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Detailed Study of AlAs-Oxidized Apertures in
VCSEL Cavities for Optimized Modal Performance
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Abstract—We present a numerical optical model for calculating
threshold material gain in vertical-cavity surface-emitting lasers.
It is based on a vectorial solution of Maxwell’s equations and
therefore gives exact results where other approaches fail, e.g.,
in the case of oxide-confined devices, which have high lateral
index contrasts. Results are given concerning the influence of
oxide window thickness and position on threshold gain and
modal stability. We also propose an intuitive plane-wave model
to enhance the physical understanding of these effects.

Index Terms—Distributed Bragg reflector lasers, laser modes,
semiconductor device modeling, semiconductor lasers, surface-
emitting lasers.

I. INTRODUCTION

V ERTICAL-CAVITY surface-emitting lasers (VCSEL’s)
have been the topic of intense research for several

years now. In particular, since the introduction of the con-
trolled oxidation of semiconductor material with high Al-
content, short-wavelength VCSEL’s operating between 850
and 980 nm have experienced a tremendous improvement
of their operation characteristics. An oxide aperture acts as
a current window, enabling the active region to be pumped
more efficiently. Apart from this electrical property, oxide
apertures can also have beneficial optical effects, counteracting
diffraction and improving the modal stability of oxide-confined
VCSEL’s. In many respects, these devices now outperform tra-
ditional edge-emitting lasers. Oxide-confined VCSEL’s have
been demonstrated with extremely low threshold currents [1],
[2] and record high wall plug efficiencies [3]. Low operating
voltages [4] as well as very high fabrication yields [5] have
been reported. These milestones, together with the inherent
possibility of wafer scale testing, easy packaging, and very
good output beam quality make VCSEL’s the ideal light
source for short-haul optical communication and for optical
interconnect [6].

In the past, the optical properties of the AlAs-oxide aper-
ture have been looked upon as a position-dependent cavity
resonance [7], a position-dependent phase shift [8], or as an

Manuscript received July 31, 1998; revised November 9, 1998. This work
was supported in part by the European ACTS-024 Project (VERTICAL). The
work of B. Demeulenaere and P. Bienstman was supported by the Flemish
National Fund for Scientific Research (FWO-Vlaanderen) through doctoral
fellowships. The work of B. Dhoedt was supported by the Flemish Institute for
Science and Technology in Industry (IWT) through a post-doctoral fellowship.

B. Demeulenaere was with the Department of Information Technology,
University of Gent–IMEC, B-9000 Gent, Belgium. He is now with Barco
R&D Department, B-8500 Kortrijk, Belgium.

P. Bienstman, B. Dhoedt, and R. G. Baets are with the Department of
Information Technology, University of Gent–IMEC, B-9000 Gent, Belgium.

Publisher Item Identifier S 0018-9197(99)01725-X.

intracavity lens counteracting diffraction [9]. All these points
of view are based on simple and approximate models, aimed
at an intuitive understanding of oxide windows.

Numerical methods based on scalar wave equations are
presented in [10] and [11]. However, for structures with
dimensions on the order of the wavelength and where strong
index contrasts are present (e.g., oxide-apertured devices), a
vectorial approach seems to be more appropriate, especially for
the study of polarization properties of higher order transverse
modes.

Some work has been done already in developing vectorial
optical models for VCSEL structures. In [12], an approach
is presented based on the weighted index method, but is
unable to handle diffraction effects which become predominant
when dealing with small devices. Similar methods are outlined
in [13] and [14] to calculate the mode spectrum of a cold
cavity, based on expansion into hybrid modes of optical fibers.
However, no optical gain or absorption is taken into account
in these models, so the threshold gain cannot be evaluated
directly. It is the aim of this paper to present a full optical laser
model, based on the vectorial solution of Maxwell’s equations,
that is able to handle diffraction effects and that can calculate
threshold material gain directly. Our approach also differs from
that of [13] and [14] in the sense that we enclose the structure
under study in a metallic cylinder and use the discrete set of
modes of this cylinder to express all the fields. In contrast,
the field is expanded in [13] and [14] in hybrid modes of an
open optical fiber waveguide, where one has to deal with a
continuum of evanescent modes.

