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Modelling leaky photonic wires: A mode solver

comparison
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Abstract. We present results from a mode solver comparison held within the frameworkof the European
COST P11 project. The structure modelled is a high-index contrast photonic wire in silicon-on-
insulator subject to substrate leakage. The methods compared are both in-house developed and commer-
cial, and range from effective index and perturbation methods, over finite-element and finite-difference
codes, beam propagation methods, to film mode matching methods and plane wave expansion methods.
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1. Introduction

During the past, there has been a tradition of comparing the current state-
of-the-art optical mode solvers from time to time (Vassallo 1997; Selleri
and Petracek 2001; Selleri et al. 2001; Ctyroky et al. 2002). In the frame-
work of the European COST P11 action (COST P11), we performed such
a comparison, but this time with an additional complication, namely the
modelling of an extremely small loss in the propagation constant due to
substrate leakage.

The structure we modeled is the following photonic wire structure in the
SOI material system (Dumon et al. 2004), as shown in Fig. 1. It consists
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Fig. 1. Photonic wire structure modeled.

of a 500 nm wide waveguide in a Si layer of 220 nm thick, sitting on top
of a 1µm thick SiO2 buffer, which in turn is sitting on a Si substrate. The
wavelength considered is 1.55µm and the refractive indices of Si and SiO2

are 3.5 and 1.45, respectively. The top cladding is air with index 1.
Because of the limited thickness of the oxide buffer, some part of the

power in the fundamental mode will leak to the substrate. The aim of this
comparison is to calculate the complex propagation constant of the funda-
mental mode of this structure as accurately as possible.

The rest of this paper is structured as follows: first, a brief description of
each method and the results obtained with it is given. Then, all the results
are brought together in a table and discussed.

The methods that are being compared are:

• An effective index method (R. Costa, A. Melloni)
• A perturbative approach (L.C. Andreani)
• BPM code (D. Pinto, S. Obayya)
• A finite element code by H. Uranus
• A finite element code by S. Selleri and L. Rosa
• Olympios, a commercial finite difference solver (W. Hopman)
• Fimmwave, a commercial film mode matching solver (R. Costa,

A. Melloni)
• A film mode matching solver by P. Bienstman
• A plane wave code by P. Lalanne and J.P. Hugonin
• A plane wave admittance code by M. Dems

We also want to point out that the results with commercial tools were
obtained by users, not by their developers, which leaves open the possibil-
ity that more accurate results could be obtained by the developers of the
code.
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Fig. 2. The effective index approach reduces the original problem (a) to an equivalent slab (b).
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Fig. 3. E-field components in the leaky slab in case of incidence of a plane wave from the substrate.

2. Effective index method

A simple approximate method to calculate the complex propagation con-
stant of the considered optical waveguide is based on the solution of an
equivalent leaky slab waveguide by the transfer matrix method (TMM)
(Ghatak et al. 1987). The 2D waveguide problem (Fig. 2a) is first reduced
to a 1D equivalent structure (Fig. 2b) by the effective index approach
(EIM). The layers of the equivalent slab have the same thickness D,H

and refractive index ni of the original structure except the layer containing
the core. The refractive index ns of this equivalent layer corresponds to the effec-
tive index of the slab described by the horizontal cross section of the original
layer. In our case it is a silicon slab of thickness w surrounded by air.

In order to calculate the complex propagation constant of the waveguide,
a plane wave E+

1 incident at an angle φ1 from the substrate is consid-
ered (Fig. 3). In general almost all the incident power is reflected by the
structure, except when the horizontal component of its propagation con-
stant equals the propagation constant of the equivalent slab. In such a
case the coupling (i.e. leakage) takes place. The propagation constant β =
ki sin φi corresponding to the incident angle φ1, is an invariant for the sys-
tem because of the field continuity at the interfaces.

Within each layer the electric field is the sum of two waves E+
i and E−

i ,
propagating respectively in the upward and in the downward directions.
Their complex field amplitudes can be calculated by simply multiplying the
2 by 2
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Fig. 4. Excitation efficiency of the TE polarized wave in the core of the silicon on insulator leaky slab
of Fig. 1, with D =220 nm and H =0.9 and 1µm.
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with δ2 = n2D cosφ2, δ3 = n3H cosφ3 and δ1 = 0 by convenience, and ri

and ti the field reflection and transmission coefficients at the ith interface.
Explicit expressions for both TE and TM polarization can be found in
(Ghatak et al. 1987)(Tamir).

In case of incidence from the substrate only, E−4 =0, the excitation effi-
ciency η(β) of the electric field in the core results in a Lorentzian shape
(Ghatak et al. 1987) depending on the incidence angle φ1, or more conve-
niently on β =k1sinφ1 as

η (β)=
∣∣∣∣E

+
3

E+
1

∣∣∣∣
2

∝ 1

(β −β0)
2 + α

4
2

where α is the full width at half height and β0 its peak position. The effi-
ciencies η(β) for a TE polarized incident wave in case of core thickness
D=0.22 µm and two values of oxide thickness H =0.9 and 1µm are shown
in Fig. 4. Note that by decreasing the oxide thickness the leakage increases
and the Lorentzian shape broadens.

The physical meaning of α is the power attenuation coefficient of the
leaky slab mode, related to the imaginary part of the complex effective
refractive index as α = 2π�{neff }/λ. The peak position β0 = 2π{neff }/λ is



MODELLING LEAKY PHOTONIC WIRES 735

simply the phase constant of the waveguide mode. Clearly, several peaks are
obtained if several modes are supported by the slab.

