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Abstract: We describe intricate cavity mode structures, that are possible
in waveguide devices with two or more guided modes. The main element is
interference between the scattered fields of two modes at thefacets, result-
ing in multipole or mode cancelations. Therefore, strong coupling between
the modes, such as around zero group velocity points, is advantageous to
obtain high quality factors. We discuss the mechanism in three different
settings: a cylindrical structure with and without negative group velocity
mode, and a surface plasmon device. A general semi-analytical expression
for the cavity parameters describes the phenomenon, and it is validated with
extensive numerical calculations.
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1. Introduction

Optical microcavities with high quality factors and small modal volumes are used in a wide
range of applications such as low-threshold lasers, optical filters, nonlinear optics and cavity
quantum electrodynamics [1]. Therefore it is important to know which mechanisms may lead
to efficient confinement, and in which systems they are applicable.

Here we focus on a class of microcavities that can be described as a section of a waveguide.
The properties of the guided waveguide modes and their reflection at the facets determine the
cavity characteristics. The existence of high-quality cavity modes in waveguides with a zero
group velocity point was shown in [2]. In the present paper wegive a more in-depth description
of these cavity modes. We show that the mechanism is very similar to the phenomenon in [3,
4], and we point out the connection with the multipole cancelation mechanism [5]. In [3, 4]
one describes how the interference between multiple modes may lead to high facet reflections.
We give a simple semi-analytical description of this phenomenon by examining the round-trip
matrix of the cavity. There is a correlation between the possible reflection enhancement and
the interaction between the modes. A zero group velocity point in the dispersion relation of
a waveguide creates two modes that are intimately related. Therefore, these modes are good
candidates to exploit the cavity mechanism.

The variation of length and frequency generates a rich variety of cavity modes, more than
initially expected in [2]. The parameters of these modes areprecisely described by the model,
which gives a straightforward expression for the eigenvalues of the (half) round-trip matrix. By
approximating this formula it is easy to obtain insight intothe modal trends. The discussion
is supported by detailed numerical simulations based on eigenmode expansion [6] and finite-
difference time-domain (FDTD) calculations [7].

The phenomenon is described using three structures. First,we employ the zero group velocity
cylindrical structure proposed in [2]. We reach clear insights into the cavity mechanism, and at
the same time we validate the new approaches. Second, we study the same structure, but at a
wavelength with two normal (i.e. positive group velocity) guided modes. The same mechanism
appears, however the dispersion and reflection characteristics are quite different. Third, we
examine a surface plasmon cavity device, based on a recentlyproposed waveguide with a zero
group velocity point [8]. Again, clear resonances are available, however the details differ.

The paper is organized as follows. First we describe the semi-analytical formulas and the nu-
merical methods used. Then, in the main part, we discuss in sequence the previously mentioned
three structures. Finally we group the conclusions.

2. Semi-analytic and numerical modeling

The class of devices under study is quite general and is depicted in Fig. 1(a). The center of the
cavity is a waveguide system with two guided modes. Therefore the properties of the cavity
modes are determined by the dispersion and reflection properties of these waveguide modes.
We consider symmetric cavities, thus with two equal facets.

Because we deal with two guided modes, the reflection and propagation properties are de-
scribed by 2×2-matrices. The reflection and propagation matrix are denoted byR andP, re-
spectively. As usual, a resonance or cavity mode is achievedif the imaginary part of an eigen-
value of the round-trip matrix (or, because of symmetry, half-trip matrix) is zero. The half-trip
matrix is given byP×R. In case of resonance, the quality factorQ of the cavity mode is de-
termined by the magnitude of its eigenvalue, or, more precisely, by how close the half-trip
eigenvalue is to±1. If the waveguide modes have the same group velocity magnitude|vg| (ir-

#80543 - $15.00 USD Received 28 Feb 2007; accepted 22 Mar 2007; published 7 May 2007

(C) 2007 OSA 14 May 2007 / Vol. 15,  No. 10 / OPTICS EXPRESS  6269



n=3.5

n=1.0

perfect metal

L

a
1.3a

(b) (c)