Using our model, results will be presented on the influence
of oxide windows on threshold material gain and modal stabil-
ity. Even though our model is not self-consistent—electrical
and thermal effects are not taken into account explicitly—the
results give a good qualitative idea of the different structures
with respect to modal stability. Finally, to enhance the under-
standing of the data, we will discuss an intuitive plane-wave
model for oxide apertures.

II. DESCRIPTION OF THEMODEL

Fig. 1 shows a typical oxide-confined VCSEL structure. It
consists of an active region sandwiched between two dis-
tributed Bragg reflector (DBR) mirrors. These mirrors typically
consist of 20–30 pairs of alternating low and high index
material. In our model, the mirrors and the rest of the cavity are
analyzed separately. That is, we first calculate the reflection
properties of the top and bottom mirrors for a given wave-
length. This information is then used as input for the cavity

0018–9197/99$10.00 1999 IEEE



DEMEULENAERE et al.: STUDY OF AlAs-OXIDIZED APERTURES FOR OPTIMIZED MODAL PERFORMANCE 359

Fig. 1. VCSEL geometry after partial AlAs oxidation.

model, where we obtain an eigenvalue problem by taking into
account propagation and interface effects in the quantum well
(QW) and the cladding layers. The operating wavelength and
material gain are subsequently adjusted in order to find an
eigenvalue of one, in which case we have located a laser mode.

All calculations are based on Maxwell’s equations assuming
a time dependence given by , with a real angular
frequency. The direction of epitaxial growth, parallel to the
propagation direction of the laser beam, will be referred to as
the longitudinal or direction. Perpendicular to this direction,
in the lateral plane, we define cylindrical coordinates .
We only deal with VCSEL’s that have a perfect rotational
symmetry and a given refractive index profile for all the layers,
including a given gain profile in the active region.

A. Calculation of Mirror Properties

VCSEL mirrors are traditionally layered structures. A gen-
eral model for such mirrors has to be able to handle large
refractive index contrasts, both in the lateral and the lon-
gitudinal direction. Moreover, in the presence of gain or
absorption, complex refractive indices need to be considered.
The combination of all these effects can lead to a complicated
diffraction problem, where special care has to be taken not
to compromise the numerical stability of the algorithm. The
details of our model have been described in [15], but for the
sake of clarity we will shortly outline the main points again.

First, consider a perfectly conducting metal cylinder of
radius , filled with a uniform reference dielectric. The
eigenmodes of such a structure are well known and can be
described in terms of Bessel functions. These functions form
a complete orthogonal set that can be used to describe the
different field components within the cylinder for any arbitrary
dielectric profile and any excitation. Note that the reference
dielectric does not need to be one that physically occurs in the
structure under study. The sole purpose of the cylinder and
the reference dielectric is to get a discrete set of eigenmodes,
which we will call the “basic modes.” We only retain the first

basic modes to describe any field. The numerical influence
of this metal cylinder is further discussed in Section III-D.

Now, we consider the actual structure under study, but
placed within the metal cylinder of radius . We first
treat each layer (i.e., each lateral refractive index profile)
separately, and we look for the modes that can propagate in
such a layer. For each so-called “layer mode,” we assume a

dependence of the form , with the propagation

Fig. 2. Interface between layersi � 1 and i in a DBR mirror.

constant of the layer mode. These layer modes are expressed
as an unknown linear combination of the basic modes. This
representation is substituted into Maxwell’s equations. The
orthogonality of the basic modes reduces the expressions to
an algebraic eigenvalue problem that can be handled
with standard numerical procedures. The eigenvalues of this
problem correspond to the propagation constants of the layer
modes and the corresponding eigenvectors give the field radial
profiles of the layer mode.