This method has been used to study the considered waveguide with
different oxide thickness and different widths. It has been observed that
the proposed method is limited by the confinement factor of the mode
in the core rather than by the index contrast. The effective index method
that permits the reduction of the original 2D problem to 1D, predicts a
more truthful equivalent slab when the mode is strongly confined within
the core (Tamir). Figure 5 shows both the real and the imaginary part
of the effective index of the Si wire waveguide of Fig. 1 (H = 1µm, D =
0.22 µm) as a function of the width w from 0.4 to 5µm. As a compari-
son, the results obtained with a commercially available Film Mode Match-
ing technique (FMM) (Fimmwave) are reported as well (more details on
the results obtained with this method will be given later). The agreement
is fairly good, especially for widths larger than 0.5µm and both methods
tend to the asymptotic slab values. Concerning the imaginary part, the best
agreement is found for w=0.5µm, while for wider waveguides the approx-
imated EIM-TMM method slightly overestimates the losses with respect to
the FMM. In case of narrow waveguides (w < 0.5µm) losses are underes-
timated, but in this case the method itself is less accurate due to a weaker
mode confinement. A further investigation of the range of validity of the
EIM-TMM approach is reported in Fig. 6 where the dependence of the
imaginary part of the effective index with respect to the buffer oxide thick-
ness H and the waveguide width w is reported. Also in this case results
obtained with the FMM are reported and the previous considerations are
confirmed independently on the oxide thickness. The calculated effective
index of the wire proposed in the COST exercise is neff =2.448–2.4×10−8 j.

In conclusion we claim that, although the proposed method is approx-
imate, for the considered Si-wire waveguide it is surprisingly accurate and
with all the advantages related to a simple analytical method it is recom-
mended for a first estimation of the complex propagation constant.

3. Perturbation theory based on guided mode expansion

The idea of this approach is to calculate propagation losses due to leakage
in the substrate by perturbation theory: the zero-order structure has a semi-
infinite SiO2 lower cladding and it supports truly guided modes, while the
dielectric perturbation �ε(r) = (ε4 − ε3)θ(−z − h) leading to loss occupies
the lower silicon layer and consists of the difference between the dielectric
constants of silicon (ε4) and of SiO2 (ε3), as sketched in Fig. 7. Further-
more, the silicon wire is repeated with supercell periodicity W +W ′ in the
x direction.
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Fig. 5. (a) Real and (b) imaginary part of the effective index of the Si wire waveguide of Fig. 2
(D=1µm, H =0.22 µm) vs. waveguide width. EIM-TMM (solid line), FMM [3] (dash-dot). The asymp-
totic line (dots) refers to the slab.
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Fig. 6. Imaginary part of the effective index of the Si wire waveguide of Fig. 2 for different widths w

and buffer oxide thicknesses. EIM-TMM (marks); commercial FMM (solid line).
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Fig. 7. Schematic layout of the Silicon wire structure repeated periodically along the x direction. The
dielectric perturbation for the loss calculation extends over layer 4 and it consists of the difference in
dielectric constants between Silicon (ε4 =12.25) and SiO2 (ε3 =2.1025).

The photonic mode dispersion in the structure with semi-infinite SiO2

is calculated by a guided-mode expansion method (Andreani and Ger-
ace 2006), which consists of expanding the magnetic field in the basis
of guided modes of an effective homogeneous waveguide with an average
dielectric constant in each layer. The method is a fully vectorial one. Sat-
isfactory results are obtained using W′ = W (i.e., the supercell period is
twice the wire width), one guided mode in the basis, and 21 plane waves.
The dispersion of the lowest-order TE mode and the corresponding effec-
tive index are shown in Fig. 8a and b, respectively. The effective index at
an energy E=0.8 eV (corresponding to the target wavelength λ= 1.55µm)
is Re(neff )=2.35. Propagation losses are calculated by perturbation theory,
with a formalism similar to that of (Andreani and Gerace 2006). The rele-
vant formula is

Im(k)= πω2

4vg

∣∣∣∣
∫

Eguided(r)∗ ·Erad(r)�ε(r)dr
∣∣∣∣
2

ρ(ω),

where Eguided (Erad) is the electric field of a guided (radiation) mode of the
effective waveguide, ρ(ω) is the photonic density of states for a given wave-
vector in the xy plane and vg = dω/dk is the mode group velocity. Notice
that for the present case of TE polarization and one guided mode in the
basis, both guided and radiation modes have an electric field which is par-
allel to the interface between layers 3 and 4, thus the field components are
continuous across the interface and the perturbative formula is unaffected
by corrections due to shifting boundaries (Johnson et al. 2002). The imagi-
nary part of the effective index Im(neff )=cIm(k)/ω is shown in Fig. 8c as a
function of frequency for three different values of the SiO2 thickness h. The
values are very small, thereby justifying the use of perturbation theory. The
losses decrease exponentially with increasing frequency and SiO2 thickness:
the dependence is Im(neff )∝ exp(−2χ3h), where
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Fig. 8. (a) Dispersion of the fundamental TE mode of the Si wire (solid line) and light lines in the core
and cladding materials (dashed lines); (b) real part of the effective index; (c) imaginary part of the effec-
tive index for three different values of the SiO2 layer thickness.

χ3 = (k2 − ε3ω
2/c2)1/2 = (Re(neff )

2 − ε3)
1/2(ω/c)

is the imaginary part of wavevector in the SiO2 cladding. The loss value
for h=1µm and E =0.8 eV is Im(neff )=3 ·10−8, in fair agreement with the
results obtained with the other methods.