0.165

0.167

0.169

0.171

0.173

0 0.1 0.2 0.3

k(2p/a)

w(2pc/a)

(a)

P

R
n=3.5

n=1.0

perfect metal

L

a
1.3a

(b) (c)

0.165

0.167

0.169

0.171

0.173

0 0.1 0.2 0.3

k(2p/a)

w(2pc/a)

(a)

P

R

Fig. 1. (a) General picture of a system with two circulating modes. (b) Schematic of the
cylindrical structure. The dashed line is the axis of the cylinder. (b) Dispersion of the HE11
mode.

respective of the sign), we obtain [9]

Q =
ωrL

|vg|(1−|λ |2) . (1)

Here,ωr is the resonance frequency of the cavity mode andL is the length of the waveguide.λ
is the eigenvalue of the half-trip matrix, so

P×R

[

c0

c1

]

= λ
[

c0

c1

]

, (2)

with c0 and c1 the complex eigenvector components corresponding with theeigenvalueλ ,
which are normalized so|c0|2+ |c1|2 = 1. In the case of waveguide modes with different group
velocity magnitudesv0

g andv1
g, the factorvg in Eq. 1 is replaced by

vaverage
g = |v0

g||c0|2 + |v1
g||c1|2. (3)

To obtain the eigenvalueλ we need to construct the half-trip matrix. We assume a time
dependence exp(iωt). Then, for two positivevg modes, we get the matrix for propagation over
a lengthL:

P =

[

exp(−ik0L) 0
0 exp(−ik1L)

]

, (4)

with k0 andk1 the waveguide mode propagation constants of mode 0 and mode 1, respectively.
We always assumek0 andk1 positive (andk0 > k1), so for a negativevg mode we need to adjust
the sign in the propagation matrix. E.g. if mode 0 has negative vg we have to use exp(ik0L),
as the power fluxes of both modes need to be in the same direction. The waveguide modes
in the examples have negligible propagation losses, but including losses does not change the
equations. The complex reflection matrix describes the modal reflection properties at a facet:

R=

[

r00 r01

r10 r11

]

, (5)

where, because of reciprocity,r01 = r10. In the next equations it is sometimes convenient to
work with average and difference values, so:k0 = k+∆,k1 = k−∆. Likewise for the reflection
matrix: r00 = d+δ , r11 = d−δ .
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Now, we can readily note the eigenvalues of the half-trip matrix P×R. There are slight
differences in the equation for the three structures discussed in the following sections, as the
elements of the propagation matrix depend on the positive ornegativevg character of the modes.
In the case of the example in the next section mode 0 has positive vg and mode 1 has negative
vg. Then we obtain:

λ = exp(−i∆L)

[

dcos(kL)− iδ sin(kL)±
√

(−id sin(kL)+δ cos(kL))2 + r2
01

]

. (6)

In the case of two positivevg modes (as in section 4) we have to interchangek and∆ in the
previous equation. Finally, in the case where mode 0 has negative vg and mode 1 has positive
vg (as in section 5), we have to interchangei with −i in equation 6. The previous equation gives
us a comprehensive picture of the cavity modes. The imaginary part determines which combi-
nations of frequency and lengthL give rise to a resonant mode. Then the real part indicates how
strong the resonance is, through the quality factor in equation 1.

The previous description is semi-analytical, because we need modeling methods to get the
propagation constants and the reflection matrix. For this purpose we use CAMFR, a freely
available eigenmode expansion simulation tool [6] (http://camfr.sourceforge.net). As CAMFR
is an efficient frequency domain code we quickly obtain theseparameters at each frequency
of interest. These values are then employed to study the eigenvalues and quality factors with
the previous equations, for different cavity lengthsL. Some of the resonant modes have been
simulated with MEEP, a freely available finite-difference time-domain (FDTD) code, in order
to validate the semi-analytical model [7] (http://ab-initio.mit.edu/wiki/index.php/Meep). Good
agreement has been obtained, as we present below, showing that the modal description is suffi-
cient.

