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Abstract In this paper we model second-harmonic generation in a microphotonic structure
using two different numerical methods. The proposed two-dimensional waveguide device is
challenging as it incorporates a high-contrast grating, which instigates strong local enhance-
ment but also radiation losses. The first simulation method extends the time-domain beam
propagation method, whereas the second one builds upon frequency-domain eigenmode
expansion. Good agreement between both tools is obtained for both the linear and nonlinear
simulations.
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1 Introduction

Nowadays there is a strong interest in photonic integrated circuits for functions such as
next-generation optical network transceivers or lab-on-a-chip sensors. In addition, by using
material systems with high index contrasts the structures become more compact, have an
improved performance and may be cheaper to produce. However these systems have their
specific manufacturing and design challenges. For fabrication we mention e.g., the problem
of sidewall roughness to obtain low-loss photonic wires. In the area of design, and more
specifically numerical modeling, the appearance of high contrast instigates strong reflec-
tions and radiation losses. Great progress has been made in identifying useful methods for
simulating the linear properties of these micro- and nanophotonic devices.
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The modeling of nonlinear effects in these structures is less well studied. However, the
appearance of intensity dependent effects holds the promise for many novel and useful func-
tionalities. Second order effects e.g., can be used for versatile wavelength conversion tech-
niques, such as second-harmonic generation (SHG), frequency up- and down-conversion, and
parametric amplification. These techniques can have practical applications in laser sources,
wavelength division multiplexing networks, all-optical switching, etc. Furthermore, in order
to obtain effects at practical power levels it is extremely advantageous to confine the fields
strongly in high index contrast waveguides and resonators.

Optical devices with second order nonlinearity have been successfully fabricated in
ferroelectric materials, such as LiNbO3 (Bortz and Fejer 1991), and semiconductor materi-
als, such as Alx Ga1−x As (Yoo et al. 1996). In order to fully understand the function of these
devices and to optimize their designs, accurate and efficient modeling techniques are needed,
both for the linear and nonlinear properties.

Analytical modeling, such as the coupled-mode theory (Marcuse 1991), is quite difficult
for two-dimensional (2D) or three-dimensional (3D) devices having irregular geometrical
variations or radiation losses (Dumeige et al. 2003). Therefore one has to resort to numerical
techniques. The Finite-Difference Time-Domain (FDTD) method is a very versatile method.
It provides time-domain modeling of a pulsed beam in an arbitrary structure over a wide
bandwidth (Taflove 1998). However, the method requires tremendous computational efforts,
even for analyzing 2D structures (Dumeige et al. 2003).

In this paper we study two alternatives: the Time-Domain Beam-Propagation Method
(TD-BPM) and the Eigenmode Expansion Method (EEM). For certain problems both meth-
ods can be orders of magnitude faster than FDTD. For TD-BPM this efficiency is rooted in the
use of a carrier wave formulation and a suitable discretization scheme. For EEM efficiency
stems from the frequency-domain formulation, where the field is described as a superposition
of eigenmodes corresponding to piecewise-constant sections. In addition, both techniques
are suited to model full-vectorial solutions in high contrast devices with strong longitudinal
reflections and scattering losses. At first these methods found applications in the modeling of
linear properties. However, now they have also been extended towards second-order effects.

In order to compare both methods we use a periodic grating structure, which was defined as
a modeling exercise in the COST-P11 project (http://w3.uniroma1.it/energetica/). It is known
that one-dimensional (1D) grating structures enhance the conversion efficacy of SHG. First
of all they can bring about phase-matching, which is very important to obtain strong coherent
effects. Second, the resonances of a finite device enhance the field intensities. Strong index
contrasts can lower the device lengths required, as both effects are increased. However, in
2D or 3D structures the interfaces will augment scattering losses, so a trade-off becomes
necessary. This argument is addressed in the design under study.

The paper is structured as follows. In the next section we describe the two modeling meth-
ods. Then we describe the proposed grating device. Subsequently, results for the linear and
nonlinear case are compared and discussed.

