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We fully characterize the stationary spatial-gap soliton through the measurement of the phase function of its
nearly periodic transverse intensity distribution. The spatial-gap soliton is generated in one-dimensional pho-
tonic crystal consisting of a corrugated semiconductor planar optical waveguide. The measured phase function
allows us to determine the detuning parameter that provides the position of the gap soliton within the photonic
band gap.
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I. INTRODUCTION

Nonlinear wave propagation in periodic media has been
intensively studied both theoretically and experimentally in
the past several years. This interest stems from particular
wave propagation properties leading to fascinating phenom-
ena which have no counterpart in homogeneous media.
Among these, gap solitons �GS’s� have been the focus of
considerable attention since their theoretical description two
decades ago.1–3 These solitons appear as localized waves be-
cause the nonlinear self-action suppresses the wave spread-
ing due to the grating action. They have been predicted in
various structures such as fiber Bragg gratings and two- and
three-dimensional nonlinear photonic crystals4 or, outside the
field of optics, in Bose-Einstein condenstates in weak peri-
odic potentials.5 GS’s differ from conventional solitons by
the fact that their spectrum lies in the linear forbidden gap of
the periodic structure. Moreover, solitons that are slow or
even immobile with respect to the grating can be achieved
through a proper balance between the two constituting coun-
terpropagating waves.6

Optical fibers or channel AlGaAs waveguides with per-
manently built-in Bragg gratings were the first test beds for
the physics of GS’s.7–9 Yet the impossibility of superimpos-
ing the two counterpropagating waves in front of the struc-
ture �inherent to the side-on excitation� has made difficult the
experimental exploration of the physics of stationary GS’s in
spite of some suggested solutions.10,11

In order to overcome this difficulty, it was proposed in
Ref. 12 to expand the one-dimensional �1D� periodic me-
dium by the introduction of an additional homogeneous
dimension—say, z. In a 2D planar geometry when the refrac-
tive index is modulated in one direction—say, x—the diffrac-
tion relation of electromagnetic waves �i.e., the relation be-
tween the longitudinal �kz� and transverse �kx� components of
the wave vector� is split up by a forbidden band �photonic
band gap�. When a Kerr-type nonlinearity is present, the pe-
riodic medium supports spatial GS’s in the form of a bound
state of two beams of different propagation angles. Indeed,
the local increase of the refractive index in the center of the
beam creates a defect in the linear periodic structure and it is
well known that such an inhomogeneity can support spatially
localized fields within the band gap.14 Actually, the first the-

oretical description of spatial GS’s has been reported in Ref.
13 in the form of bright staggered solitons. These solitons are
realized in arrays of coupled defocusing nonlinear
waveguides and can be seen as the counterpart, in nonlinear
defocusing media, of the spatial GS’s reported in Ref. 12.
Spatial GS’s are analogous to temporal GS’s in 1D periodic
media. These spatial solitons can be simply excited by the
superposition of two beams �called the forward and back-
ward beams� at the input of a periodic planar waveguide as
shown in Fig. 1�a�. Therefore, unlike the temporal GS, a
stationary GS �with zero transverse velocity with respect to
the grating� can be generated. This generation requires two
beams of the same power and with opposite incident angles
close to the Bragg angles of the structure in such a way that
their interference pattern approaches the periodic index pro-
file of the waveguide.

FIG. 1. �a� Planar periodic structure and �b� the associated band
diagram.
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Recently light self-confinement effects characteristic of
the stationary GS have been observed in photorefractive
crystals in defocusing16 and focusing17 photonic lattices and
in semiconductor planar waveguides,18 as well as in optical
fibers in the temporal domain by means of light-induced tem-
poral gratings.11 Note also that in Bose-Einstein condensates,
in the limit of the nonlinear Schrödinger equation, bright
GS’s were experimentally observed as nonspreading wave
packets for repulsive atom-atom interactions in a weak peri-
odic potential.5 In these previous experiments the GS has
been identified only through the observation of the self-
confinement of its constituting wave pair. However, a GS is
much more than a simple self-confined state akin to standard
spatial solitons ruled by the nonlinear Schrödinger equation.
Indeed, the GS constitutes a two-parameter family of solu-
tions in which one of the parameters, called the detuning �,
measures the position of the soliton spectrum with respect to
the gap of the linear structure. The detuning � also deter-
mines the phase function of the nearly periodic transverse
intensity distribution of the GS. This phase function—say,
��x�—represents physically the phase difference between
the soliton wave interference pattern and the grating modu-
lation.