3. Cylindrical cavity: negative group velocity mode

We study the same cylindrical structure in this section and the next. However, we discuss dif-
ferent frequency regions and modes of different angular symmetry. A schematic is shown in
Fig. 1(b), it is the same device as in [2]. It was shown that this structure gives rise to a zerovg

point in the dispersion relation of the HE11 mode [10]. We plot this dispersion in Fig. 1(c). The
geometry is useful as a model for similar phenomena that can appear in omniguide or photonic
bandgap structures [2, 10].

To find cavity modes we scan the(ω,L)-space. In the frequency region with two interacting
waveguide modes (mode 0 with positivevg and mode 1 with negativevg) we find high-Q cavity
resonances. This is presented in Fig. 2(a). Some of theseQ-peaks (dark blue dots in Fig. 2(a))
were discussed in [2]. Now however we find additional modes. The origin of the extra modes
is elucidated in Fig. 2(b). In this graph we put a dot each timea resonance is obtained, thus
each time the imaginary part ofλ becomes zero, regardless of the size of the real part. In this
way we clearly see the connection between the resonances. The branches are grouped in pairs.
Each pair corresponds to a certain resonance order. Each branch in a pair corresponds to a
symmetry (node versus antinode in the middle of the cavity).Only the lowest order pair (lower
left in Fig. 2(b), dark blue dots) was described in [2]. Note that the agreement between the
semi-analytic mode expansion approach and FDTD is indicated in Fig. 2, which validates the
approach.

The field distribution of some modes is shown in Fig. 3, together with the far field on- and off-
resonance of a cavity mode. Clearly the multipole cancelation effect is at work, as described
in [5]. At a high-Q resonance the radiation pattern changes: there are extra nodal lines, see
Fig. 3(b), as the lowest order multipole is canceled. This gives proof of a bimodal mechanism:
Both waveguide modes are prominent in the cavity. At the facets they reflect but radiate some
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Fig. 2. (a) Q versusL of the resonances. Dots are data points from mode expansion
(CAMFR), crosses present results from FDTD (MEEP). (b)ω versusL for the same cavity
modes.

Fig. 3. (a) Field plot of some resonances. The electric field alongφ is shown.Ln andωn are
L/a andω × (a/2πc), respectively. (b) Far-field on- and off-resonance. The magneticfield
along the direction of the axis is shown. The cavity is located to the left of theseplots.

energy into the space adjacent to the cavity. This radiationcan be described as a superposition
of multipoles. At certain cavity lengths and frequencies two conditions are fulfilled: there is
a phase resonance (imaginary part ofλ is zero), and the important lowest order multipole
contribution of the modes cancel each other (leading to a real part of λ close to one, meaning
low losses). When these conditions are satisfied we obtain a high-Q cavity. This mechanism
was also at work in the two-dimensional square structures of[3] and [4].

To gain insight into the particular frequencies and lengthsof resonance we study the eigen-
value equation more closely. It turns out that for each example in this paper we can make
approximations to obtain the main trends of the resonances.The approximations are made via
the reflection matrix. The magnitudes of the elements of thismatrix for the current example are
shown in Fig. 4. For a large range of frequencies it is clear that the off-diagonal element is larger
than the diagonal ones, thus|r01| > |r00|, |r11| (or |r01| > |d|, |δ |). In that case the magnitude of
the eigenvalues (from Eq. 6) is approximated by:

|λ |2 ≈ |r01|2±2cos(kL)Re(r01d
∗)∓2sin(kL)Im(r01δ ∗), (7)

where Re (Im) is the real (imaginary) part, and∗ means complex conjugate. This expression
implies that the magnitude ofλ (at constantL) is only a weakly-varying function of the fre-
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Fig. 4. Magnitudes of the reflection matrix elements for the cylindrical structure with the
negative group velocity mode.

Fig. 5. Magnitude squared of the two eigenvalues for the cylindrical structure in the fre-
quency range with a negative group velocity mode.

quency. In function ofL (at constantω) the maxima of|λ |2 are separated byπ/k or 3.4a. Note
that in this examplek corresponds with the zerovg-point. The exact|λ |2 values are plotted in
Fig. 5; we indeed see vertical lines of magnitude extrema, separated horizontally by 3.4a.