2 Modeling methods

2.1 Time-Domain Beam Propagation Method (TD-BPM)

After being successfully implemented for the simulation of electromagnetic propagation in
a general linear material (Hu et al. 2006), the Time Domain-Beam Propagation Method is
now extended to analyze SHG, which has not been presented before.
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Scalar wave equations for propagation of the fundamental frequency (FF) electric field
E f and the second harmonic (SH) electric field Es are expressed as (Masoudi 2001):

∇2 E f = n2
f

c2

∂2 E f

∂t2 + µ0
∂2 Pf

∂t2 , (1)

∇2 Es = n2
s

c2

∂2 Es

∂t2 + µ0
∂2 Ps

∂t2 , (2)

where n f and ns are the refractive indices of the material considered at the fundamental and
second harmonic frequencies respectively. Pf and Ps are the scalar second order nonlinear
polarizations:

Pf = ε0χ
(2)
f Es · E∗

f , (3)

Ps = ε0χ
(2)
f E f · E f /2, (4)

with ∗ meaning the complex conjugate. Substituting Eqs. 3 and 4 into 1 and 2, the following
is obtained:

∇2 E f = n2
f

c2

∂2 E f

∂t2 + 1

c2

∂2
(
χ

(2)
f Es · E∗

f

)

∂t2 , (5)

∇2 Es = n2
s

c2

∂2 Es

∂t2 + 1

c2

∂2
(
χ

(2)
f E f · E f /2

)

∂t2 . (6)

Using the slowly varying envelope approximation (SVEA) (Benson et al. 2004), the electric
fields E f and Es can be expressed in terms of slowly varying envelopes and fast varying
carrier frequencies as:

E f = 1

2

[
φ f exp( jω f t) + φ∗

f exp(− jω f t)
]
, (7)

Es = 1

2

[
φs exp( jωs t) + φ∗

s exp(− jωs t)
]
, (8)

where φ f and φs are the slowly varying envelopes of the FF and SH electric fields, respec-
tively. Inserting Eqs. 7 and 8 into 5 and 6, and neglecting the terms containing the second
order derivative with respect to time according to the SVEA assumption, one obtains:

∇2φ f = n2
f

c2

(
−ω2

f φ f + 2 jω f
∂φ f

∂t

)

+χ
(2)
f

c2

(
2
∂φ∗

f
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∂φ∗
f

∂t
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∗
f
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f φ
∗
f φs

)
, (9)

∇2φs = n2
s

c2
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−4ω2

f φs + 4 jω f
∂φs

∂t

)

+χ
(2)
f

c2

(
∂φ f

∂t

∂φ f

∂t
+ 4 jω f

∂φ f

∂t
φ f − 2ω2

f φ f φ f

)
. (10)

The presence of the nonlinear coupling term, the last term in Eq. 9, illustrates that the FF
wave is allowed to deplete during propagation with this method. Note however, for the
normalized values used here, we did not include FF depletion for this exercise. The last
term in Eq. 10 acts as a source to generate the SH field. Compared with the paraxial BPM
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(Chou et al. 1999) and the TD-BPM technique proposed by Masoudi (2001), this formulation
is bi-directional and wide-angle in nature since it does not make a paraxial approximation
along the z-axis by neglecting the second order derivative of the spatial operators with respect
to z. The Iterative Explicit Finite-Difference Scheme introduced in Hu (2006) can be applied
to the above partial differential equations. It was demonstrated in Huang et al. (1992) that
it can use a time step size at least four times bigger than the Courant-Friedrichs and Lewy
stability requirement imposed on conventional time domain simulation techniques, such as
the FDTD method and the transmission line modeling method. In this way the proposed algo-
rithm can help overcome the limitations of computational intensity, a fact that makes this
formulation more attractive than conventional time domain numerical techniques, especially
when the 3D characterization of optical devices is examined.

