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Abstract. In order to simulate surface plasmon waveguide structures we have utilized and improved the
adaptive spatial resolution technique and combined it with PML boundary conditions. Using this new
technique we have developed a novel concept for an integrated surface plasmon biosensor.
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1. Summary

The Fourier Modal Method (FMM) formulated by Moharam and Gaylord
(1983) is known to be slowly converging, especially for TM polarization
of metallic lamellar gratings. The correct factorization rules for discontinu-
ous functions derived by Li (1996, 2002) improved the convergence rate for
TM polarization (Granet and Guizal 1996; Lalanne and Morris 1996). For
thin metallic gratings however, the convergence of the method, even when
applying the correct factorization rules, was still problematic. Reformulat-
ing the eigenproblem in a new basis can improve convergence rates, as has
been shown by Granet (1999), who first introduced the concept of adaptive
spatial resolution (ASR). The method consists of a parametric representa-
tion of the coordinate axis, which allows a spatially adaptive resolution,
increasing the resolution in the neighborhood of the discontinuities of the
permittivity function. The original technique was later extended to multi-
level profiles (Vallius and Honkanen 2001). Since the FMM can also be
applied to calculate waveguide problems (Lalanne and Silberstein 2000), we
have modified the parametric reformulation so the formalism could be used
to provide reliable estimates for a two-stage method in a eigenmode solver
(CAMFR (Bienstman 2004)). In the first stage of the method a coarse
estimate of the propagation constant is calculated using the FMM. In a
second stage these estimates are refined using a mode-matching method.
This technique also allows us to determine the accuracy of the FMM by
comparing the coarse estimates of the propagation constants to the actual
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values. Perfectly Matched Layer (PML) boundary conditions (Bienstman
and Baets 2002) were also integrated into the formalism.

Using this calculation scheme we have developed a novel concept for
an integrated surface plasmon biosensor. The use of surface plasmon res-
onance (SPR) for biological and chemical sensing is well established. The
high sensitivity of this technique to surface phenomena makes it ideal
for use in real-time and label-free biosensors where very small changes in
refractive index must be detected. In the past decade, several integrated
optical SPR sensors have been demonstrated (Harris and Wilkinson 1995;
Homola et al. 1997; Čtyrocký et al. 1999), in which thin gold films serving
as a platform for the attachment of sensing films are deposited on top of an
integrated optical waveguide system. However, all integrated SPR sensors
that have been investigated so far are fabricated in a material system with
a low refractive index contrast, keeping typical dimensions of waveguides
and optical components too large for miniaturization and consequent lab-
on-chip applications. Working with a high refractive index material system
such as silicon-on-insulator is a more straight-forward approach to meet
the requirements for high-level integration and high-throughput fabrication.

2. Theory

The FMM is based on a series representation of the electromagnetic field
in the region that contains the grating. This series representation must then
satisfy the appropriate boundary conditions (Moharam and Gaylord 1983;
Granet and Guizal 1996). Consider the case of a lamellar grating config-
uration as shown in Fig. 1. A piece-wise homogenuous system with thick-
ness h, characterized by a refractive index n2(x), periodic in the x direction
with period d and independent of the y-coordinate separates the vacuum
(n=1) and a homogenuous isotropic medium with refractive index n3. This
structure is illuminated by a p-polarized monochromatic plane wave with a
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Fig. 1. Setup for the FMM.
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vacuum wavelength λ, angular frequency ω and wave number k at normal
incidence. The unknown function is the y-component of the magnetic field
Hy(x, z). In each region, which we refer to by the subscript i, i ∈ {1,2,3},
the field can be represented by the following superposition of eigenmodes:

Hiy(x, z)=
∑

q

[
A+

iqe−ikriqz +A−
iqeikriqz

]
φiq(x), (1)

where A+
iq and A−

iq are modal-field amplitudes and riq and φiq(x) are
modal eigenvalues and modal eigenfunctions, which are determined by the
boundary-value problem

Li(x)φiq(x)=k2r2
iqφiq(x), (2)

φiq(x +d)=φiq(x), (3)

where Li(x) is a second order differential operator derived from Maxwell’s
equations and only depending on the x variable.

Li(x)=n2
i (x)

(
∂

∂x

(
1

n2
i (x)

∂

∂x

)
+k2

)
. (4)

In the vacuum and the substrate, the Hiy functions are given by Rayleigh
expansions. The only remaining problem is to compute the eigenmodes
φ2q(x) and the eigenvalues r2

2q in the grating region. For that purpose we
first expand the eigenmodes in terms of plane waves

φ2q(x)=
∑

m

φ2mqe−ikamx, (5)

and then project Equation (2) onto the Fourier basis e−i2πm(x/d). We thus
obtain a matrix for which the eigenvalues and eigenvectors are being
sought. The above described theory is known as the classical FMM.