The goal of the present work is to show that it is possible
to have an access to the detuning parameter � of the GS
through the measurement of the phase function ��x�. We
provide in this way a crucial method for the full experimen-
tal characterization of spatial GS’s. The paper is organized as
follows: In Sec. II the theoretical model is briefly presented.
The linear regime of propagation is discussed in Sec. III. The
soliton formation is then considered in Sec. IV, and it is
shown how the phase function ��x� gives access to the soli-
ton detuning. Our experimental characterization of gap soli-
tons is presented in Sec. V. Eventually, Sec. VI concludes the
paper.

II. THEORETICAL MODEL

Our experimental demonstration has been performed with
laser beams propagating in a periodic planar semiconductor
�AlGaAs� waveguide that exhibits a self-focusing Kerr non-
linearity around 1.55 �m. As shown in Fig. 1�a�, the period-
icity is obtained by means of a 4-�m grating, etched on the
top face of the 1.6-�m-thick guiding layer. Around the Bragg
wave number kB=� /d where d is the grating period, the
TE-polarized electromagnetic field

E�x,z� =
1

2
�E+ei��0z+kBx�1e+ + E−ei��0z−kBx�1e−�e−i�t + c.c.

�1�

is ruled by the nonlinear coupled-mode equations that de-
scribe the evolution of a slowly varying envelope of forward
�E+� and backward �E−� beams, polarized along the direc-
tions 1e± included in the xz plane, near the Bragg angle �B
=asin�2� /�kB�, where � is the wavelength in the
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where 	 is the coupling constant that describes the effect of
the grating on the propagation and 
 is the waveguide non-
linear Kerr coefficient.

III. LINEAR PROPAGATION

In the linear propagation regime �i.e., for 
=0� the
coupled-mode equations show that Bragg reflection on the
periodic structure opens a photonic band gap that separates
the diffraction relation in two bands. This is illustrated in
Fig. 1�b� where we plotted in real units the band structure of
the grating. The two branches of the diffraction relation cor-
respond to two propagation modes. The propagation direc-
tions of these modes are given by the normal to the slope of
the corresponding branches �see the arrows in Fig. 1�b��,
while the curvature of these branches characterizes the dif-
fraction of light in each mode �i.e., negative diffraction oc-
curs near the upper band edge�.20 Therefore, when one beam
is incident upon the structure, it always excites two modes
that travel in opposite directions, as indicated by the black
arrows in Fig. 1�b�.21

This characteristic feature has been observed at the output
of our 16-mm-long sample by launching in the waveguide a
single TE-polarized laser beam with a width of 80 �m at a
wavelength of 1.55 �m. At this wavelength the Bragg angle
is 11.2° in air �3.4° in the waveguide�. The density plot of
Fig. 2�a� shows the output beam intensity profile and posi-
tion versus the input angle � �expressed here within the
waveguide�. We clearly see that for small angles the lateral
shift of the beam at the output evolves linearly with the input
angle as in a homogeneous medium. Conversely, near the
Bragg angle the propagation is strongly affected by the grat-
ing: the propagation angle in the periodic medium decreases
as the input angle increases and, additionally, the existence
of the two bands now manifests itself through the appearance
of a second beam corresponding to the lower band of the
diffraction relation. At the Bragg angle the two modes travel
in the same direction, a feature that allowed us to determine
experimentally the Bragg angle with a high accuracy. In Fig.
2�b� we plotted the output beam lateral shift of the upper-
band Bloch mode as a function of the input angle. Taking the
coupling coefficient 	 as a fit parameter for the comparison
with theory, this experimental curve allowed us to get an
accurate value of the actual coupling coefficient of the peri-
odic waveguide. We found 	=10 300 m−1. Knowledge of
this value is essential for the evaluation of the detuning pa-
rameter based on the measurement of the phase function
��x�.