For the TD-BPM simulation, the input pulse, excited at the time moment t = 0, con-
sists of the fundamental mode profile φe in the transverse direction and a Gaussian profile
with a 1/e width of 4 µm in the propagation direction. The spatial sampling mesh sizes are:
δx = δz = 0.018 µm. For the TD-BPM method, a time step size δt = 4δz/c is used, again
four times that required by conventional time domain simulation techniques.

Note that in this paper we compare TD-BPM to a frequency domain method. However,
because TD-BPM is time domain it would also be suitable for modeling aspects related to
pulse dynamics.

2.2 Eigenmode Expansion Method (EEM)

In this section we provide a succinct overview of the eigenmode method. For more informa-
tion we refer to (Bienstman and Baets 2001) for modeling of linear properties, and to (Maes et
al. 2005) for the SHG extension. The algorithm has been implemented in the freely available
CAMFR package (Bienstman and Baets 2001).

In the EEM one defines a main propagation direction and divides the structure in piecewise
constant sections, as in Fig. 1. Next, the field in such a section is described by a superpo-
sition of eigenmodes, specific to the particular section. The field profiles and propagation
constants of the eigenmodes are calculated from the transversal index profile of the section
or slab. In this way the electromagnetic fields in a slab are reduced to a vector of complex
mode amplitudes, which describes the particular superposition of modes excited in the slab.
For interfaces between different slabs one uses the established mode-matching technique
to derive reflection and transmission matrices between the various modes. In the end these
interface matrices are combined with the propagation properties to obtain a scattering matrix
for the entire structure. If one defines a certain input excitation, this algorithm gives the mode
amplitudes and thus the fields throughout the structure.

The extension for SHG proceeds as follows. We explain the algorithm in the undepleted
pump approximation. First a linear simulation at the FF is performed. This gives us the FF
mode amplitudes in every section of the structure. This data is used to modify the calculation
of the SH. More specifically we adjust the propagation properties in a section. These are
calculated as:

[
F2

B1

]
=

[
diag(e− jβSH,i L) 0

0 diag(e− jβSH,i L)

] [
F1

B2

]
+

[
N f w

Nbw

]
, (11)

with diag indicating a diagonal matrix, βSH,i the propagation constant of the i th SH mode,
and L the length of the section. The nonlinear change is given by the last term, N f w and
Nbw . These amplitudes stem from the nonlinear polarization at the SH. They are dependent
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z
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L

Fig. 1 Definition of a main propagation direction z and division into sections for a simple structure. Mode
amplitude vectors are indicated

on the local FF amplitudes (obtained from the first calculation), overlap integrals between
FF and SH modes, and phase matching factors. In the end a similar concatenation procedure
for interfaces and sections as in the linear case is employed, in order to obtain the global
scattering and generation matrices.

The advantages of this method are similar for the linear and nonlinear case. Efficiency is
obtained because there is no grid necessary in the propagation direction. In addition, many
structures can be calculated accurately using only a few tens of modes. The number of modes
is further reduced by employing PML (perfectly-matched layer) boundary conditions, which
also allows us to calculate radiation losses. Furthermore, the same sections are often reused in
a device, especially in periodic structures. In these cases data such as propagation constants,
overlap integrals etc. has to be calculated only once.

3 Device structure

The proposed device is a 2D model for the situation in which a 1D grating is added to a
photonic waveguide. A schematic of the structure is shown in Fig. 2. The object is to exploit
some of the same properties that make 1D gratings efficient for SHG. Indeed, 1D structures
are shown to be good converters by using an interplay of increased density of modes at the
band edge, field localization and phase matching (Centini et al. 1999; Angelis et al. 2001).
The proposed 2D device combines the advantages of a waveguide structure with the benefits
associated with a 1D grating structure.

As a building block of photonic devices, waveguides offer a twofold improvement: They
achieve field enhancements due to their strong transverse field confinement, and they avoid

a

d

L1 L2
n=1

nFF=3.28
nSH=3.50

a

d

L1 L2
n=1

nFF=3.28
nSH=3.50

Fig. 2 Schematic of the proposed structure
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the spatial walk-off between the interacting fields (Dumeige et al. 2003). Nevertheless, there
are several new drawbacks associated with this structure. First, the high refractive index con-
trast between the layers of the grating introduces some radiation losses. Second, the single
fundamental mode guiding condition should be achieved at both FF and SH frequencies.
These arguments show that special care should be taken in designing such devices.