In order to solve the convergence problems, we first need to take a look
as to what is causing them. The main reason for slow convergence is that
spatial resolution remains uniform within a grating period whatever the
permittivity may be (Granet 1999; Vallius and Honkanen 2001). The para-
metric FMM solves this problem by choosing a coordinate system in such
a way that the mapping of space fits the variation of the periodic function
of interest. In order to do so we need a function x = x(u) so that spatial
resolution is increased at the discontinuity points. Around these points a
given variation �u of u should result in a smaller variation �x of x. In
other words, the coordinate transformation function maps non-uniformly
spaced points along the x axis in the physical domain to uniformly spaced
points in the transferred u domain. We present here the coordinate x as a
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function of u and the transition points are denoted by xl in the x space
and by ul in the u space. Between the transitions xl−1 and xl we use the
function xl(u) for the mapping between different domains. In comparison
with the original formulation (Granet 1999) the formalism was modified so
that the resolution near the discontinuities is increased even more (due to
the fact that a3 depends only on the difference between xl and xl−1 and not
on the total thickness d), and the discontinuities in the new basis can dif-
fer from the discontinuities in the old basis. In comparison with the work
of Vallius and Honkanen (2001) the period d ′ in the new basis can differ
from the original period d, which allows us to stretch the entire structure.

xl(u)=a1 +a2u− na3

2π
sin

(
2π(u−ul−1)

ul −ul−1

)
(6)

with

a1 = ulxl−1 −ul−1xl

ul −ul−1
, (7)

a2 = xl −xl−1

ul −ul−1
, (8)

a3 =xl −xl−1. (9)

The above relation defines a cartesian coordinate system (u, y, z) with a
scale factor along the x-axis. We then introduce a new vector basis eu =
(dx/du)ex , the other two unit vectors ey and ez being unchanged. The
newly defined function of u is periodic with period d ′ which can be differ-
ent than the period of the permittivity function and its derivative is min-
imal at the discontinuities. It can then be shown that the Li operator
becomes

Li(u)= 1
bi(u)

(
dx

du
+ ∂

∂u

(
1

ai(u)

∂

∂u

))
(10)

with

bi(u)= h(u)

n2
i (u)

, ai(u)=h(u)n2
i (u), h(u)= dx

du
. (11)

We can obtain a matrix relation by following the same way as we did in
the classical FMM. The matrix for which the eigenvalues are being sought
is given by

[Li ]= [bi ]−1 [
[h]− [a][ai ]−1[a]

]
, (12)



ASR: APPLICATION TO SURFACE PLASMON WAVEGUIDE MODES

where [h] is the matrix formed by the Fourier coefficients of h such that

hmn =hm−n = 1
2d

∫ d ′

−d ′
h(u)e−i2π(m−n) u

d′ du. (13)

Similar definitions hold for [ai ] and [bi ], [a] is the diagonal matrix formed
by aq , defined by

aq =q
λ

d ′ . (14)

The main advantage of this change of coordinate is that we no longer
need the Fourier coefficients of the exact refractive index profile, but of
the transformed refractive index profile h(u)εr(u). The choice of coordinate
mapping thus has a direct consequence on the convergence of the Fourier
series. By comparing the convergence of the Fourier series we arrived at
three fairly obvious choices. The first possibility is to divide the period d

in l equal sections, we shall refer to this method as the uniform solver. The
second possibility is to chose the transitions so that the peak height of the
function h(u)εr(u) is equal in each section, this will be referred to as the
adaptive solver. The third possibility introduces a new period d ′ and divides
this period into equal sections, this shall be referred to as the extended uni-
form solver. As an illustration we depicted the transformed dielectric profile
h(u)εr for a thin metallic layer (40 nm, εr =−19−0.5301j ), surrounded by a
dielectric cladding layer (1 µm, εr =4) and the Fourier approximation trun-
cated after 10 (red), 25 (orange), 50 (green) and 100 (blue) modes. Only the
real part of the dielectric function is shown in these figures. One can clearly
see that the uniform solver and the extended uniform solver show the most
promising convergence.

3. Numerical example

We have investigated the convergence properties of the new method and
compared them to the original formulation of the FMM and Granet’s for-
mulation (1999).

The setup consists of a thin metallic layer (width 40 nm, n = 0.0608 −
4.3593j ) surrounded by dielectric cladding layers (width 1 µm, n = 2). If
the metallic layer is thin enough, the surface plasmon modes guided by
the interfaces become coupled due to field tunneling through the metal,
thus creating supermodes. In general, only two purely bound TM modes
are guided by a such a structure. In the plane perpendicular to the direc-
tion of propagation the electric field of these modes is comprised of a
single component, normal to the interface, having either a symmetric or
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Fig. 2. Comparison of the different coordinate transformation schemes. (a) Profile of the relative dielec-
tric constant of a thin metallic layer, the configuration is shown in the inset. (b) Transformed relative
dielectric profile of the uniform solver algorithm, the inset depicts the coordinate transformation for
this configuration. (c) Transformed relative dielectric profile of the adaptive solver algorithm, the inset
depicts the coordinate transformation for this configuration. (d) Transformed relative dielectric profile of
the extended uniform algorithm, the inset depicts the coordinate transformation for this configuration.