The advantages of the present perturbative approach are its computational
efficiency and ease of application for different frequencies and structure
parameters. The disadvantage is that it is difficult to get accurate numbers,
especially for Re(neff ), because of the supercell representation of the silicon
wire structure. In order to improve the accuracy of the results and to avoid
introducing a supercell, the perturbative calculation of losses could be built
upon a numerical solution for the guided mode of a single photonic wire,
as obtained e.g. with other approaches described in this paper.

4. Beam propagation method

The beam propagation method (BPM) has been considered to be one of
the most useful and flexible techniques used to study the evolution of light
waves along longitudinally variant and invariant waveguiding structures.
However, the combination of the BPM with the imaginary distance prop-
agation technique (IDBPM) has been proved recently to be a very useful
“mode solver” for various optical waveguides (Xu et al. 1993; Wijnands
et al. 1994; Tsuji and Koshiba 2000). The idea is simply that if an arbi-
trary initial field is allowed to propagate along, in general, a complex axis,
with the selection of the proper propagation step size, a sequence of differ-
ent modes, starting from the fundamental, can be extracted from the initial
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field. Besides the elegance of the IDBPM in finding the modes in a sequen-
tial way, it has no additional computation burden in dealing with the com-
plex modes existing either in lossy (or with gain) structures or leaky-mode
waveguides, as the original BPM matrices are complex.

However, most the IDBPM approaches reported in the literature are
based on the formulation of the less accurate, and yet simpler, scalar wave
approximation. Recently, we have presented the combination of the full
vectorial finite element based BPM with the imaginary distance technique
(IDVFEBPM) (Obayya et al. 2002) as an efficient and accurate modal solu-
tion approach for different optical waveguides. This formulation is based
on the use of the transverse magnetic field components, it being not only
numerically efficient as it solves for only two, rather than the full three
field components, but also totally eliminates the possibility of the appear-
ance of spurious modes in the solution via the rigorous inclusion of the zero
divergence and the interface boundary conditions using an elegant line inte-
gration approach (Obayya et al. 2000). Also, to deal effectively with wave-
guiding structures involving radiation and leaky modes, the perfectly matched
layer (PML) has been incorporated in the formulation so as to be capable
of accounting for leaky modes such as those in the waveguide problem in
hand. In our formulation, the conventional PML boundary condition has
been used, and its conductivity profile is given as (Obayya et al. 2000)

α =1− j
3λρ2

4πntrW
3
PML

ln (1/R) (1)

where λ is the wavelength, ntr is the transformed index of refraction, WPML

is the width of the PML layer, ρ is the distance inside the PML layer from
its interface with the computational window and R is the theoretical reflec-
tion coefficient placed at the interface between the computational window
and the PML layer. Although IDVFEBPM is an efficient mode solver, it
may suffer, in very few cases, in finding the desired mode. In this case, an
initial guess that is close to the mode effective index can greatly enhance
the speed of convergence to the desired mode.

We have investigated the convergence of our model as a function of two
parameters: the reflectivity RPML of the PML and the thickness H of the
substrate before it reaches the bottom PML. The results are summarized in
Tables 1 and 2.

5. Finite element method (H. Uranus)

The method used to calculate the modes in this work is a finite element method
(FEM) leaky mode solver using a 1st-order Bayliss-Gunzburger–Turkel-like
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Table 1. Convergence of the IDVFEBPM for different values of H using RPML =10−30

H (µm) Re(neff ) Im(neff )

0.75 2.413340 −j 3.923×10−8

1.05 2.413340 −j 3.720×10−8

1.55 2.413340 −j 2.319×10−8

2.15 2.413340 −j 2.831×10−8

2.65 2.413340 −j 3.020×10−8

3.15 2.413340 −j 2.694×10−8

Table 2. Convergence of the IDVFEBPM for different values of RPML using H =3.15µm

RPML Re(neff ) Im(neff )

10−5 2.413340 −j 2.758×10−8

10−10 2.413340 −j 2.823×10−8

10−15 2.413340 −j 2.843×10−8

10−20 2.413340 −j 2.809×10−8

10−25 2.413340 −j 2.754×10−8

10−30 2.413340 −j 2.694×10−8

(BGT-like) boundary condition (BC). The details of the method have been
given in (Uranus et al. 2004).

The structure is discretized by a mesh of unstructured triangular ele-
ments. Using a Galerkin procedure, a discretized weak form of the vecto-
rial wave equation, expressed only in terms of transverse components of
the magnetic field, is formulated. By approximating the field within each
triangular element using interpolation of nodal-based quadratic basis func-
tions and handling the field and its derivatives at the computational bound-
ary using appropriate boundary conditions, a generalized matrix eigenvalue
equation is obtained and solved for the complex-valued effective indices
and the associated modal fields. At computational boundaries where the
field is expected to pass with low reflection, the normal derivative operator
of the field is approximated using a Dirichlet to Neumann map formulated
using a 1st-order BGT-like BC.

After exploiting mirror symmetry of the structure, the computational
window has a width of 1 µm. Its total height is 2.5µm with the substrate
taking 0.5µm. To reduce the discretization error, we intentionally refine the
mesh elements in the vicinity of the core, in the buffer layer, along the
interfaces of the core, and in the vicinity of the corners. However, this sim-
ple mesh refinement procedure is not an adaptive mesh refinement yet. Fig-
ure 9 shows an example of the mesh for one of the computational settings.