The dielectric device in Fig. 2 is surrounded by air (n = 1). Now, instead of modeling the
full dispersive behavior of the material refractive index (n(ω)), we use two separate constant
values for the two frequencies, nF F = 3.28 and nSH = 3.50. These values correspond to
the index of Al0.3Ga0.7 As around λ = 1.55 µm and λ = 0.78 µm, respectively. The width
of the in- and out-coupling waveguide is d = 180 nm. We denote the number of periods by
N . Note that N periods means N + 1 air slits. A period has a length of a = 180 nm, divided
into a dielectric part (L1 = 135 nm) and an air slit (L2 = 45 nm).

With the previous parameters the waveguide has a single TE mode for the FF around the
wavelength of 1.55 µm (one electric field component, which is out-of-plane), and a single
TM mode for the SH (one magnetic field component, which is out-of-plane). The device can
be realized e.g. with epitaxial growth of Al0.3Ga0.7 As on a [001]-oriented GaAs substrate,
by aligning the z-axis along [110]. The polarizations mentioned couple with a normalized
χ(2) = 1, all other χ(2) components are assumed to be zero.

4 Simulation results

4.1 Linear properties

To obtain the first insights about the design we model the propagation properties of an infinite
structure. Thus we examine the (guided) Bloch modes of one period of the device. The EEM
method, as implemented in the CAMFR package, is well suited for this. The real and the
imaginary parts of the propagation constant kz versus the frequency are shown in Fig. 3a
and b, respectively. For efficient conversion, the SH is chosen so that it lies at the lower edge
of the first order bandgap. In this way the interesting region for the FF is around a/λ ≈ 0.115
(λ ≈ 1.57 µm), and for the SH around a/λ ≈ 0.230 (λ ≈ 0.78 µm).
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Fig. 3 (a) Real and (b) imaginary part of the Bloch mode propagation constant kz versus frequency. Thin
(dashed) line presents the FF (SH). The light line is indicated by the thick line in graph (a)
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Fig. 4 Effective index at FF and SH versus wavelength λ for a finite device with N = 20. The wavelength
for the SH is doubled. Dots (lines) present the TD-BPM (EEM) results, respectively

The imaginary part of kz measures the radiation loss of the Bloch mode. From Fig. 3b we
see that the losses around the SHG point are negligible for both frequencies, as both modes lie
below the lightline. In a previous design the SH mode was located above the lightline, which
rendered the losses too high for efficient conversion. Theoretically the losses of a guided
Bloch mode below the lightline are zero. Numerically we indeed obtain negligible values
well below 10−4, because of the PML absorbing boundary conditions. At the center of the
bandgap the decay is maximal. Note also the losses for the FF above ω = 0.28(2πc/a), as
we cross the lightline.

In finite structures the concept of phase-matching has been made very precise (Centini et al.
1999). The theory was developed for 1D structures, but it is also applicable in a 2D or 3D
context. The effective index nef f is defined from the transmission amplitude t :

t (ω) =
√

|t (ω)|2 exp( jne f f (ω)Na), (12)

with Na the length of the structure. The arbitrariness in nef f is fixed by defining it to be
a continuous, increasing function of frequency, and nef f → 0 for ω → 0. This effective
index for both frequencies in a structure with N = 20 is plotted in Fig. 4, employing both
TD-BPM and EEM. Around the frequencies of interest we notice that nF F

ef f ≈ nSH
ef f . This

indicates exact phase-matching and can lead to efficient conversion (Centini et al. 1999).
Another important property is the transmission and reflection of the finite structure. If

both frequencies are tuned at a transmission maximum, one expects good SHG. Transmis-
sion and reflection magnitudes for the FF are shown in Fig. 5a and b, for N = 5 and N = 20,
respectively. Similar results for the SH are plotted in Fig. 5c and d. Again, both modeling
methods are employed and they show a good agreement.