assymmetric distribution across the waveguide. While the symmetric mode
extends into the cladding layers, the asymmetric mode is tightly bound to
the metallic waveguide and will be extremely lossy. In order to test the con-
vergence of both new methods we made use of the symmetries and placed
the entire structure between two magnetic walls, thus selecting the asym-
metric plasmon polariton mode. In order to reduce reflections from the top
magnetic wall we have also incorporated PML in the simulations imple-
mented as a complex cladding thickness. We calculated the eigenvalues by
using a growing number of the truncation order and compared the conver-
gence of the real part of the first eigenvalue. The result of this simulation
is plotted in Fig. 3. Due to the small feature size the classical FMM con-
verges slowly. Since the old parametric formulation (Granet 1999) does not
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Fig. 3. Convergence of the first order eigenmode of a metallic waveguide with PML boundary
conditions.

allow the spreading of the small features in the u space, the Gibb’s phe-
nomenon will prevent small detail to be resolved correctly, which has a neg-
ative impact on the convergence of this method. Due to the presence of
PML boundary conditions the uniform algorithm fails to converge. This is
due to the fact that the algorithm reduces the distance between the guid-
ing metallic layer and the boundaries and thus the PML has a detrimental
influence on the convergence of the guided modes. By stretching the entire
structure the thickness of the cladding layers can be maintained and the
convergence is optimal as can be seen in Fig. 3

4. Application: a surface plasmon biosensor

Using this calculation scheme we have designed and simulated a novel con-
cept of a surface plasmon biosensor. Only the basic design and principle
of the device will be discussed here, for a detailed analysis we refer to
Debackere et al. (in press). A scheme of the surface plasmon interferometer
is depicted in Fig. 4. The interferometer consists of a gold layer embed-
ded in the silicon membrane on top of a supporting silica layer. When a
dielectric TM-polarized mode guided by the silicon membrane slab wave-
guide enters the structure and reaches the gold, two surface plasmon modes
are launched, one at the upper and one at the lower interface of the gold
layer. Since the refractive indices of the upper and the lower cladding layers
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Fig. 4. Schematical setup of the proposed structure, all dimensions in µm.

are sufficiently different, these modes cannot couple. Therefore, their phase
velocities are entirely determined by the refractive index of the upper and
lower dielectric respectively. At the end of this section, interference of the
two surface plasmon modes results in a dielectric mode launched in the
output waveguide. This explains the sensing functionality of the interferom-
eter: a change in the refractive index of the medium above the gold layer
results in a phase difference between the two surface plasmon modes and
consequently, in a change of output intensity.

Fig. 5 illustrates the interferometric nature of our device. For a sensing
section of length 10 µm, the transmitted intensity of the fundamental TM
mode of the silicon slab waveguide is plotted as a function of refractive
index of the sample medium. For this simulation, we have chosen a wave-
length of 1.55 µm, which is in the near-infrared region and suitable for
biosensing applications. When the upper and lower surface plasmon modes
arrive in phase at the end of the sensing section, constructive interference
leads to maximal transmission. However, for certain values of the sam-
ple refractive index, the phase difference between the two modes equals π ,
resulting into destructive interference and a minimum in the transmission
curve.

Because the device is based on interference, the resonance of the system
can be tuned to a multitude of required wavelength ranges, or refractive
index ranges. The main parameters governing the response of this device
are the length of the sensing region, the thickness of the Si waveguide in
the sensing region, and the thickness of the Au layer.

By varying these three parameters we have optimized the sensor depicted
in Fig. 4 so that the transmission would be minimal for a refractive index
of the sample medium of 1.33, and a wavelength of 1.55 µm. In the opti-
mized design the thickness of the silicon membrane is equal to 101 nm, and
the length of the device is equal to 6.055 µm. Simulation results for this
device are shown in Fig. 6.
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If we work at a fixed wavelength and vary the refractive index of
the sample medium, we can calculate that sensor sensitivity for this
device reaches values of 10,000 dB/RIU (refractive index unit). In con-
junction with an optoelectronic system which can measure changes in
the optical power of 0.01 dB, variations in the refractive index as small
as 10−6 can be measured. This value is comparable with that of other
integrated surface plasmon sensors (Čtyrocký et al. 1999), the dimen-
sions however are two orders of magnitude smaller. This means that the
smallest amount of a certain molecule that can be detected will also be
two orders of magnitude smaller than current integrated surface plasmon
sensors.

5. Conclusion

In order to solve the convergence problems associated with very thin metal
layers, we modified the methods derived by Vallius and Honkanen (2001).
Three different approaches towards improving the convergence of this
method have been described, and of these only one, namely the extended
uniform method, has been withheld, as it works well with PMLs based
on a complex cladding thickness. This methods should allow one to sim-
ulate plasmon polariton modes with eigenmode solvers instead of FDTD
methods, thus drastically reducing the simulation time and the reliability of
these simulations.

With the use of this method we have developed a novel concept for
an integrated surface plasmon biosensor. The device has a number of
interesting benefits. First, the device is two orders of magnitude smaller
than conventional surface plasmon waveguide sensors, due to the inte-
gration into a high-index contrast material system. Second the device
is highly tunable, making an excellent candidate for a vast number of
applications.

The authors believe this novel concept to be an important step toward a
fully integrated surface plasmon lab-on-chip solution.
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