It should be noted that in realistic mirrors most layers are
uniform without any lateral index steps. In these layers, the
modes are well known too, so in this case we do not have to
go through the time-consuming process of solving the above
eigenvalue problem.

Now that we know the layer modes, we can express any
field in this layer as a superposition of layer modes propagating
in the positive and in the negativedirection. Thus, for the
field in the th layer, we have

(1)

in which and are the modal field profiles
in the lateral plane of the th mode in the th layer. The
propagation constant in the positivedirection is given by .
All these quantities are known once the eigenvalue problem
in the th layer is solved. The values of the coefficients
follow from the excitation of each mode by a field incident
upon the th layer.

Finally, we need to calculate the reflection and transmission
at an interface between two layers. Consider Fig. 2 where
the th mode of layer is incident on the interface
between layers and . This incident field will generate
a reflected field in layer and a transmitted field in layer
. Thus, the field in layer will be of the form (1) with

and with the coefficients having the
meaning of reflection coefficients. In layer, the field will
only consist of modes propagating in the positivedirection
with the coefficients having the meaning of transmission
coefficients. The boundary conditions imposed by Maxwell’s
equations demand that the tangential field components are
continuous across the interface. This holds for both the electric
and magnetic fields. Repeating this for all possible incident
modes of layer (i.e., ) and using the
orthogonality relations for the modes of layer , we obtain



360 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 3, MARCH 1999

Fig. 3. Detailed view of the active region of a VCSEL.

an algebraic system of equations in unknowns that
can be solved using standard numerical techniques. Solving
this system, we find a reflection matrix and a
transmission matrix that describe the reflected and transmitted
fields for an arbitrary field incident from layer . Reversing
the role of layers and and repeating the whole procedure
gives us another reflection and transmission matrix, this time
for fields incident on the interface from layer. These four
matrices completely characterize the interface between the two
layers for any incident field.

When describing an interface with a layer with lateral
index steps, these matrices are completely filled, indicating
that a certain amount of mode mixing occurs when light
crosses that particular interface. This expresses scattering and
diffraction. At interfaces between two uniform layers, all
reflection and transmission matrices are diagonal, indicating
that no scattering occurs and no diffraction other than the
spreading of the beam while propagating.

Once all reflection and transmission matrices for all inter-
faces in the mirror are known, we can set up a recursive
procedure (the so-called -matrix scheme) to find the re-
flection and transmission properties of the complete mirror
stack [16]. This scheme is numerically stable against large
longitudinal refractive index changes.

From now on we will assume that the mirror reflection
characteristics are known. We will refer to the reflection of the
top mirror for fields coming from the active region as
and to the reflection of the bottom mirror for fields coming
form the active region as .

The procedure outlined above is very general and able
to treat complicated mirror structures. It can cope with all
of the numerical problems outlined in the beginning of this
section. Indeed, the eigenvalue problem for finding the layer
modes is not fundamentally different for complex refractive
indices as compared to real ones. Moreover, the techniques
are stable against large index contrasts, both in the lateral and
longitudinal directions.

B. The Active Region and Formulation of the Cavity Problem

In order not to complicate the mathematical formulation,
we will restrict ourselves to an active region consisting of
three layers: a QW between two barrier (cladding) layers. This
situation is shown in Fig. 3. These layers can be either uniform
or nonuniform.

Again, we look for all modes in the barrier layers and in the
active layer, using the same method as explained in Section

II-A. Thus, in all three layers, (1) holds for the total field. In
(1), we introduce the following notational convention:

(2)

and analogous relations for the othercoefficients.
At the interfaces between the barrier layers and the active

layer, the tangential field components of both the electric and
magnetic fields have to be continuous. (Since we work in
the absence of any sources, this is equivalent to imposing
the continuity of the normal components.) This leads to the
following system of equations:

(3)

in which the subscript refers to the active layer, refers to
the top barrier layer, the superscriptrefers to the tangential
part of the fields, and is the position of the interface
between the top barrier layer and the active layer (Fig. 3).
Analogous equations hold for the interface between the bottom
barrier layer and the active layer. Taking the vectorial product
of (3) with and applying the orthogonality relations
leads to

(4)

in which the following overlap integrals have been used:

(5)
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Analogous relations hold for the overlap matrices for the
fields of the lower barrier layer. In (5), is a unit vector in
the positive direction and the surface integrals run over the
entire area enclosed by the perfectly conducting cylinder.