We note that with EEM these spectra are obtained by sweeping over each required fre-
quency. In the TD-BPM each spectrum in Fig. 5 is obtained from a single time-domain
run, with a specified center carrier frequency that corresponds to a center wavelength λ0 of
1.55 µm for the FF pump and λ0 = 0.775 µm for the SH wave. The results from the TD-BPM
achieve high agreement with the EEM technique around these center wavelengths. Indeed,
there the TD-BPM algorithm is expected to achieve its highest accuracy (say over a wave-
length range from 1.42 µm to 1.75 µm for the FF field, and from 0.72 µm to 0.82 µm for the
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Fig. 5 Transmission T and reflection R versus wavelength λ for the FF ((a) N = 5, (b) N = 20) and for the
SH ((c) N = 5, (d) N = 20). Dots (lines) present the TD-BPM (EEM) results, respectively. TD-BPM uses
carrier 1.55 µm for FF and 0.775 µm for SH

SH field). But it is expected to deviate from those of the EEM method at wavelengths further
away from the chosen center wavelengths. Thus, for accurate broadband calculations using
TD-BPM a number of spectral responses can be stitched together.

We see that the FF transmission spectra show resonances with transmissions close to one.
The SH spectra indicate lower transmissions, which are still acceptable. These losses stem
from the mismatch at the input and output, between the waveguide mode and the Bloch mode.
Reasons for the increased loss at the SH are the higher frequency, different polarization and
stronger index contrast.

Note that there is also a connection between nef f of Fig. 4 and the transmission maxima
in Fig. 5. More precisely, the maxima of the derivative dnef f /dω (which is proportional to
the density of modes (Dumeige et al. 2002)) correspond to the transmission resonances.

4.2 Nonlinear properties

After having established that the linear properties are designed for efficient conversion, we
can examine the full nonlinear simulations. In Fig. 6a and b we show the SHG conversion
efficiency spectrum for N = 5 and N = 20, respectively. The efficiency η is defined as
the ratio between the SH power in the output waveguide and the FF power launched into
the input waveguide. Remember that we use χ(2) = 1. We notice a very good agreement
between both calculation methods.
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Fig. 6 SHG conversion efficiency η versus SH wavelength λ with: (a) N = 5 and (b) N = 20. Dots (lines)
present the TD-BPM (EEM) results, respectively

Fig. 7 Maximum SHG
conversion efficiency ηmax
versus the number of periods
N . The line connects the EEM
results, dots show TD-BPM
calculations
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To get a feel for the maximum conversion efficiency in function of the number of periods
N , we provide results for various N in Fig. 7. Results were calculated for N = 5, 10, 15
and 20. A higher SHG efficiency can be achieved by increasing the length of the nonlinear
structure. The calculations show that the SH conversion efficiency for a 20 period waveguide
grating is 30 times larger than the efficiency associated with a 5 period waveguide grating.
This is good considering the structure is still very compact, with 20 periods corresponding
to a grating length of around 4 µm.

Although difficult to fit with the limited number of points, further analysis shows that the
efficiency scales as N 2.5. This is better than the normal bulk trend of N 2, but still far from
the 1D theoretical limit of N 6. One reason is the limited transmission of the resonances at
the SH, see Fig. 5c and d, because of losses. A strategy to remedy this is to decrease the
diffraction losses by using a broader core, as was done in Dumeige et al. (2003).

5 Conclusions

We present a comparison of linear and nonlinear calculations on a microphotonic device for
SHG. The TD-BPM and EEM tools show good agreement and are well suited to tackle these
problems.

The proposed device consists of a 2D waveguide with a high-index-contrast 1D grating. We
show that the structure is designed to achieve good conversion by adhering to different prin-
ciples. From a 1D viewpoint efficiency increases because of band-edge and phase-matching
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effects. From a 2D viewpoint it is imperative to increase the transmission by limiting the
radiation losses.
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