The computational results are shown in Table 3 for various mesh refine-
ment settings. The structure is effectively single mode with very low leak-
age loss for the fundamental quasi-TE mode and highly leaky other modes.
Note that highly leaky modes are automatically filtered out during the
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Fig. 9. The mesh for discretization with 9463 triangular elements.

computations. The results show that it is hard to get accurate effective
indices for this particular structure. We suspect that this is caused by the
insufficient handling of corners and the insufficient fulfillment of continu-
ity of ∂xHx + ∂yHy (which in our code is approximately satisfied through
weighted average of evaluation of derivatives of two triangular elements
sharing the same line element at the interface) while evaluating line integral
along interfaces in our nodal-based FEM formulation. Since the field is
rather strong near the corners and at interfaces, the error caused by insuffi-
cient handling of corners and interfaces will be significant. It is clear that
a finer mesh is indeed required for better results, but unfortunately it is
already at the limits of the memory capacity of our workstation. The com-
puted effective index for the mode lies between 2.4131–2.97 × 10−8 j and
2.4132–2.97 × 10−8 j.

For the 1st computation (9463 triangular elements), the typical computation
time is 161 s for preprocessing (mesh generation and matrices assembling)
and 685 s for mode searching on our P4-2GHz IGB computer using Mat-
lab 6.1 and MS-XP-Pro operating system. For this initial computation, we
have chosen a scheme that first used homogeneous Dirichlet BC to gener-
ate many initial guesses of neff located between 3.5 and 1.45, then searched
for leaky modes (using the 1st-order BGT-like BC) near to these initial
guesses and automatically picked up only modes with low attenuation. This
mode searching scheme is not efficient because many rather irrelevant leaky
modes (due to the fact that leaky structures are always highly multimoded)
have to be calculated before reaching the modes of interest, but reduces
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Table 3. Results for the fundamental mode by refining the mesh

Meshes neff

Triangular elements Nodes Real -imaginary

9463 19022 2.413430 2.9533E-8
9570 19255 2.413607 2.9436E-8

11933 24014 2.413429 2.9566E-8
14492 29179 2.413218 2.9622E-8
15291 30792 2.413290 2.9611E-8
18774 37777 2.413437 2.9575E-8
20050 40331 2.413249 2.9626E-8
24422 49101 2.413125 2.9651E-8
25306 50883 2.413130 2.9667E-8
25397 51048 2.413200 2.9641E-8
25801 51876 2.413130 2.9668E-8

the possibility to miss the modes. To reduce the computational time, for
the rest of the results in Table 3, we have chosen a scheme that used the
neff of the 1st computation as an initial guess, and searched only for neff

near to this value. This scheme reduces the mode searching time to 191 s
with 170 s preprocessing time for the 2nd computation (9570 triangular ele-
ments). For the computation with finest mesh (25801 triangular elements),
it takes 973 s for the preprocessing and 1062 s for the mode searching. If
we need to calculate neff for nearby wavelengths (even by taking material
dispersion into account), the preprocessing time can be reduced to a negli-
gible time, because it is not necessary to regenerate the mesh, hence most
components that compose the matrices of the previous computation can be
reused.

6. Finite element method (S. Selleri)

The analysis of the wire waveguide has been performed using the finite ele-
ment method. This method is very powerful as it can cope with any kind of
geometry and medium characteristic and can provide a full-vectorial anal-
ysis which is necessary to model waveguides with large index variations.

Our formulation of the FEM is based on the curl-curl equation and the
related functional expression (Selleri and Petracek 2001; Selleri et al. 2001).
The domain under investigation has been discretized using high order tri-
angular edge elements, with six tangential unknowns and two inner normal
ones, which avoid the presence of spurious modes in the solution spec-
trum. Both electric and magnetic field based formulations can be derived.
By discretizing the functional and by looking for its stationary point,
an eigenvalue algebraic problem is obtained whose matrices are sparse
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and symmetric. The algebraic problem can be resolved by means of the
ARPACK library based on the Arnoldi method (ARPACK) which can effi-
ciently provide few dominant eigenvalues and eigenvectors, corresponding
to the fundamental and first higher order modes of the waveguide. The ei-
genvalues provide the complex propagation constant, while the eigenvectors
give the mode vectorial field distribution.

An Anisotropic Perfectly Matched Layer (PML) is placed before the
outer boundary to enclose the computational domain and avoid undesired
reflection from the computational domain border (Cucinotta et al. 1999).
The cladding-PML interface is reflectionless independent of polarization,
frequency and direction of the impinging wave. Its absorbing properties are
a function of the conductivity profile σ . In particular it can vary all over
the layer width from zero at the cladding-PML interface, to a maximum
value σmax on the outer boundary, following an m-power profile:

σ =σmax(ρ/d)m,

ρ and d being, respectively, the distance from the beginning of the PML
layer and its width. Different m values provide different conductivity pro-
files within the anisotropic layer.

When looking for solutions affected by field leakage, as in the case of the
considered structure where the substrate presents the same refractive index
as the waveguide, the choice of the PML parameters is very important and
a convergence analysis is mandatory to verify the results reliability. Besides
PML, many other parameters, mainly mesh distribution, number of sam-
pling points or element type, affect the solution accuracy and deserve to be
investigated. For the sake of brevity this analysis has not been reported and
the attention is focused on the effect of the PML parameters.