Now that we have expressed the boundary conditions at
the interfaces between the active layer and the barrier layers,
we have to express the boundary conditions imposed by the
mirrors. In matrix notation, these are

(6)

Equations (6) also take into account propagation across the
barrier layers over the respective distancesand . If we
choose the origin of the axis in the center of the active layer,
as done in Fig. 3, then we can also write

(7)

Taking the first and the second equation in (4) and the first one
in (6), we can eliminate all coefficients relating to the top
barrier layer. When we use (7) as well, we obtain a relation
of the form

(8)

which relates the upward propagating fields in the center of
the active layer to the downward propagating fields at the
same position. Taking the remaining equations in (4) and
(6), eliminating the coefficients relating to the lower barrier
layer, and taking into account (7), we also find

(9)

In matrix notation, (8) and (9) can be restated as

(10)

After eliminating the coefficients, we get the following
homogeneous system of equations that has to be solved for
a nonzero solution:

(11)

with the unit matrix. We can only find nontrivial solutions
if the determinant of the matrix vanishes. Since
the mirrors are not perfectly reflecting, this determinant will
not vanish for any real angular frequencyunless we include
gain in the active layer to overcome the loss. Another way of
interpreting (11) is that we are looking for an eigenvector of
the matrix that has an eigenvalue equal to 1. This
point of view was already formulated and used in [17].

C. Numerical Procedure

Equation (11) is ideally suited to be handled by the singular
value decomposition (SVD) technique. If we are looking for
the material gain needed to reach threshold, then the matrix

becomes singular and should therefore be handled
with care. SVD is a standard method to deal with singular
algebraic problems. It returns a product decomposition of the
input matrix of the following form:

(12)

in which and are unitary matrices, the superscript
stands for Hermitian conjugate, andis a real positive diago-
nal matrix. These positive real numbers are called “singular
values” of the original matrix. The columns of that
correspond to singular values equal to 0 are an orthonormal
base of the nullspace of the original matrix and are therefore
solutions to (11). Given (12), it is easy to see that the following
holds:

(13)

with the singular values of the matrix and
the eigenvalues of the matrix . In general, these
eigenvalues are complex numbers indicating a deviation from
resonance for both the phase and the amplitude of the field.
Phase resonance can be obtained by changing the wavelength

, while amplitude resonance is achieved by changing the
material gain of the active layer. We also see from (13)
that if then indeed , as expected.

We now derive some expressions that will make it easier to
locate the zero for in the -space.

From the relationship between and , assuming that the
imaginary part of is sufficiently small, the following holds:

(14)

We can therefore deduce that

(15)

Close to a cavity resonance, is indeed sufficiently
small and is more or less constant when we change
the gain. Therefore, (15) means that the relationship between

and is given by a hyperbola. Furthermore, close
to phase resonance the relationship between the wavelength
and is linear as well, since the phase of the mirrors
varies linearly within the stopband. Therefore, the relationship
between and is also given by a hyperbola.

This is an important conclusion. A typical -plot for
different values of is shown in Fig. 4. For the lowest
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Fig. 4. Typical observed(�; �i)-plot.

Fig. 5. Illustration of linear relationship at resonance between�i and the
material gain.

order laser modes, the hyperbola is usually nearly degenerate
into two straight lines (the asymptotes of the hyperbola) and
the curvature is only noticeable when phase resonance is quite
strictly fulfilled. For the higher order laser modes, we find a
hyperbola that is not degenerate.

