N )-
plane.
Both the temperature time constant (τth = 65ns) and
the free carrier relaxation time (τfc = 5.3 ns) are bigger
than the time constants governing the dynamics of the light
(τabs,lin = τcoup = 2/γcoup = 205 ps, and the detuning of
the light corresponds with a time constant of the same order
of magnitude). After a very short transient period ≈ 100 ps

da/dt ≈ 0, the (a,∆T ,N )(t) solutions are then converged
to the da/dt = 0 surface. We can thus use the projections
of the d(∆N, a)/dt = 0 and d(∆T, a)/dt = 0 nullclines
to the (∆T ,N )-plane to do standard 2D phase-plane analy-
sis.

4. Bifurcation analysis
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Figure 3: For some input powers and wavelength settings
the limit cycle encloses a stable fixpoint in the (∆T,N)
phase-plane. This indicates a subcritical Andronov-Hopf
bifurcation. We illustrate this here for Pin = 2.85mW
and δλ = −16 pm. Depending on the initial condi-
tions, the trajectory will converge to the limit cycle (black
curve (∆T,N) = (0, 0)) or to the fixpoint (magenta curve
(∆T,N) = (1.2K, 8e16 cm−3)).

For a given input power the microring can have one,
two or three fixpoints (Fig. 2). The microring undergoes
a saddle-node bifurcation if it has two fixpoints. If it has
three fixpoints, at least one (at low |a|) is stable.When two
of the three fixpoints are unstable, there is a stable limit
cycle around the high |a|-fixpoint. The middle fixpoint
will always be unstable, and is a saddle-node. It has an
unstable manifold which ends at the low |a| stable fixpoint
and, if there is one, at the upper limit cycle, or else, at the
high |a| stable fixpoint. A stable manifold or separatrix
divides the basins of attraction of the lower fixpoint and
the higher |a| fixpoint/limit cycle. If there is only one
fixpoint and it is unstable, then there is a stable limit cycle
around it.
For some wavelengths, the onset of oscillation shows
hysteresis in the input power, which is a sign of a subcriti-
cal Andronov-Hopf bifurcation. Given the previous ring
parameters, this happens if the input light is blue-detuned,
where there is no bistability. The basin of attraction of the
stable fixpoint centered in the limit cycle is determined by
an unstable limit cycle in-between the stable limit cycle
and this fixpoint. This can be proved explicitly with time
traces for e.g. Pin = 2.85mW at a δλ = −16 pm detun-
ing, where we have one stable fixpoints and a stable limit
cycle. By choosing carefully the initial conditions within
the region defined by the limit cycle on the da/dt = 0
surface we can end in the central fixpoint or in the limit



cycle (Fig. 3). The basin of attraction of the stable fixpoint
centered in the limit cycle is determined by an unstable
limit cycle in-between the stable limit cycle and this
fixpoint. The stable and unstable limit cycle annihilate in a
fold limit cycle bifurcation for lower input powers.

5. Excitability
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Figure 4: A temporary increase of Pin = 1.8mW at
δλ = −16 pm to 2.9mW, during 2 ns, triggers an ex-
citation. Although for this input power no limit cycle is
present, the excitation can be seen as a reminiscent of the
nearby limit cycle from Fig. 3.

In the wavelength region where the self-pulsation hys-
teresis is present the microring is excitable if the input
power is below, but close to, the fold limit cycle bifurcation
(Fig. 5, with a Ttr = 2ns long power increase as perturba-
tion). For these input settings a small perturbation will kick
the ring out of his rest state, into a ’ghost’ of a limit cycle
pulse, whereafter the system will return to the initial rest
state. In this power region there does not yet exist a stable
limit cycle, but the phase plane incorporates already similar
dynamics, as we are close to the bifurcation point. This is
illustrated by the similarity between the pulse-trajectory in
the phase plane in Fig. 5 and Fig. 3. This corresponds with
class II excitability [11].

6. Conclusions

A high Q all-pass microring self-pulsates for certain
input power and wavelength settings, which can be de-
scribed with CMT, using the complex mode amplitude a
of the light in the cavity, the temperature difference with
the surrounding ∆T and the amount of free carriers N as
variables. Neglecting the fast energy and phase dynamics
of the light allows a 2D phase-plane analysis.
For some wavelengths, when changing the input power,
the microring undergoes a subcritical Andronov-Hopf
bifurcation at the self-pulsation onset. As a consequence
the system shows the signature of class II excitability.
This thorough understanding of the possible excitability
mechanisms will allow a correct characterization of the

computational properties of a microring, within a photonic
spiking neuron usage.
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