The width d has been assumed equal to 1, 2 and 3 µm while typical val-
ues of m were 2, 3 or 4. These values affect the speed with which the real
and imaginary part of the propagation constant converge to the final result
and, to a certain degree, the final results itself, as they define the conduc-
tivity profile within the PML as a function of σmax. By increasing σmax, it
is possible to achieve stable vales for the propagation constant, which can
however slightly vary according to the different combination of the param-
eters. Some examples are reported in Table 4 for the fundamental TE mode
by considering the PML width equal to 1µm and 3µm and the parabolic
(m = 2) and cubic (m = 3) conductivity profile. Notice that while conver-
gence of the real part is easily obtained, a unique value of the imaginary
part has not been achieved, in spite of the huge variety of parameter com-
binations. However the most reliable convergence behaviour is given with
d =1µm and m=3, providing a value of 2.45×10−8.
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Table 4. Convergence of FEM mode solver of Parma University

Parma University FEM Modal Solver
real neff imag neff

d =1µm m=2 σmax >109 2.41232 0.22×10−8

d =1µm m=3 σmax >109 2.41232 2.45×10−8

d =3µm m=2 σmax >1011 2.41233 0.95×10−8

d =3µm m=3 σmax >1011 2.41233 3.90×10−8

The solver is implemented in FORTRAN in a Linux environment, with a
simple command-line interface, yielding the three components of the mag-
netic field vector on the whole structure. It can also simulate half- and
quarter-structures, by placing PEC and PMC boundary conditions on the
boundaries representing the symmetry axes. It can operate an automatic
search for the eigenvalues, or an estimate can be manually supplied to
speed up convergence. On a 2.4-GHz Pentium 4 PC with 2 GB of RAM,
calculation time for one eigenvalue at one frequency is about one minute,
while the maximum number of mesh nodes ranges from 45000 to 55000
depending on structure complexity.

7. Olympios

The real and the imaginary part of the effective index of the fundamental
quasi-TE mode of the photonic wire were calculated using a commercially
available finite difference mode solver: Olympios from C2V (Olympios).
Their so-called “FD Generic” solver is based on the well-known finite
difference method, initially solving Maxwell’s equations in terms of the
transversal magnetic field H(x, y), using a staggered grid. This full vectorial
complex mode solver uses PML boundary conditions. The strength of the
PML-layers can be adjusted. These settings have been optimized for conver-
gence before performing the final calculations presented here. The settings
were chosen as follows:

The number of grid points used within the PMLs is proportional to the
total number of grid points, i.e. a grid of 100 × 100 results in an effective
grid of 70×70, with 15 grid points in PML layers on both sides. The size
of the calculation was set to 4 by 4 micrometer to make sure that the tail
of the field has dropped in the horizontal direction to almost zero (>50 dB
drop).

The grid size was varied from 50 × 50 to 375 × 375 (i.e. 2500–140625
points). Both a uniform and a non-uniform grid were used. The upper
value of the grid size is limited by the maximum size of the memory allo-
cation by Olympios and not by the size of the physical memory.
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Table 5. Numerical parameters used in the Olympios simulations

Parameter value

PML Reflectivity 1×10−100

Number of PML points 15
Maximum number of iterations 10
Maximum iteration depth 1×10−10
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Fig. 10. The real part of the effective index versus the (total) number of grid points for both grid types.

Figure 10 shows the calculation results for the real part of the effec-
tive index. It is clear that the adaptive grid performs much better than a
uniform grid in all cases. The real part converges to 2.413, for the adap-
tive grid. The value of the imaginary part, shown in Fig. 11, converges to
2.9×10−8.
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Fig. 11. The imaginary part of the effective index versus the (total) number of grid points for both grid
types.
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Fig. 12. The structure simulated by FMM with emphasis on the dimension of the computational win-
dow and on the boundary conditions: metallic walls (black) and PMLs (dashed).

With the adaptive grid, both the real and imaginary part show a smooth
behaviour as function of the number of grid points (> 20000), which
suggests that a higher number of grid points may result in more accurate
values for both parts, although a systematic error cannot be excluded.

The real part of the effective index could be calculated with 4 digits accu-
racy. The imaginary part could be determined with only 2 digits accuracy.
However, if the program would be able to handle a larger number of grid
points, a possible better convergence is expected.

8. Fimmwave

The complex propagation constant of the photonic wire has been calcu-
lated by a commercially available tool based on the Film Mode Matching
method (FMM): Fimmwave by Photon Design (Fimmwave).

The algorithm of this complex vectorial solver starts by dividing the rect-
angular computational windows into a number of suitable sections. The
field inside each section is described by a mode expansion (Sudbo 1993)
and the field continuity is imposed at the interfaces. The whole structure is
enclosed in a computational box and the boundary conditions on the walls
can be chosen between electric, magnetic and PML. For an accurate sim-
ulation, there are several key parameters requiring a convergence analysis,
in particular the dimensions of the computational window, the number of
modes in each section (1D modes) and the PML thickness.

The details of the simulated structure are reported in Fig. 12: the struc-
ture has been rotated by 90◦ because of some constraint of the simula-
tor (ver. 4.4), the PMLs are placed only laterally while upper and bottom
boundaries are electric walls. The window dimensions have been chosen to
be 2 by 8µm after a simple convergence analysis. Moreover, it has been
noted that in some rare cases the computational algorithm failed to con-
verge.
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Fig. 13. Convergence of the real part of the propagation constant vs. the number of 1D modes.

The strength of the PMLs can be controlled by adjusting the thickness
of the layers. The algorithm resultes are quite stable with respect to this
parameter, the results converging to the same value for PMLs thickness
larger than few tenths of micron. A thickness of 1µm was conservatively
chosen.