Another important conclusion can be found when writ-
ing down the laser condition, assuming phase resonance is
fulfilled, and close to amplitude resonance

(16)

In this expression, the factors in front of the exponential are
the magnitudes of the amplitude reflectivities of both mirrors
as experienced by the laser mode. The active region provides a
power material gain and has a thickness . is the
lateral confinement of the laser mode within the gain section
of the active layer. Since the argument of the exponential is
very small, we can use a linear approximation leading to

(17)

This implies that at phase resonance there is a linear rela-
tionship between and , apart from the absolute value
on the right-hand side of (17). This is the second important
feature that helps us to locate the laser mode. It is illustrated in
Fig. 5. The dots are the calculated minima of the hyperbolae

Fig. 6. Evolution of singular value as a function of number of basic modes.

for different values of the material gain. The straight line is
obtained using a least squares fit to these points. In all cases
the correlation coefficient is above 99%, indicating a very
good linear relationship between and .

Thus, the algorithm used to identify a laser mode can be
outlined as follows.

1) For different values of , adjust the wavelength to
obtain phase resonance. While doing this, the -
plot looks like a hyperbola.

2) Plot the minima of the different -plots (one mini-
mum for every value of ). After a change of sign for
some values of , we obtain a straight line .

3) The intercept of this straight line with the -axis
yields the threshold material gain for that particular laser
mode, since at that value of we fulfill the condition

.

D. Convergence Analysis

Finally, we investigate the number of basic modes that is
required in order to get an accurate description of the fields.
For our modal expansion, we retain the lowest order TE
modes of the reference cylinder and the lowest order TM
modes. Simultaneously using both TE and TM fields allows us
deal with hybrid modes. Fig. 6 shows, as a function of the total
number of basic modes, the evolution of the singular value

, calculated at the laser resonance found
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Fig. 7. Threshold material gain for the fundamental laser mode.

using . It can be seen that around a stable
situation is reached with a singular value that is sufficiently
close to zero. All the other examples in this paper are therefore
calculated with this number of basic modes. It should be noted
that, for this value of , around 10 to 15 basic modes are
evanescent. It is well known that one should retain a number
of evanescent modes that is sufficiently high in order to have
an accurate representation of the fields.

III. SIMULATION RESULTS

A. Comparison of Proton-Implanted and Oxidized VCSEL’s

Fig. 1 shows an oxide-confined top-emitting VCSEL.
The bottom mirror is a 30-pair GaAs –
Al Ga As mirror. The active layer is
a single 5-nm-thick QW embedded in a-cavity with

everywhere. The top mirror is a 24-period
GaAs –Al Ga As mirror with one
additional pair of layers GaAs –AlAs
right above the active region. This AlAs layer is oxidized
to form an oxide window of variable radius . The oxide
confined VCSEL will be compared to a proton-implanted
(nonoxidized) VCSEL that has an identical structure,
except for the top mirror which is a 25-period GaAs

–Al Ga As DBR. The radius of
the gain section in the QW is the same in both structures
and equals the radius of the oxide window in the oxidized
VCSEL. Outside the gain region, the QW has a constant
absorption . This absorption is included for
physical reasons, but it also avoids finding dummy cavity
resonances. The design wavelength for the fundamental laser
mode is 980 nm.

Fig. 7 shows the threshold material gain for the fundamental
mode in both structures. (In interpreting these values, keep in
mind that all calculations are done for a device with a single
QW. A real VCSEL typically has three QW’s, so the values
in Fig. 7 should be divided by three in order to get realistic
values for the required gain per QW.) We can conclude from
Fig. 7 that a proton implanted VCSEL with m is
difficult to realize, while oxide confined VCSEL’s can be made
much smaller than that [9]. Fig. 7 is therefore very much in
agreement with experimental findings [18], [19].

We now show that this lower threshold for oxide-confined
VCSEL’s can be correlated with a better confinement of

Fig. 8. Confinement of the fundamental laser mode in the gain section of
the active layer.