For the phase resonance we can simplify a bit further and obtain:

λ ≈±r01exp(−i∆L). (8)

This means that theL-difference between two pairs or resonance orders (at a certain frequency)
is given byπ/∆. Thus, if we approach the zerovg-point, ∆ goes to zero, and the distance
between pairs becomes infinite. This explains the trends of the branches in Fig. 2(b).

Combining the magnitude and the imaginary part describes the cavity modes. If a magnitude
maximum (the red vertical ribbons in Fig. 5) coincides with aphase resonance one obtains
a mode with a very highQ. The previous also elucidates the longitudinal length scale π/k
provided by the zerovg-point, which was only partly explained in [2].

4. Cylindrical cavity: positive group velocity modes

Here we study the same cylindrical structure as in the previous section, but at higher frequencies
and with angular momentum zero (which means an angular dependence cos(mφ) with m= 0,
as opposed tom = 1 in the previous example). The dispersion of the TE modes (only one
electric field component, alongφ ) is plotted in Fig. 6. We examine the frequency region with
two guided modes betweenω = 0.4 and 0.6(2πc/a), indicated in the figure, and we note that
both modes have a positivevg.

Scanning the(ω,L)-space we obtain resonances again, which are shown in Fig. 7.These
graphs look different than in the previous example. However, study of the far-field (not shown)
and theQ-peaks shows again that multipole cancelation is at work. Therefore, the bimodal
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Fig. 7. (a)Q versusL of resonances. Dots are data points from mode expansion (CAMFR),
crosses present checks with FDTD (MEEP). (b)ω versusL for the cavity modes in the
cylindrical structure with two positivevg waveguide modes.

resonance mechanism is equivalent, but we need to examine the dissimilarity with the previous
section. The field patterns for some resonances are depictedin Fig. 8(a).

The differences in the trends are explained by an analysis ofthe eigenvalue. The reflection
matrix is shown in Fig. 8(b), and it is quite different from Fig. 4 for the previous example. Here,
we see that|r00|, |r11|> |r01| (and also|d|> |r01| and|δ |> |r01|). In this case the magnitude of
λ is approximated by:

|λ |2 ≈ |d±δ |2±Re

(

c2(d∗±δ ∗)exp(±i∆L)

−id sin(∆L)+δ cos(∆L)

)

. (9)

This means we obtain an extremum of|λ |2 if the denominator in this equation becomes small,
or (approximately) if tan(∆L) ≈−|δ/d|, which gives a period (at constant frequency) ofπ/∆.
As the frequency increases, we note that both|δ/d| and∆ decrease, so the maximum of|λ |2
moves to largerL, as shown in Fig. 9.

The phase branches in Fig. 7(b) clearly present two different trends. Analysis shows that,
away from the main interaction points (these are the anti-crossings, where in this case the
high-Q values are reached), the branches are approximated byλ+ ≈ r00exp(−ik0L) andλ− ≈
r11exp(−ik1L), respectively. An anti-crossing switches the trends of thecurves betweenλ+

andλ−. A crossing indicates that the branches correspond to a different symmetry (node or
antinode in the middle of the cavity). In between anti-crossings the curves follow Im(λ+) = 0
or Im(λ−) = 0, respectively. The latter indicates e.g. that the branch veers off to higherL, as
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Fig. 8. (a) Field plot of some resonances. The electric field alongφ is shown; only one
half is presented.Ln and ωn are L/a and ω × (a/2πc), respectively. (b) Magnitudes of
the reflection matrix elements for the cylindrical structure in the frequencyrange with two
positive group velocity modes.

Fig. 9. Magnitude squared of the two eigenvalues for the cylindrical structure in the fre-
quency range with positive group velocity modes.

the frequency nears the cut-off for mode 1. Furthermore, thedistance (at constant frequency)
between branches is 2π/k0 or 2π/k1, respectively.

Overlaying amplitude and phase (Fig. 9 and Fig. 7(b)) we see that the high-Q cavities appear
at the anti-crossing regions in Fig. 7(b), as previously noted.