Relating to the 1D modes, the larger the number, the more accurate are
the results. Fig. 13 reports the convergence analysis performed on the real
part of the propagation constant. Even with a large number of 1D modes
an oscillating behaviour was found, with an uncertainty better than 6×10−5

achieved for more than 200 modes. The results obtained for the quasi-TE
fundamental mode of the analysed waveguide is neff =2.41235–2.688×10−8 j.
The computational time for the problem discussed with 200 modes 1D is
around 600 seconds on a standard 1 GHz computer, and drops to less than
100 seconds with 120 modes.

9. Film mode matching (P. Bienstman)

In this modelling method, the wire is subdivided into a number of horizon-
tal slices. In each of these slices, the field is expanded in the local eigen-
modes of that particular layer, which are being rotated in such a way that
they all have the same wavevector component kz in the propagation direc-
tion (Bienstman 2004).

Note that in order to model this particular structure, metal walls are only
being placed at the left and right side of the structure, whereas the top and
bottom edges are infinitely extended (see Fig. 14), as the algorithm allows
for treating open space analytically along a single propagation direction.
Indeed, in order to be able to use eigenmode expansion with the 1D slab
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Fig. 14. Boundary conditions used in UGent’s film mode matching method.
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Fig. 15. Real part of the effective index as a function of distance between the walls for different numbers
of 1D modes (note that the N =600 curve is only shown from D =1.8µm).

eigenmodes, it is only needed that these 1D modes form a discrete set,
which is the function of the metal walls to the left and the right of the
structure. The fact that the structure is still open to the top and the bot-
tom means that some modes of the 2D cross section will form continuous
sets. However, that is not important if we are just interested in the guided
modes of the wire.

This means that there are only two parameters that need to be varied
in order to check the convergence of the method: the distance between
the two vertical metal walls and the number of eigenmodes retained in the
series expansion.

Figures 15 and 16 show the real and the imaginary part of the effective
index as a function of the distance D between the walls, and this for differ-
ent number N of 1D modes.
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Fig. 16. Imaginary part of the effective index as a function of distance between the walls for different
numbers of 1D modes (note that the N =600 curve is only shown from D =1.8µm).

From Fig. 16 one can see that after a distance of 1.5 micron, the loss
stabilises. Therefore, the residual oscillations in Fig. 15 are not due to par-
asitic reflections, but rather they decrease as the number of 1D modes is
increased. From the calculations with N = 600, one can deduce a stable
value of n=2.412372–2.9135×10−8 j. However, at 600 modes calculating a
single data point already represents a considerable numerical effort (around
2 hours on a 2 GHz computer). Using 200 modes, this drops to 100 seconds.

The implementation of the method is freely available in the software tool
CAMFR (CAMFR).

10. Aperiodic Fourier Modal Method

The Aperiodic Fourier Modal Method (A-FMM) used in this work can be
referred to as a fully-vectorial “transverse resonance method” following the
classification in (Vassallo 1997). For the specific problem considered here,
it has been described in a previous publication (Hugonin et al. 2005) and
has been successfully benchmarked for the calculation of the real propaga-
tion constant of ridge waveguides. We will not repeat here the details of the
method and will just summarize the main important issues. In brief, the
principles of the method originate from a generalization of classical grat-
ing methods known as the Rigorous-Coupled-Wave-Analysis or the Fou-
rier Modal Method (Moharam et al. 1995), to handle aperiodic geometries
through an artificial periodization and through the use of perfectly-matched
layers (Silberstein et al. 2001). The method relies on an analytical integra-
tion along the y-direction, and on the use of a nonlinear real coordinate
transform (Hugonin and Lalanne 2005) which maps the two semi-infinite
(open) intervals of the Cartesian x-axis to finite intervals of width q in a
new coordinate axis x ′, see Fig. 17. Because the waveguide modes predom-
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Fig. 17. Schematic representation of the artificial periodizations used in this work and illustration of
the non-linear transform used for mapping the semi-infinite real spaces |x| > e/2 onto finite real spaces
e/2< |x′|<e/2+q/2.

inantly leak in the direction of the substrate, the fields are very close to
zero at the laterial boundaries of the computational box. They are thus
periodic functions of the x ′-coordinate and can be expanded in Fourier
series. This introduces an artificial “periodization” along the x ′ coordinate,
virtually replacing the actual waveguide isolated in space by a one-dimen-
sional periodic waveguide grating. Although the artificial period L is finite
in the new space x ′, the distance between adjacent waveguide in real space
is indeed infinite.

The analytical integration along the y-direction in Fourier space is per-
formed with classical scattering S-matrix algorithms (Li 1996) which links
the Fourier-expansion coefficients of the transversal x ′ -and z-components
of the electromagnetic fields in two planes perpendicular to the y-axis and
located in the upper (air) and lower (silicon) claddings. These planes are
denoted P and P ′ in Fig. 17. For a parallel momentum (kx ′ = 0, kz), a
situation usually referred to as purely-conical diffraction in grating theory
(the plane of incidence is parallel to the grooves), the complex effective
index neff is seen as the complex pole kz = k0neff of S. In principle, arbi-
trary accuracy can be achieved by increasing the number of Fourier har-
monics retained in the field expansion. In practice, the Fourier expansion
have to be truncated and we denote the truncation rank by Mx , 2Mx+1
being the total number of Fourier harmonics retained for the computation.
As Mx increases, limitations may arise from memory requirements, or from
the finite precision of the numerical calculations which essentially rely on