Fig. 9. The fundamental laser mode with 3-dB radius.

the laser mode to the gain region and with a higher modal
reflectivity, counteracting diffraction losses.

Fig. 8 shows the confinement factor of the laser mode
within the gain section of the QW. For nonoxidized devices,

hardly reaches 75% when m. For very small
VCSEL’s of 2- m radius, the overlap even goes down to
14%. This reduced overlap with the gain section means that
the laser mode will not be pumped efficiently. The oxidation
procedure leads to a vast increase in . For large oxidized
devices, the overlap is between 95% and 99%, going down to
82% for VCSEL’s of 2- m radius. The material gain of the
QW is therefore much more efficiently used in oxide-confined
structures.

Instead of looking at the overlap , we can also plot the
3-dB radius of the transverse field profile of the laser mode.
Larger overlap translates evidently into narrower field profiles,
as can be seen from Fig. 9. For a large range of diameters,
the difference in 3-dB radius is more or less constant at a
value of 1.2 m. When m, the field profile of the
nonoxidized VCSEL’s seems to widen again. This is an effect
that has already been discussed by Ujihara [20] and can be
understood based on the reflection characteristics of a uniform
DBR mirror. If the laser mode were to become too narrow, it
would contain many plane-wave contributions that propagate
under very oblique angles and that are therefore not well
reflected by the DBR mirror. These plane-wave components
cannot contribute to the laser mode. This leads in effect to a
lower bound on the laser mode 3-dB radius.

Fig. 10 shows the product of top and bottom mirror ampli-
tude reflectivity, which can be determined from (17), once we
have obtained the threshold gain and the confinement factor.
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Fig. 10. Product of mirror reflectivities for the fundamental laser mode.

We see that in both cases this combined amplitude reflectivity
is very high, always above 99.8%. For both structures, the
reflectivity goes down with decreasing device radius. This is
consistent with the intuitive understanding that a narrow beam
suffers more diffraction loss. However, the reflectivity for the
oxide-confined structures is always higher than for the proton-
implanted ones, meaning that the oxide is very effective in
counteracting diffraction losses. Only for very small devices
( m), diffraction loss becomes again a competing
factor that cannot be completely neutralized anymore by the
oxide aperture. In these cases, the threshold material gain
will increase, as was already apparent from Fig. 7. Still,
this increase is not as dramatic as compared to nonoxidized
devices, because the overlap of the fundamental mode with
the gain section is still very large (Fig. 8).

To summarize the effect of diffraction losses on VCSEL’s
we can say the following. In a proton-implanted device only
the weak gain guiding counteracts diffraction losses. When
reducing the device diameter, the laser mode will therefore
be less confined to the gain section. This in turn leads to
an increased threshold for laser action. In oxide-confined
VCSEL’s, the large index difference caused by the oxidation
effectively counteracts diffraction when m, where the
threshold material gain (Fig. 7) and the overlap with the gain
section (Fig. 8) do not change significantly with oxide aperture
radius. For smaller devices ( m), diffraction again
becomes an important effect. This leads a to reduced overlap of
the laser mode with the gain section and an increased material
gain needed to reach threshold, although these effects are not
as pronounced as compared to proton-implanted devices.

B. Effect of Oxide Position on Modal Stability

In all of the above calculations, the thickness of the oxidized
layer was kept fixed at 80 nm, meaning that a complete quarter
wavelength layer of semiconductor material was oxidized. We
will now vary oxide thickness and position relative to the
standing wave pattern in the cavity, since we expect that the
degree at which the oxide is sensed by the laser mode will vary
at different positions relative to the standing wave pattern.
We consider two positions within the AlGaAs-layer:
“antinode position” (Fig. 11) and “node position” (Fig. 12).
Note, however, that these are not exactly antinode and node
positions, because the oxidized AlAs layer has a nonzero
thickness and is always kept within the AlGaAs-layer.