IV. SOLITON PROPAGATION

When neglecting diffraction, Eqs. �2� admit GS solutions
characterized by two parameters −1���1 and 0����.6

The first one, �, is related to the soliton transverse velocity—
i.e., the angle of propagation of the soliton with respect to
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the propagation axis z. Here � depends on the relative inten-
sity between the forward and backward beams and vanishes
when these intensities are equal. In this latter case the soliton
travels in the z direction and does not move across the index
modulation. This is the analog of the 1D stationary GS of
fiber Bragg gratings. The parameter � not only determines
the soliton width and power, but it also gives the position of
the soliton spectrum within the gap �the shift from the center
of the band gap is given by −	 cos����, which is the reason
why it is called the detuning parameter. When �→0 the
soliton is wide, the power is low and the spectrum is near the
lower band. Conversely, a narrow soliton with a spectrum
close to the upper branch corresponds to a value of � close to
�. Additionally, the detuning � determines the evolution of
the phase ��x� of the intensity pattern of the GS. Let us
recall that the function � must be understood here as being
the phase difference between the almost periodic intensity
pattern of the soliton and the periodic variations of the wave-
guide refractive index. As regards stationary GS’s, the inten-
sity pattern is out of phase with respect to the index grating
in the center of the soliton beam, while in the wings of the
beam the intensity pattern and the index grating exhibit a
relative phase that progressively tends to �±�. More pre-
cisely, if the refractive index varies as cos�2kBx�, the
oscillating term that modulates the intensity envelope of the
GS is 1−cos�2kBx+2
� where 
�x�=atan�tanh�	 �0

kB
x sin ��

�tan� �
2
�� and the phase function is thus given by ��x�=�

+2
�x�. The solid line in Fig. 3 shows the intensity distribu-
tion of a spatial GS with a detuning parameter �=1. The

intensity distribution of the lower-branch Bloch mode modu-
lated by the amplitude envelope of the GS is also shown for
the comparison �dotted line�. The phase function ��x� mani-
fests itself by the phase difference between these two inten-
sity patterns and constitutes a genuine signature of the non-
linear nature of the GS. As a result, the measurement of the
phase function ��x� allows, in principle, for the determina-
tion of the detuning parameter that in turn provides the po-
sition of the soliton spectrum within the band gap. A full
experimental characterization of the stationary GS is thus
made possible through this phase measurement.

To validate our experimental approach, we numerically
investigated the evolution of the phase function ��x� along
the propagation axis by simulating the model, Eqs. �2�, with
input Gaussian beams chosen to match at best the GS profile.
The phase fronts of the beams are flat so that the initial phase
function ��x� is always linear. At the soliton power, the nu-
merical simulations show that, over a propagation distance of
4 mm, the slope of the phase function around the beam cen-
ter tends to and finally reaches the theoretical phase slope of
the stationary GS �i.e., ���x=0�=2	

�0

kB
�1−cos��� indepen-

dently of the value of the initial phase slope. Conversely, in
the beam wings the phase function progressively tends to the
expected constant value �±� only over propagation dis-
tances much longer than the 4 mm of our waveguide. This
indicates that, in our experimental investigation of the soliton
generation, we have to restrict our measures of the phase
function to the central part of the beam where the phase is
roughly linear. Importantly, these numerical simulations sug-
gest that a GS can be formed by means of two Gaussian
beams with flat phase fronts and with limited angular accu-
racy and propagation length. As a consequence, we can ex-
pect to be able to check rigorously the generation of a GS
through a full experimental characterization based on the
measurement of the function ��x�.

V. EXPERIMENT

In our experiment, we generated a stationary GS by the
superposition of two TE-polarized Gaussian beams at the
Bragg angle at the input of a 4-mm-long waveguide, as was
done in Refs. 17 and 18. The laser source is an optical para-
metric oscillator pumped by a Ti:sapphire laser producing
130-fs pulses at 82 MHz. We fixed the wavelength at �
=1.57 �m so as to obtain a focusing Kerr nonlinearity with

FIG. 2. �a� Intensity profile at the output of a 16-mm-long planar
periodic waveguide for one incident beam, as a function of the input
angle �. �b� Lateral shift at the output for the upper-band Bloch
mode �crosses�. The solid line shows the theoretical shift calculated
from the diffraction relation of Eq. �2� with 	=10 300 m−1 and 

=0.