MODELLING LEAKY PHOTONIC WIRES 751

Fig. 18. Convergence performance of the Fourier modal method as a function of the total num-
ber of Fourier harmonics for q = 0.3µm and for e = 0.5µm. The relative error is defined as
|Re(neff − n0)|/Re(n0) (dots) for the real part of the effective index and as |Im(neff − n0)|/Im(n0)

(crosses) for the imaginary part of the effective index, where neff is the effective index calculated for
a given Mx and n0 = 2.412372039 + i2.9134801 × 10−8 is the effective index value extrapolated for
Mx →∞.

matrix diagonalization and multiplications. We used a Padé-like algorithm
for the pole calculation, the root search being performed with less than 4
iterations, starting from an initial guess value calculated with a small Mx

value.
The convergence performance of the method is shown in Fig. 18. As

the total number 2Mx+1 of Fourier harmonics retained for the calcu-
lation increases, the relative error defined in the figure caption rapidly
decreases. All the calculations are performed on a PC computer equipped
with a 3-GHz processor and with a Matlab 7 software. In Fig. 18, the
results are obtained for q = 0.3µm and for e = 0.5µm, see Fig. 17 for a
definition of these numerical parameters. We have performed other calcula-
tions for other values of q and e. By varying q by one-order of magnitude
from 0.2 µm to 2 µm and e from 0.5 µm to 1.5 µm, the numerical results
obtained for Mx =400 exhibit stable properties. In particular the 7-first dig-
its of Re(neff ) and the 6-first non-null digits of Im(neff ) are stabilized and
equal to 2.4123720 ± 2 × 10−7 and 2.913480 ± 2 × 10−6, respectively. We
found that the best convergence performance is achieved for e≈q ≈0.5µm.
Typical CPU-times for the computation of the effective index with 2Mx +
1 = 61 (resp. 301) is approximatively 16 (resp. 240) seconds on a PC
computer equipped with a 2.8-GHz processor and with Matlab software.
Finally, let us mention that the coordinate-transform, which maps the semi-
infinite open space to real axes in this work, can be also implemented with
a small modification in the complex plane. In that case, both guided and
radiated modes can be computed, and classical scattering problems in inte-
grated-optics can be efficiently analysed by handling light radiation into the
claddings through the complex mapping (Hugonin and Lalanne 2005).
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11. Plane wave admittance method

The plane-wave admittance method (Dems et al. 2005) is a universal
method for optical analysis of multi-layered structures. The method has
been verified to be a reliable tool for analysis of band structure of pho-
tonic crystal slabs (Dems et al. 2005) eigenmodes of photonic waveguides
or vertical cavity surface emitting lasers (VCSELs) (Dems and Panajotov
2006; Dems et al. 2006) (Czyszanowski et al. 2006). Its main idea is that
the solution is obtained analytically along one axis with numerical plane-
wave expansion in the remaining directions. In the case of longitudinally
invariant waveguide only a one-dimensional numerical expansion is neces-
sary. The main difference between this method and the one presented pre-
viously is the different algorithm of obtaining the analytical solution along
the y-axis. In plane-wave admittance method we use the admittance trans-
fer technique, which does not suffer any instabilities even for the very thick
layers (Conradi et al. 2001).
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where k0 =2π/λ is normalized frequency, β =neffk0 is the propagation con-
stant, ε and µ are anisotropic permittivity and permeability and Ex , Ey ,
Hx and Hy represent electromagnetic field components parallel to the lay-
ers of the structure. In the case analysed in this article x is the direction of
the propagation of light, and z is perpendicular to the wire and the sub-
strate. The equations above can be solved analytically provided they are
represented in some finite matrix form and transformed to new coordi-
nates in which resulting matrix is diagonal. The eigenmodes are determined
with admittance transfer procedure (Conradi et al. 2001; Dems et al. 2005).
In the plane-wave admittance method the numerical representation of the
above matrices is obtained by representing the fields in finite plane-wave
basis. The truncation of the computational domain is achieved with uniax-
ial perfectly matched layers (UPML) represented by diagonally anisotropic
permittivity and permeability tensors. This allows for the analysis of infinite
structures without modifying the equations.

The modelled structure is presented in Fig. 19. We used 6 layers, the top
and bottom of which are PMLs, and the rest being air, a layer containing
the wire itself, the oxide and the substrate. The thickness of the top PML,
the air and the substrate was 4, 4 and 8µm, respectively.
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Fig. 19. Definition of the geometric parameters of the plane wave admittance method.

Fig. 20. The dependence of the imaginary part of the effective index on the PML thickness for
different PML absorptions. The refractive index of the layer is a diagonal tensor of the form

n=n0diag
(

1−κj 1−κj (1−κj)−1
)

, where n0 is the refractive index of the substrate.

The thickness of the bottom PML was varied in order to verify its
impact on the convergence of the losses. The results obtained for different
PML absorption are shown in Fig. 20.

From the graph it can be seen that PMLs work as expected i.e. they
absorb all the field provided they are sufficiently thick. The larger the
absorption, the smaller the necessary thickness. This good performance can
be attributed to the fact that the PMLs and their adjacent layers are uni-
form layers in which the solution is purely analytical and so no numerical
errors occur. Therefore it is not necessary to implement gradual PMLs as
it would be in the case of numerical approximation.

We have also performed a convergence analysis as a function of the
width of the super-cell L (i.e. the total width of the computational domain)
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Fig. 21. The dependence of the real part of the effective index on the number n of plane-waves used for
different super-cell sizes.