Fig. 11. Oxidized VCSEL with the oxide aperture at the antinode position.

Fig. 12. Oxidized VCSEL with the oxide aperture at the node position.

In the “antinode position,” the bottom of the oxidized layer is
at the antinode position, while in the “node position” the top
of this oxidized layer is at the node position.

It will become clear from the simulation results that an
antinode oxide leads to a much reduced threshold gain. Indeed,
the aperture is placed at a maximum of the standing wave pat-
tern and is therefore very effective in counteracting diffraction.
However, this is true for both the fundamental mode and the
higher order modes. Therefore, an antinode oxide is able to
provide for low threshold gain for the fundamental mode, but
at the expense of a reduced modal selectivity.

In a node oxide, exactly the opposite is true. The aperture
is placed at a field minimum and is not very effective in
counteracting diffraction. These detrimental diffraction effects
are worse for the higher order modes, and therefore a node
oxide provides for a good modal stability, but at the expense
of a higher threshold for the fundamental mode.

The difference between a node and an antinode oxide with
regard to modal stability is illustrated in Fig. 13. This figure
shows the difference in threshold gain for the fundamental
mode and the first-order mode for m. Node ox-
ides clearly reduced modal stability, i.e., smaller threshold
difference between the modes.

The same conclusions can be drawn if we look at the overlap
with the gain section. Fig. 14 shows that an antinode oxide
confines the modes a lot better to the gain section than a node
oxide. However, the difference in overlap for the fundamental
and the first-order mode is larger for a node oxide than for
an antinode oxide.
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Fig. 13. Difference in threshold material gain for fundamental and first-order
modes in oxidized VCSEL’s.

Fig. 14. Overlap of fundamental and first-order mode with gain section in
oxide-confined VCSEL’s (radius of the oxide aperture: 4�m).

Fig. 15. Threshold material of the fundamental mode as a function of oxide
thickness for various values of the aperture radius (node oxide).

We now investigate the modal stability properties of oxi-
dized VCSEL’s with m. Given the results presented
above, we only consider node oxide windows. The threshold
material gain for these devices is shown in Fig. 15 (fun-
damental mode) and in Fig. 16 (first-order mode). We can
see, e.g., that, for aperture thicknesses of 30 and 20 nm,
the threshold material gain for the fundamental mode is at
most 3200 cm , while for the first-order mode it is at
least 4800 cm , if m. Therefore, in this range of
parameters, we have an acceptable compromise between low
threshold for the fundamental mode and good modal stability.
Probably, a device with m is too large to maintain a
stable fundamental mode for any reasonable threshold for the
fundamental mode.

Fig. 16. Threshold material gain of the first-order mode as a function of
oxide thickness for various values of the aperture radius (node oxide).

We can summarize this in the following rules of thumb for
stable mode operation:

(18)

where stands for the overlap of the fundamental mode with
the gain section and for the overlap of the first-order mode.
The first condition assures a fairly large difference in threshold
for both modes, while the second ensures that the threshold
for the fundamental mode is acceptable.

We can expect that current spreading will slightly change
both confinement factors, but their difference should remain
more or less unaltered as compared to the values we find. The
reason for this is that this process is not very mode-selective.
Other thermal and electrical effects like current crowding,
thermal lensing, and carrier-induced antiguiding could have a
larger impact on modal stability. However, these effects could
still be taken into account in our optical model by changing the
uniform gain profile in the QW to a staircase approximation
of the real gain profile resulting from these phenomena.

C. Plane-Wave Model for Oxide Apertures

The rigorous simulation in the previous section showed that
an antinode oxide is better at confining the laser mode to the
action region, leading to higher values of. We can further
clarify this by considering simple plane-wave calculations.