FIG. 3. Intensity profile of a spatial gap soliton �solid line� and
a lower-branch Bloch mode modulated by the amplitude envelope
of the GS �dotted line�. The detuning parameter is �=1.
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minimal two-photon absorption since the photon energy is
below the energy of the half band gap.19 The solid line in
Fig. 4�c� shows the intensity profile of one of the two input
beams. As can be seen from the asymmetry of the intensity
profile, our laser beam is slightly multimodal at the output of
the parametric oscillator. However, by injecting this beam
into the waveguide outside the grating region, we checked
that the asymmetric defect is not coupled to the waveguide

mode; i.e., the output beam is always perfectly symmetric,
corresponding to a nearly Gaussian input beam of 60 �m full
width at half maximum �FWHM�. The relative phase be-
tween the two beams was adjusted to excite a lower branch
Bloch mode in the linear regime. In order to visualize the
index modulation for the phase slope measurement, we
launched in the waveguide a wide beam at normal incidence.
At the output, this beam is slightly modulated by the grating
and its intensity maxima naturally coincide with the grating
index maxima. The location of the index maxima can there-
fore be recorded to be compared with the soliton intensity
maxima. The systematic measurement of the separation dis-
tance between the index maxima and the soliton intensity
maxima allowed us to reconstruct the full phase function
��x� of the stationary GS.

Figure 4�a� shows the intensity profile at the output of the
grating, at low power. Due to the effect of the grating-
induced diffraction, the Bloch mode expends up to 95 �m
FWHM. Conversely, Fig. 4�b� and the dotted line in Fig. 4�c�
show that at a measured output peak power of 850 W the
beams keep their initial width of 60 �m FWHM. Remem-
bering that the asymmetric defect on the left part of the input
intensity profile must be ignored, we observe on the right
part of the beam that the intensity profiles of the input and
output beams perfectly match, which indicates the formation
of the GS. Moreover, we checked that, as predicted by
theory, the GS appears when the intensity pattern maxima
coincide with the grating index minima, as shown in Fig.
4�d� where the dotted line corresponds to the soliton intensity
profile and the solid line corresponds to the intensity profile
of the additional beam used to measure the index modula-
tion. When we align the intensity maxima with the index
maxima in such a way to excite an upper-branch Bloch mode
�at low power�, the resulting anomalous diffraction induces a
dramatic defocusing at high power.22 In this situation we
measured, at the soliton power of 850 W, an output beam
width of 180 �m �see Fig. 4�e��.

Figure 5 shows typical measured phase function ��x� in
the linear regime and in the soliton regime. In the linear

FIG. 4. Output intensity profile at �a� low and �b� high power
when a stationary GS is formed �measured output power P
=850 W�. �c� Intensity profile of one of the two input beams �solid
line� and intensity profile at the output of the waveguide at high
power when the intensity pattern is out of phase with the index
modulation �dotted line�. �d� Output intensity profile of the GS
beam �dotted line� and the beam used to measure the index modu-
lation �solid line�. �e� Output intensity profile at high power when
the intensity pattern is in phase with the index modulation.

FIG. 5. Output phase function ��x� in the conditions of Figs.
4�a� and 4�b�, linear regime �crosses� and soliton regime �circles�.
The solid line shows the theoretical phase function for a stationary
GS with a detuning �=0.27.
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regime this phase is almost flat in the center of the beam, as
predicted by numerical simulations. This means that the pe-
riodicity of the intensity profile is the same as that of the
grating, which corresponds to a lower-branch Bloch mode.
At the soliton power, the phase function ��x� exhibits a lin-
ear slope in the center of the beam. The theoretical fit �see
Fig. 5� with the phase slope of the GS solution provides, with
the parameters of our experiment, the value �=0.27 for the
detuning. This detuning corresponds to a theoretical soliton
width of 55 �m FWHM, which is in reasonably good agree-
ment with the measured beam width of 60 �m FWHM. As
regards the soliton power, the detuning of 0.27 corresponds
to a theoretical value of 700 W, which has to be compared
with the 850 W used in our experiment. The agreement be-
tween theory and experiment is naturally weaker than for the
soliton width because of the existence of losses as well as the
use of femtosecond pulses instead of the continuous waves
considered in theory, which leads to a significant increase of
the required power.

VI. CONCLUSIONS

In conclusion, we have demonstrated the formation of a
stationary-gap soliton in a nonlinear periodic planar wave-

guide by means of a refined analysis of its transverse inten-
sity pattern. The originality of our approach is that the gap
soliton is fully characterized through the measurement of its
detuning parameter, which provides its position within the
band gap. The agreement between theory and experiment is
fully satisfactory in the sense that the measured detuning
value is in agreement with the measured soliton width
�within reasonable experimental errors�. Because we have
been able to fully characterize a gap soliton experimentally,
our study constitutes a crucial demonstration of the possibil-
ity to generate and control gap solitons in 1D nonlinear pe-
riodic planar waveguides. Our approach could naturally be
applied in other fields of research, such as, for instance, in
the experimental study of nonlinear matter waves in weak
periodic potentials.5
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