Fig. 22. The dependence of the imaginary part of the effective index on the number n of plane-waves
used for different super-cell sizes.

and the number of plane waves n (corresponding to a total number of
plane waves N =2n+1). The results are presented in Figs. 21 and 22.

For larger super-cell sizes numerical artifacts appear in the form of oscil-
lations. A closer look at Fig. 21 and 22 for L=6µm reveals that the results
sub-converge to several different solutions, one of which is virtually the
same as the stable one for L = 4 µm. Thus the chosen size of the super-
cell should be small enough to avoid these oscillations, while on the other
hand the super-cell should be large enough to give the field sufficient space
to decay. The typical convergence time for the total number of planewaves
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equal to n=127 (n = 255) is 28 s (9 min respectively) on a 2.4 GHz PC, with
the condition the good approximate initial guess is provided.

Analysing our results we have estimated the optimal value to be L =
4 µm. The best result obtained for this super-cell size is neff = 2.4126 −
2.910 ·10−8j .

12. Field profiles

In this section, we will focus on field plots obtained by several of the algo-
rithms. In Fig. 23(b,f), we show transverse cuts defined in Fig. 23a for the
modal x- and y-components of the electric-field. The calculation has been

Fig. 23. Modal fields obtained with the aperiodic Fourier modal method. (a) Definition of the trans-
verse cut at the middle of the waveguide and at corner edge. “Inside” and “outside” refer to transverse
cuts in the ridge and out of the ridge, respectively. (b)–(d) : x-component of the electric field. (e)–(f) :
y-component of the electric field. In (b)–(f), vertical dashed lines represent SiO2/Si interfaces. Note that
the imaginary part in multiplied by 1000 in (b)–(d) and 100,000 in (e)–(f). (g) : half transverse section
of the ridge. (h)–(i) : Corresponding real parts of Ex and Ey . Computational results are obtained for
2Mx+1 = 1001.
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Fig. 24. The absolute value of Ex along the path shown in the inset for the effective index method, the
FEM of Parma, the aperiodic fourier modal method and CAMFR.

performed by the aperiodic fourier modal method for 1001 retained Fourier
harmonics. As shown, field discontinuities at the SiO2/Si interfaces as well
as field singularities at the corner are accurately described. This may appear
surprising since one could expect that a method relying on Fourier expan-
sions is not capable to calculate field discontinuities because of the inevi-
table Gibbs phenomenon. However, this possible source of artefact can be
largely removed by considering Fourier expansions only for the fields which
are continuous and then from their computation to derive the other discon-
tinuous field components in real space directly from the constitutive rela-
tions. Details of the field computation technique used for these plots can
be found in (Lalanne et al. 1998), along with an in-depth discussion of the
computation accuracy at edge singularities by comparison with asymptotic
closed-form expressions for the divergence at the corner. Finally note that
the fields in Fig. 23(b–f) are obtained without smoothing the computational
data neither in Fourier domain nor in real space.

If we were to make similar plots for other methods, they would be virtu-
ally indistinguishable on this scale. Therefore, we plot in Fig. 24 the abso-
lute value |Ex | on a logarithmic scale for a few selected methods:

For the ‘exact’ methods, the difference between the curves in the neigh-
bourhood of the core is hardly visible. The staircase profile for FEM Parma
is because no interpolation was used within each finite element. The effec-
tive index method gives field profiles which are slightly larger than the exact
methods. In the region of the substrate, the curves of the aperiodic fou-
rier modal method and CAMFR are indistinguishable. FEM Parma shows
some residual oscillations, which are probably due to parasitic reflections.
(Note that the oscillations in Fig 23 should disappear in this plot, as we
plot the absolute value).
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Table 6. Summary of the results of all the methods

Re(neff ) |Im(neff )|×10−8

Effective index 2.45 2.4
Perturbation 2.35 3.0
BPM Obayya 2.413340 2.7
FEM Uranus 2.4131 2.97
FEM Parma 2.41233 2.45
Olympios 2.413 2.9
FimmWave 2.41235 2.688
CAMFR 2.412372 2.9135
Aperiodic fourier modal method 2.412372 2.91348
Plane wave admittance 2.4126 2.910

13. Summary

Table 6 summarises the results of all the methods.
As far as the approximate codes are concerned, it is interesting to point

out that they give results which are more or less in the correct order of
magnitude, with negligible numerical effort. Therefore, these tools still have
their place as a first step in a design process.

When we look at the real part of index given by the other approaches,
there is a general consensus that the first three significant digits are 2.41.
For the digits after that, results vary between 2, 3 and 4. This spread is
remarkable given that most of the methods claim much more significant
digits. Within these codes, four agree on 5 significant digits 2.4123 (FEM
Parma, FimmWave, CAMFR and aperiodic fourier modal method). The
last two of these even agree up to 7 significant digits, although the conver-
gence of the aperiodic fourier modal method is less oscillatory than that of
the film mode matching. This is probably due to the ‘smoother’ nature of
plane waves as compared to film modes.

The spread on the imaginary part, however, is significantly higher,
with just barely an agreement on the first significant digit. The following
approaches agree up to 2 significant digits 2.9: FEM Uranus, Olympios,
CAMFR, aperiodic fourier modal method and plane wave admittance. The
last three of these agree on 3 significant digits, and CAMFR and the ape-
riodic fourier modal method agree on 5 significant digits after rounding.

14. Conclusion

We presented simulation results on the complex effective index of a leaky
photonic wire, using a wide variety of simulation tools. The convergence of
those approaches was analysed and compared.
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