We calculate the plane-wave reflectivity for two situations.
One is where we place an oxide layer of thickness 20, 40, or 60
nm at various distances from a 20-period GaAs–AlGaAs DBR.
This situation corresponds to the tails of the laser mode that
extend under the oxide window. The other situation is similar,
but the oxide is replaced by an AlAs layer. This corresponds
to the center part of the laser mode. This is done for distances
between oxide and mirror between 0 and 160 nm, but note
that, in a real VCSEL with the oxide embedded in a
AlAs-layer, the actual range is limited between 0 and 80 nm.

Fig. 17 shows the difference in amplitude reflectivity for
the two situations. We see that in the range 0–80 nm, an oxide
layer always has a lower mirror reflectivity than the central
section. This implies that the tails of the field will suffer more
mirror transmission loss than the central part, leading to a
better confinement.

To compare node to antinode oxides, we remark that a node
oxide of thickness corresponds to in Fig. 17, while
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Fig. 17. Change in modulus of the mirror amplitude reflectivity due to the
oxide as a function of the distance(d) between the oxide and the DBR.

Fig. 18. Phase change of the mirror amplitude reflectivity due to the oxide
as a function of the distance(d) between the oxide and the DBR.

an antinode oxide of thickness corresponds to nm
. We see indeed that the additional mirror transmission

loss suffered by the tails of the mode is higher for an antinode
oxide than for a node oxide. Therefore, with antinode oxides,
the modes are much better confined to the central region,
minimizing mirror transmission loss.

Finally, the phase change as shown in Fig. 18 demonstrates
that the oxide aperture acts as a focusing optical element, as
already discussed in [9].

D. Influence of the Metal Cylinder

Lastly, we discuss the influence of the perfectly conducting
wall of radius that was introduced for numerical reasons
(see Section II-C). All results shown above were calculated
with m. In principle, this metal wall introduces
(numerical) reflections that can corrupt the results, because
in a real structure this numerically reflected power would be
radiated out of the laser. To test the influence of this effect,
we can use two approaches. The first is to introduce mild
absorbers between the structure of interest and the metallic
wall. If we take care that the absorbers themselves do not
introduce any parasitic reflections, we can make sure that the
power is absorbed before it reaches the metal wall. A second
approach is simply to place the metallic wall further away
from the structure of interest.

Both methods were used to check the influence of the metal
wall. For oxide-confined VCSEL’s, we used radii of

or m. For proton-implanted devices, we used
or m.

First, we kept the metal wall at m and introduced
an absorber in the top mirror extending laterally from 10
to 12 m. The imaginary part of the refractive index was
chosen so that only 0.1% of the perpendicularly incident power
was reflected at the absorber interface. The threshold material
gain for the oxide-confined VCSEL’s showed no noticeable
difference with the results presented in Fig. 7. For the 4-m
proton-implanted structure, we found agreement with Fig. 7
to within 2%, while for the 8-m proton-implanted device
deviations of 20% were found. For this reason, we only
tried putting the metal cylinder further away for the 8-m
proton-implanted VCSEL. When the metallic wall was put at

m without any absorbers present, we again found
agreement with Fig. 7 to within 2%.

Therefore, we can conclude that the results of Fig. 7 are
correct to within 2%, and that for the oxide-confined structures
the presence of the metal wall is negligible, while for the
nonoxidized structures, more care should be taken in assessing
the accuracy of the results.

IV. CONCLUSION

We presented a vectorial electromagnetic model capable of
determining the optical properties of currently used VCSEL’s.
Specifically, the high lateral index contrast due to oxide
windows can be treated in an exact way, contrary to other
models available until now.

Using this model, we compared oxide-confined structures to
proton-implanted ones in order to understand and quantify the
different mechanisms active in these structures. We showed
that mirror diffraction loss in oxide-confined devices is effec-
tively counteracted by the aperture, leading to a better overlap
with the active region and to a reduced threshold material gain.

We also compared node oxides to antinode oxides, indica-
tion that there is a tradeoff to make between low threshold for
the fundamental mode and good modal stability. Node oxides
are favorable for modal stability, while antinode oxides yield
low threshold gain for the fundamental mode.
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