5. Plasmonic cavity

In this section we construct a cavity mode by exploiting a zero vg-point in the dispersion of
a plasmonic waveguide. This dispersion relation appears ina waveguide consisting of metal
with a narrow dielectric layer on top, as presented in [8]. The two-dimensional, non-cylindrical
geometry we study is shown in Fig. 10(a). We use a metal-dielectric-metal structure, so there
are two semi-infinite metal slabs, with a dielectric strip inbetween. The cavity is defined by the
narrow dielectric sections with higher index (n =

√
2), the rest is air (n = 1). For the metal we

use the permittivityε = 1−ω2
p/ω2, with ωp the plasmon frequency.

The waveguide is designed such that the center section (withthe high-index parts) has two
guided modes in a certain frequency range, whereas the outside sections (to the left and to
the right) have one guided, more conventional, plasmonic mode. These dispersion relations are
shown in Fig. 10(b). Note that we only consider modes with symmetry such that the electric
field tangential to the plane indicated with the dashed line in Fig. 10(a) is zero. Furthermore,
we use TM-polarization, thus with one magnetic field component perpendicular to this figure.
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Fig. 10. (a) Schematic of the two-dimensional, non-cylindrical plasmon structure. (b) Dis-
persion of the central waveguide (black), and of the outside waveguides (red).

Fig. 11. (a)Q versusL of a resonance. Data calculated with mode expansion (CAMFR).
(b) ω versusL for the plasmonic cavity.

The eigenmode solver we use has been adapted to deal with plasmonic modes, see [11].
The structure differs from the previous examples in that there is no open space to the left and

right of the cavity. Therefore, there is no loss into (multipole) radiation, but only through the
guided mode in the outside sections. However, high-Q cavities can exist through cancelation
of the contributions to this loss mode. Thus, the bimodal mechanism of the previous sections
remains crucial and largely unchanged. The situation bearssimilarity e.g. to the setting of [12]
with directional couplers.

A resonance peak for the quality factor is presented in Fig. 11(a). For clarity only one peak
is shown. A depiction of the field at this resonance is given inFig. 12(a). Note that we obtain
very high quality factors, as there is only one mode that provides a loss channel, and needs to be
canceled. The phase resonance portrait is shown in Fig. 11(b). Again the portrait looks different
than for the other examples.

The analysis starts from the reflection matrix, shown in Fig.12(b). Away from the direct
neighborhood of the zerovg-point we can assume that|r00| > |r01| andr11 ≈ 0 (or d ≈ δ and
|d| > |r01|). We note furthermore that the reflection matrix is approximately real. In that case
the magnitude of the largest eigenvalue approximates to:

|λ+|2 ≈ r2
00+2r2

01cos(2kL)+
r4
01

r2
00

. (10)
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Fig. 12. (a) Depiction of the magnetic field at the peak of the resonance shown in Fig. 11(a)
(L = 0.238Lp andω = 0.601ωp). (b) Magnitudes of the reflection matrix elements for the
plasmonic structure.

Fig. 13. Numerically calculated magnitude squared of an eigenvalue for the plasmonic
structure.

This means a period (at constant frequency) ofπ/k. Indeed, we see this trend in the numerical
results of Fig. 13: If the frequency increases thenk decreases and the period increases.

For the phase picture we obtain thatλ+ ≈ r00eik0L. There is resonance if Im(λ+) equals zero,
so L = mπ/k0, with m a positive integer. This agrees with the main lines in the portrait of
Fig. 11(b). The curly lines originating close to the zerovg-point, and the anti-crossings, are not
captured by this analysis, as the approximations no longer apply, or because they belong toλ−.

6. Conclusion

The interplay of two modes in a cavity gives rise to high quality resonances. In the case of open
space cavities they instigate the multipole cancelation mechanism. In the case of losses through
guided modes, the losses are annulled via Fabry-Pérot type interference. We give a detailed
description of these mechanisms through three examples. Although the mechanism is similar,
the reflection matrix and the resulting resonance parameters look quite different. We show that
modes coupled through a zero group velocity point are well suited to realize these resonances.
The main ingredient seems to be a significant coupling between the waveguide modes. A re-
cently proposed plasmon waveguide is exploited for this effect. The analysis provides a clear
path to design and gain insight into novel cavity devices.
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