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The focus is on the understanding of the role of energetic disorder on
the mobility, current density and recombination. First, some limitations
are shown of “first generation” device models, as applied to single

amer devices based on a blue-emitting polymer or a green-emitting
small molecule. Such models solve the drift-diffusion equation using a
continuum approach, and take only a field-dependence of the mobi
into account. It is shown that a new model, which takes also a carrier-
concentration dependence of the mobility into account, provides a more
consistent description of a large set of temperature and laver-thickness
dependent current-voltage curves. It is also shown that in materials with
realistic disorder, the current density is of a filamentary nature. Second,
anovel 1D-model is presented for calculating the current density and
recombination in double-carrier OLEDs. Using that model, disorder is
shown to strongly enhance the current density, and to strongly affect
the shape of the recombination distribution in single-layer and multilayer
devices. Also, the effect of disorder on transient phenomena, such as the
current density response in a dark-injection experiment, is discussed.
Finally, an outline is given of a future “second generation” 3D OLED
device model, which should include the laterally non-uniform nature of
the current density and recombination

Method for determining the depth profile of emitting
dipoles inn organic light-emitting devices from
experiment

S. L. M. van Mensfoort, Philips Research Labs. (Netherlands) and
Technische Univ. Eindhoven (Netherlands); M. Megens, H. J. R.
Greiner, D. Wehenkel, Philips Research Labs. (Netherlands); R. Coe-
hoorn, Philips Research Labs. (Netherlands) and Technische Univ.
Eindhoven (Netherlands)

For understanding and further improving the luminous efficacy of
organic light-emitting diodes (OLEDs), it is of crucial i mportance to
know the precise distribution of emitting dipoles across the device.
In the literature, various methods have been proposed to determine
this distribution from experiment [1]. However, in all cases this was
done by considering only profiles with certain selected shapes. In
this contribution, we show how the distribution can be deduced from
experiment without making any assumption about its shape. For that
purpose, we use (i) the measured wavelength, angle and polarization
dependent emission spectra and (i) the theoretical spectra for emission
from distinct dipole positions in the device, as obtained from a thin-film
microcavity outcoupling model [2]. The inverse outcoupling problem is
then solved using a least squares fit of the experimental data, leading
to the dipole intensity and orientation profiles. A key point, providing
strongly enhanced accuracy, is the use of a special procedure whereby
the angle and polarization dependences at all wavelengths are given
essentially equal weights.

We present a successful application of the method to the case of
blue-emitting polyfluorene-based OLEDs. The recombination is found
to take place predominantly at the anode side, as already predicted
from a preliminary transport modelling study [3]. A critical comparisan
is presented with the predictions from a new and more advanced
device model.
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